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Abstract

Objectives

Is global longitudinal strain (GLS) a more accurate non-invasive measure of histological

myocardial fibrosis than left ventricular ejection fraction (LVEF) in a hypertensive rodent

model.

Background

Hypertension results in left ventricular hypertrophy and cardiac dysfunction. Speckle-track-

ing echocardiography has emerged as a robust technique to evaluate cardiac function in

humans compared with standard echocardiography. However, its use in animal studies is

less clearly defined.

Methods

Cyp1a1Ren2 transgenic rats were randomly assigned to three groups; normotensive,

untreated hypertensive or hypertensive with daily administration of spironolactone (human

equivalent dose of 50 mg/day). Cardiac function and interstitial fibrosis development were

monitored for three months.

Results

The lower limit of normal LVEF was calculated to be 75%. After three months hypertensive

animals (196±21 mmHg systolic blood pressure (SBP)) showed increased cardiac fibrosis

(8.8±3.2% compared with 2.4±0.7% % in normals), reduced LVEF (from 81±2% to 67±7%)

and impaired myocardial GLS (from -17±2% to -11±2) (all p<0.001). Myocardial GLS dem-

onstrated a stronger correlation with cardiac interstitial fibrosis (r2 = 0.58, p<0.0001) than

LVEF (r2 = 0.37, p<0.006). Spironolactone significantly blunted SBP elevation (184±15,

p<0.01), slowed the progression of cardiac fibrosis (4.9±1.4%, p<0.001), reduced the
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decline in LVEF (72±4%, p<0.05) and the degree of impaired myocardial GLS (-13±1%,

p<0.01) compared to hypertensive animals.

Conclusions

This study has demonstrated that, myocardial GLS is a more accurate non-invasive mea-

sure of histological myocardial fibrosis compared to standard echocardiography, in an ani-

mal model of both treated and untreated hypertension. Spironolactone blunted the

progression of cardiac fibrosis and deterioration of myocardial GLS.

Introduction

Sustained hypertension frequently results in left ventricular hypertrophy (LVH). In its early

stages, the hypertrophied ventricle is able to compensate for the increased after-load. This is

associated with progressive remodelling of the myocardium consisting of myocyte hypertro-

phy, accumulation of fibroblasts and collagen formation. This eventually leads to a reduction

in left ventricular (LV) compliance, diastolic dysfunction, and subsequent systolic dysfunction,

resulting in left ventricular decompensation and finally, heart failure [1–4]. Traditionally, left

ventricular ejection fraction (LVEF) has been utilised as the main prognostic indicator of car-

diac dysfunction. However, it is becoming increasingly apparent that the prognosis of heart

failure may not be easily assessed by the LVEF alone, particularly in those patients with pre-

served LVEF [5].

Left ventricular hypertrophy and cardiac dysfunction in humans is routinely examined by

echocardiography and magnetic resonance imaging. Such non-invasive imaging techniques

for assessing cardiac performance in animal models (especially in rodents) are more difficult,

in part due to the exceptional spatial and temporal resolution required to image a small rapidly

beating heart. Thus, although research studies involving rodents commonly make use of clini-

cal echocardiography systems, they often rely on simple conventional measures derived from

M-mode echocardiographic tracings, which suffer from a number of shortcomings [6–8].

This, in turn, has led to difficulties in the assessment of diastolic function and contractile func-

tion, limiting the ability of animal models to replicate diastolic dysfunction or heart failure

with preserved ejection fraction. To overcome these shortcomings, two-dimensional speckle-

tracking echocardiography and the use of myocardial deformation (strain) analysis is emerg-

ing as a more robust technique to evaluate cardiac function [9]. Speckle tracking based strain

analysis quantifies myocardial deformation by tracking the ultrasonographic motion of speck-

les throughout the cardiac cycle. To date, despite recent advances enabling this application in

small animal models, the adoption of strain imaging in rodent models has been limited with

very few published studies correlating the ultrasonographic changes with actual changes in

cardiac interstitial fibrosis.

Since hypertension is a common and increasingly significant cause of mortality, a number

of transgenic hypertensive rat models have been developed [10,11]. One such model is the

transgenic Cyp1a1Ren2 rat, in which hypertension can be reversibly induced by diet, without

the need for surgical intervention [12]. In this transgenic rat, mouse Ren2 cDNA expression is

under the control of an inducible cytochrome p450-1a1 promoter, integrated into the Y chro-

mosome of Fischer 344 rats [12,13], and is therefore only active in males. Dietary administra-

tion of indole-3-carbinol (I3C) leads to activation of the promoter gene (Cyp1a1) resulting in

increased expression of Ren2 [12,14]. I3C is a naturally occurring, nontoxic, xenobiotic found
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in cruciferous vegetables (such as broccoli) that acts as a benign inducer with a short half-life.

Activation of Ren2, primarily in the liver, upon induction of the Cyp1a1 promoter by I3C

[15,16], leads to increased circulating renin levels, activation of the renin-angiotensin-aldoste-

rone system and a consequent increase in blood pressure. Significantly, the extent of hyperten-

sion is also I3C dose dependent [13,17,18], allowing for tight titration of blood pressure.

The role of mineralocorticoid receptor antagonists (MRA), such as spironolactone, in mod-

ulating the actions of aldosterone has been investigated in a number of animal studies [19–24]

as well as in clinical trials [25–28], and a number of reviews outline their beneficial effects [29–

33]. Most animal studies investigating the actions of MRAs examined their impact on cardiac

remodelling after cardiac injury [19–22]. Only a few studies have investigated the effects of

MRA in hypertensive models [19,22,23,34,35]. In these studies, spironolactone was adminis-

tered (often at supra-physiological doses) at the onset or prior to onset of hypertension, which

does not reflect the clinical setting of hypertension-mediated injury. In addition, the observa-

tion period was relatively short. Spironolactone reduced the rate of development of cardiac

fibrosis, which is thought to be both dependent and independent of the actions of angiotensin

II [30,36–38]. So far, to our knowledge, there are no animal studies examining the effect of

chronic spironolactone therapy, at relevant clinical doses, following the establishment of

hypertension and cardiac hypertrophy.

Therefore, the aim of this study was to investigate whether spironolactone modifies both

cardiac functional parameters and cardiac interstitial fibrosis over time, following the estab-

lishment of progressive hypertensive injury, more accurately representing the clinical setting.

Cardiac functional status was assessed by standard serial echocardiography with the addition

of two-dimensional speckle-tracking echocardiography to assess global longitudinal strain

(GLS) and these changes were compared with the histological evidence of cardiac interstitial

fibrosis.

Methods

Animals

The initial transgenic Cyp1a1Ren2 rat internal breeding stock was gifted by Professor J.J. Mul-

lins (Centre for Cardiovascular Science, University of Edinburgh, UK). The transgenic

Cyp1a1Ren2 rat colony was held at the University of Otago Animal Resource Unit and animals

were housed under controlled conditions of temperature (~21˚C) and light (12-h light/dark

cycle), with food (meat-free rat and mouse diet, irradiated, Specialty Feeds, Australia) and tap

water provided ad libitum. All Cyp1a1-Ren2 rats used for experiments were obtained from

internal breeding stock and housed in pairs or in groups of four per cage. All experiments

were approved by the Animal Ethics Committee of the University of Otago (AEC 51/13), in

accordance with the guidelines of the New Zealand Animal Welfare Act [18, 39].

Chronic elevation of blood pressure. Eight-week-old male transgenic Cyp1a1Ren2 rats

(n = 28) were maintained on either irradiated pelleted standard chow (Meat free rat and

mouse diet, Specialty Feeds, Perth, Australia) or irradiated pelleted standard chow with addi-

tion of 0.167% w/w indole-3-carbinol (I3C) (#SF13-086, Specialty Feeds, Perth, Australia) to

activate hypertension [18]. Hypertension was established over two weeks (until 10 weeks of

age) [18]. Animals were then randomised to either a hypertensive group (H) or a hypertensive

group with spironolactone (H+SP). At four weeks, a subset of animals from both group H

(n = 4) and group H+SP (n = 4) were euthanised for histological examination. The remaining

animals (hypertensive (H, n = 8), hypertensive plus spironolactone (H+SP, n = 4), together

with the untreated normotensive group (N, n = 8)) were euthanised at the end of the 12 week

experimental period. Systolic blood pressure (SBP), weight and echocardiography were

Myocardial global longitudinal strain and cardiac fibrosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0220837 August 12, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0220837


recorded regularly throughout the 12 week period on these animals (Fig 1). All animals were

terminated by halothane overdose followed by cardiac puncture.

Spironolactone dosing. Dosing for these animals was adjusted using the Food and Drug

Administration’s 2005 allometric scaling calculations as described by Reagan-Shaw et al [40].

A human equivalent dose of 50mg per day of spironolactone (Sigma-Aldrich, Missouri, USA)

was used, which equated to a dose of 4.41mg/kg/day for a rat. To enhance acceptance, spirono-

lactone was mixed into a caramel syrup (Quaterpast, Shott Beverages Ltd., Auckland, New

Zealand).

Systolic blood pressure. All rats were gentled by daily handling and weighed before com-

mencing the experimental protocols, and weekly thereafter. Systolic blood pressure (SBP) was

measured every four weeks in habituated rats after light sedation with midazolam (1.5mg/kg, I.
P.), using tail-cuff plethysmography (NIBP controller plus PowerLab 4SP, ADInstruments,

Dunedin, New Zealand). Animals were given 30 minutes to acclimatise prior to the blood pres-

sure recording procedure and a heat lamp was used to gently warm the tail prior to SBP read-

ings [18]. Data was captured and analysed using Chart v.7 software (ADInstruments, Dunedin,

New Zealand). A mean of ten clear recordings were taken from each rat on each occasion.

Echocardiography. Echocardiography was performed every four weeks. Rats were

anesthetised (5% isoflurane in oxygen 1L/min), maintained on 2% isoflurane in 1L/min oxy-

gen and placed supine on an electrical heating pad (to maintain body temperature). The ani-

mal’s chest was shaved and transthoracic echocardiography was conducted using a 10MHz

linear probe (GE ML6-15, GE Healthcare, Chicago, USA) connected to a commercially avail-

able echocardiography system (Vivid 9, GE Healthcare, Chicago, USA). Standard two-dimen-

sional and M-mode long- and short-axis (at the mid-papillary level) images were acquired. At

least three consecutive cardiac cycles were acquired and transferred for offline analysis using

an image analysis package (2D CPA, TomTec Image-Arena, version 2.21; TomTec Imaging

Systems, Unterschleissheim, Germany). Determination of LV ejection fraction (LVEF) and

end systolic volume were performed using Simpson’s method on TomTec Image-Arena. Addi-

tionally, LVEF was measured using standard techniques using both two-dimensional and M-

mode images in the same animals (EchoPac software version.112.0.x, GE Healthcare, USA) for

comparison.

Speckle-tracking echocardiography. Loops of long axis views were acquired for speckle-

tracking analysis, each using a frame rate of 97 frames/s (>15 frames/cardiac cycle). Analysis

was performed in a blinded fashion by two experienced operators (MM, SC), using the

Fig 1. Overview of the experimental design. Animals were given an initial two weeks on the 0.167% w/w indole-3-carbinol (I3C) diet to

establish hypertension before commencing daily spironolactone (SP) dosing. Every month, animals had systolic blood pressure (SBP)

measured and an echocardiogram (Echo) performed. After one month, a sub set of animals (n = 8) were terminated, while the remaining

animals were terminated following three months. Normotensive animals were only terminated after three months.

https://doi.org/10.1371/journal.pone.0220837.g001
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speckle-tracking algorithm incorporated into the TomTec analysis package (TomTec Image-

Arena, TomTec Imaging Systems, Unterschleissheim, Germany). Standard long axis view was

used for the analysis of GLS of the left ventricle. The GLS was measured at end-systole and

averaged over three cardiac cycles. The timings of end-systole and end-diastole were deter-

mined by M-Mode analysis of aortic and mitral valves. In the defined end-systolic frame the

endocardial border of the left ventricle was traced manually starting at one end of the mitral

annulus through the entire endocardium and ending where the aortic annulus joins the left

ventricular myocardium in the long axis view. The analysis software generated a region of

interest (ROI) including the entire myocardial thickness. The width of the ROI was manually

adjusted as required to include the entire myocardium and exclude the pericardium. The

tracking quality was then assessed to verify its adequacy across the cardiac cycle. The software

calculates GLS using the entire myocardial line length according to the latest recommenda-

tions for assessing myocardial deformation [41], with layered strain allowing separate mea-

surement of myocardial GLS (myo-GLS) and endocardial GLS (endo-GLS), referring to

tracking of the mid-myocardial and endocardial layers, respectively. The inter-observer and

intra-observer interclass variability correlation coefficients were 96% and 97% respectively.

Quantitative microscopy (histology). Hearts were removed, placed into Hartman’s saline

(with 15mmol.L-1 potassium chloride) to arrest the heart in diastole, and fixed for four hours

in 10% neutral buffered formalin (NBF). The heart was transversely cut into 3mm sections,

measuring from the apex using a heart matrix, before further fixation in 10% NBF overnight at

room temperature. Sections were then dehydrated by passage through alcohols and embedded

in paraffin wax. Cardiac sections were cut at 5μm and stained with picrosirius red with light

green counter stain.

Stained sections were viewed using a Zeiss Axioplan Microscope (Zeiss, Oberkochen, Ger-

many), and images of representative regions (0.34mm2) were recorded using a Nikon micro-

scope camera (DS-Ri2, Nikon, Tokyo, Japan). Cardiac interstitial fibrosis was quantitatively

assessed using Sirius red, capturing a minimum of 10 non-overlapping, evenly distributed,

myocardial sections (x50 magnification), containing no vessels, from the transverse section

taken 6mm from the apex from each animal. The extent of fibrotic tissue was quantified by

applying a trained pixel classifier (NIS Elements Basic Research Imaging software, Version

5.11 (64bit edition), Nikon, Tokyo, Japan) to each section (as a percentage of the total image)

and further averaged for individual animals and then each group.

Use of the section 6mm from the apex was justified by calculating the estimated total volu-

metric fibrosis of the heart (up to 9mm from the apex) from a subset of animals and comparing

that to the fibrosis percentage obtained from the 6mm section alone (see S1 Fig, S1 Table).

Statistics

Quantitative data are presented as mean ± standard deviation. Statistical comparisons were

accomplished by unpaired Student’s t-test or one-way analysis of variance (ANOVA) with

Bonferroni post-hoc analysis and correlations were performed using Pearson’s correlation

(GraphPad Prism, GraphPad software, Inc. version 5.03). Results were considered to be statis-

tically significant if P values were <0.05.

Results

All rats showed a steady weight gain over the three month experimental period. Normotensive

rats maintained a consistent heart rate and systolic blood pressure (SBP, 80–104 mmHg), left

ventricular ejection fraction (LVEF, >78.5%) and GLS (endo-GLS, <-24.7%, myo-GLS,

<-15.8%) over the study duration. (Table 1, Fig 2). Using a 95% confidence interval of the data

Myocardial global longitudinal strain and cardiac fibrosis
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obtained from the normotensive animals, a reference range was established for LVEF (>75%),

cardiac fibrosis (<3%) and myo-GLS (<-15%). As there was no differences in the physiological

data in normotensive animals at each time point, normotensive hearts at three months were

used as the histological reference range.

Hypertensive rats showed a significant and rapid increase in SBP in the two weeks prior to

the experimental starting point (from 93±10 mmHg to 160±17, p<0.001), as previously

reported [18]. Systolic blood pressure continued to rise, subsequently reaching 172±14mmHg

after one month and 196±21mmHg after three months. Associated with this progressive

hypertension, LVEF gradually declined at each measured time point, along with a significant

increase in end systolic volume and significant deterioration of GLS over the three month

period (Table 1, Fig 2).

Hypertensive animals treated with spironolactone demonstrated a similar rise in SBP after

one month compared to the untreated hypertensive group (181±23 vs 172±14mmHg,

p<0.05). However, the subsequent rise in SBP seen in the hypertensive group was blunted

over three months by spironolactone (196±21mmHg vs 184±15mmHg, respectively, p<0.01)

(Table 1). This was associated with a significantly improved ejection fraction (Fig 2) and GLS

after three months compared to the hypertensive group, although LVEF and GLS were still sig-

nificantly reduced compared to the normotensive group (Table 1).

Table 1. Physiological measurements.

N H H+SP

SBP (mmHg)a 1mth 94±7 [89–99] 172±14 [163–182]��� 181±23 [159–204]��� †

2mth 94±8 [89–100] 188±21 [174–203]��� 185±16 [179–201]���

3mth 91±13 [82–101] 196±21 [182–210]��� 184±15 [170–198]��� ††

LVEF (%)b 1mth 84±4 [81–87] 81±2 [80–83] 83±2 [81–85]

2mth 84±2 [83–86] 73±4 [70–75]��� 77±2 [74–79]��� ††

3mth 80±3 [78–82] 67±7 [68–72]��� 72±4 [68–75]��� †

End systolic volume (μl) 1mth 50±18 [6–94] 53±9 [46–61] 45±7 [34–56]

2mth 43±2 [41–46] 77±8 [70–83]��� 72±10 [56–87]��

3mth 58±10 [49–68] 86±11 [77–95]��� 80±10 [64–96]�

Endocardial GLS (%)c 1mth -30±2 [-33 - -28] -29±3 [-31 - -27] -31±2 [-32 - -29]

2mth -30±2 [-31 - -29] -22±2 [-23 - -21]��� -26±1 [-27 - -24]��� †††

3mth -27±3 [-29 - -24] -19±3 [-21 - -17]��� -21±2 [-23 - -19]��� †

Myocardial GLS (%)c 1mth -19±2 [-21 - -18] -17±2 [-17.9 - -15]�� -19±2 [-20 - -17]††

2mth -19±2 [-20 - -17] -14±2 [-15 - -13]��� -15±1 [-16 - -14]���

3mth -17±2 [-19 - -15] -11±2 [-12 - -9]��� -13±1 [-14 - -12]��� ††

Physiological measurements of normotensive (N), hypertensive (H) and hypertensive rats dosed daily with spironolactone (H+SP) following one, two and three months

(n = 4–8 per group). Values are shown as mean ± standard deviation, with 95% confidence intervals shown in brackets.
a Systolic blood pressure (SBP) was measured via tail cuff.
b Left ventricular ejection fraction (LVEF) and end systolic volume were calculated from echocardiograms.
c Endocardial and myocardial global longitudinal strain (GLS) was determined from speckle tracking.

� indicates significantly different from N. � p<0.05,

�� p<0.01,

��� p<0.001
† indicates significance between H and H+SP. † p<0.05,
†† p<0.01,
††† p<0.001

https://doi.org/10.1371/journal.pone.0220837.t001
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Myocardial fibrosis

Fibrosis was significantly increased in hypertensive animals at both one month (4.4±2%) and

three months (8.8±3.2%), when compared to normotensive animals (2.4±0.7%, p<0.001) (Fig

3). After one month, spironolactone treatment produced a significant blunting in fibrotic

deposition when compared to untreated hypertensive group (3±1.2% vs 4.4±2%, p<0.01).

After three months of spironolactone treatment, the progression of fibrosis remained signifi-

cantly blunted compared to the untreated hypertensive group (4.9±1.4% vs 8.8±3.2%,

p<0.001) (Fig 3).

Global longitudinal strain

The normotensive group displayed relatively consistent endo-GLS and myo-GLS throughout the

three month period. Endo-GLS was unchanged in the hypertensive group following one month

of elevated SBP, but deteriorated by two months, leading to significantly reduced endo-GLS after

three months when compared to the normotensive group (p<0.001) (Table 1). Significant

impairment of myo-GLS was evident in the hypertensive animals after one month (p<0.01), and

became more marked over the next two months (-11±2% vs -17±2% compared with the normo-

tensive group, p<0.001). In contrast, the hypertensive group treated with spironolactone dem-

onstrated no significant difference in myo-GLS from the normotensive group at one month, and

although myo-GLS declined over the following two months, myo-GLS remained significantly

better than in the untreated hypertensive animals (p<0.001) (Table 1, Fig 4).

Correlation of ejection fraction and global longitudinal strain with

myocardial fibrosis

At one month, hypertensive animals maintained the same LVEF and endo-GLS as normoten-

sive animals, despite a significant increase in myocardial fibrosis. By three months, despite a

Fig 2. Left ventricular ejection fraction after one, two and three months. Left ventricular ejection fraction (LVEF) of

normotensive (N, grey, n = 8), hypertensive (H, black, n = 8) and hypertensive animals dosed daily with

spironolactone (H+SP, dashed line, n = 4) after one, two and three months. Values are shown as mean ± 95%

confidence intervals. Significance between N and H is indicated by �, p<0.05 �, p<0.001 ��� Significance between N

and H+SP is indicated by †, p<0.001 ††† Significance between H and H+SP is indicated by #, p< 0.05 #, p<0.01 ##.

https://doi.org/10.1371/journal.pone.0220837.g002
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Fig 3. Hypertension and cardiac fibrosis. 3(a) Cardiac transverse sections, taken 6mm from the apex (scale bar is 3mm) from normotensive animals

(N) after three months, hypertensive animals (H) and hypertensive animals with spironolactone (H+SP) after both one and three months. Sections were

stained with picrosirius red and light green counter stain. Inlay sections (50x magnification, scale bar 100μm) are taken from the lateral wall of the left

ventricle. (3b, 3c) Percentage of fibrosis of the left ventricle (transverse sections taken 6mm from the apex) from normotensive (N, grey, n = 8),

hypertensive (H, black, n = 8) and hypertensive animals dosed daily with spironolactone (H+SP, striped, n = 4) following one month (b) and three

months (c). Values for normotensive animals were taken at three months only (dashed line), and were compared with hypertensive and spironolactone

treated animals at both one month and at three months. Values are shown as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0220837.g003
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Fig 4. Global longitudinal strain analysis. Global longitudinal strain (GLS) tracking analysis (a), showing the region of interest and the strain

assessment at both one month and three months in normotensive (N), hypertensive (H) and hypertensive with spironolactone (H+SP) groups. (b)

Analysis of the endocardium layer and (c) myocardium layer from normotensive (N), hypertensive (H) and hypertensive animals with

spironolactone (H+SP) following one, two and three months. Values are shown as mean ± standard deviation. Significant differences between N

and H is indicated by �, p<0.05 �, p<0.01 ��, p<0.001 ��� Significant differences between N and H+SP is indicated by †, p<0.05 †, p<0.01 ††

Significant differences between H and H+SP is indicated by #, p< 0.05 #, p<0.01 ##.

https://doi.org/10.1371/journal.pone.0220837.g004
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further substantial increase in myocardial fibrosis, the measured ejection fraction was quite

variable, but the myo-GLS was significantly impaired in the hypertensive animals (Table 1, Fig

5). Treatment with spironolactone significantly reduced the extent of fibrosis at one month,

with preserved ejection fraction and preserved endo- and myo-GLS compared to normoten-

sive animals. By three months, spironolactone continued to limit fibrosis development which

was associated with a significant reduction in impairment of myo-GLS, and to a lesser extent

LVEF, when compared to hypertensive animals at three months. (Table 1, Fig 5).

Linear correlations with myocardial fibrosis measurements at one month revealed similar

correlations of LVEF and myo-GLS (r2 = 0.37, p<0.047, and r2 = 0.32, p = 0.06, respectively).

However, at three months myo-GLS revealed a much stronger correlation with myocardial

fibrosis (r2 = 0.58, p<0.0001) compared to LVEF (r2 = 0.37, p<0.01) (Fig 5). Additionally, lin-

ear correlations of myocardial fibrosis and endo-GLS were not significant at one month (r2 =

0.07, p = 0.43) but were significant at three months (r2 = 0.6, p<0.001).

Fig 5. Comparison of left ventricular fibrosis and myocardial global longitudinal strain. Data from individual animals comparing left

ventricular cardiac fibrosis (%) against EF% (a, c) and myo-GLS (b, d) in normotensive animals (N, grey circles, data only available following

three months), hypertensive animals (H, black circles) and hypertensive animals dosed daily with spironolactone (H+SP, triangles) after one

month (a, b) and three months (c, d). The black dotted lines represent the 95% CI normal reference range of the normotensive animals. r2

correlation values are shown on each graph for all data.

https://doi.org/10.1371/journal.pone.0220837.g005
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Standard assessments of LVEF compared with histological evidence of myocardial fibrosis,

at one month M-mode or Simpson’s rule did not show any significant correlation. After three

months however, the difference in LVEF calculated by Simpson’s rule (p = 0.006) was signifi-

cant, whilst M-mode showed no significant correlation (p = 0.64) (S2 Table).

Raw data is attached as S1 Dataset.

Discussion

In this animal model of inducible hypertension we have demonstrated that sustained severe

hypertension resulted in significant progressive cardiac interstitial fibrosis. Spironolactone

blunted the progression of cardiac fibrosis and deterioration of myocardial GLS after the

establishment of hypertension. We have demonstrated that speckle tracking derived

myocardial global longitudinal strain correlates more closely with changes in myocardial

interstitial fibrosis compared to left ventricular cardiac ejection fraction derived from 2D

echocardiography.

Echocardiography has remained the principal non-invasive imaging modality to provide

reliable assessment of cardiac function. While left ventricular systolic function measured by

M-mode, fractional shortening or 2D ejection fraction, has been shown to be a useful volumet-

ric-based index, these measurements are limited by inherent variability, influenced by the

quality of the image, off-axis imaging, measurement errors or by geometric confounders.

Speckle tracking derived strain is still reliant on good quality, on-axis images, but is a direct

measure of myocardial function rather than calculation of cardiac volumes. In recent clinical

studies, the use of speckle tracking has shown GLS as a diagnostic tool to be superior to left

ventricular ejection fraction (LVEF) in a wide range of cardiac conditions [42–45], especially

in detecting subtle impairment in left ventricular function [44]. Additionally, these studies also

report a significant reduction in GLS without a corresponding reduction in LVEF [42–45].

Strain analysis, particularly GLS, has also been reported clinically as a more sensitive predictor

of overall CV mortality compared to LVEF [44, 46], and defined progressive changes in strain

predicted mortality while changes in EF did not, until cardiac contractility was severely

impaired. Furthermore these changes in GLS are similar in rats and humans [47]. In this

study, we have shown that, impairment in myo-GLS is apparent even without detectable

changes in LVEF in early stage disease, and correlates better with histological assessment of

myocardial fibrosis in more advanced disease.

A separate issue is the use of human reference ranges for cardiac function in animals.

Whilst the LVEF in the hypertensive group was reduced compared to normotensive animals,

the LVEF values obtained would be considered as relatively normal (or preserved) based on

the standard clinical definition of preserved LVEF being greater than 50% [5]. Our method of

construction of a reference range based on control animals identified all diseased animals

(with or without treatment with spironolactone) as having reduced LVEF by three months. As

such, after three months of sustained hypertension, these animals would not be suitable as a

model of heart failure with preserved ejection fraction (HFpEF) despite having LVEF > 50%.

In contrast to other recommendations (2), we recommend construction of study-specific nor-

mal reference ranges for LVEF when performing preclinical research in HFpEF, as these are

likely to significantly alter the cut-off for preserved LVEF. Notably, at 1 month, hypertensive

animals in our study did have a preserved LVEF, but an impaired myo-GLS.

Recent studies performed with Dahl salt-sensitive rats [1,9] showed a similar gradual reduc-

tion in LVEF with a matched steep decline in GLS to that seen in our study. However, in that

study, the animals had profoundly more severe SBP recorded (>220mmHg following 16

weeks of age [1]). This model provides histological support for the clinical survival
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observations [46] where small changes in GLS present in patients with EFs still in the normal

range are likely to have significant pathological changes present.

A number of studies have demonstrated a central role of aldosterone in promoting cardiac

fibrosis [48–53], and have further established that this can be independent of blood pressure

[52,54,55]. Early work by Brilla and colleagues [54], showed that aldosterone stimulated colla-

gen synthesis through mineralocorticoid receptors in isolated cardiac fibroblasts. This work

led to multiple animal studies showing that mineralocorticoid receptor antagonist (MRA) can

prevent or delay the development of ventricular remodelling and cardiac interstitial fibrosis

particularly following cardiac injury [33,36,51,56,57]. Clinical studies have also identified the

potential beneficial roles of mineralocorticoid receptor antagonism in cardio-protection

[25,26,29,57–59]. Unlike previously reported animal studies utilising MRAs, in this study we

examined the effects of mineralocorticoid receptor antagonism on cardiac injury/fibrosis after

establishment of severe hypertension. Following one month of spironolactone therapy, LVEF

and myocardial GLS were maintained despite the lack of an apparent reduction in SBP. This

was associated with a reduction in cardiac interstitial fibrosis compared to hypertensive ani-

mals. At three months of spironolactone therapy, although there was some progression in the

extent of cardiac interstitial fibrosis along with a reduction in myocardial GLS and LVEF, this

was not as marked as that seen in the untreated hypertensive animals (Fig 5).

There are a number of limitations to this study. While spironolactone is known to influence

a number of pathophysiological cardiac effects [56], it is difficult to tease out from our data,

whether the apparent reduction in the progression of cardiac fibrosis is due to direct actions of

the MRA, the stabilisation in the rise of SBP, or both. Additionally, this study used the underly-

ing assumption that the activation of the mineralocorticoid receptor, via increased RAAS acti-

vation, directly effects cardiac fibrosis.

Due to a lack of difference in the physiological data between one month and three months,

only tissue from normal hearts at three months was used as the reference range. It is possible

that a small degree of myocardial fibrosis related to age alone was missed, but given the signifi-

cant differences between hypertensive and normotensive animals obtained, this would have lit-

tle or no impact on the results presented. Due to the small heart size and rapid heart rate, it

was not possible to assess diastolic function. Likewise, due to the small size of the hearts, the

boundaries of the cardiac layers were at times difficult to distinguish, preventing an accurate

assessment of the epicardial or endocardial layer. Further work with this rat model utilising an

echocardiographic probe with the ability to capture at a higher frame rate would help establish

both the systolic and diastolic cardiac dysfunction more accurately.

Spironolactone, given to rats following established severe hypertension, reduced the extent

of cardiac interstitital fibrosis. Of note, by using both a human equivalent dose of spironolac-

tone and oral dosing, as well as ensuring hypertension was established prior to therapeutic

intervention; this more closely mimics the clinical setting, allowing for more accurate transla-

tion to clinical outcomes.

In summary, spironolactone blunted the progression of cardiac fibrosis and deterioration

of myocardial GLS after the establishment of hypertension. Myocardial GLS (as opposed to

LVEF or endocardial GLS) was more sensitive in detecting the early stages of hypertension-

mediated cardiac injury, where ejection fraction is preserved, and had a closer correlation with

histological myocardial fibrosis in late stage disease. These findings would suggest that mea-

surement of myocardial GLS should be utilised in preference to M-mode and estimates of ejec-

tion fraction, providing increased statistical power and the ability to non-invasively assess

myocardial fibrosis. We suggest that strain analysis should be more commonly used, in pre-

clinical studies to allow better correlation with clinical analyses. Additionally, we recommend

construction of study-specific normal reference ranges for LVEF when performing preclinical
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research in HFpEF as these are likely to significantly vary significantly from the clinical defini-

tion for preserved LVEF, and hence the translational ability of the experimental findings. Fur-

ther work is planned to categorise the cardiac dysfunction in this animal model and the

potential mechanisms that may mediate the actions of spironolactone.
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