
RESEARCH ARTICLE

Graph convolutional network approach

applied to predict hourly bike-sharing

demands considering spatial, temporal, and

global effects

Tae San Kim, Won Kyung Lee*, So Young SohnID*

Department of Industrial Engineering, Yonsei University, Shinchon-dong, Seoul, Republic of Korea

* sohns@yonsei.ac.kr (SYS); wk.lee@yonsei.ac.kr (WKL)

Abstract

Solving the supply–demand imbalance is the most crucial issue for stable implementation of

a public bike-sharing system. This gap can be reduced by increasing the accuracy of

demand prediction by considering spatial and temporal properties of bike demand. How-

ever, only a few attempts have been made to account for both features simultaneously.

Therefore, we propose a prediction framework based on graph convolutional networks. Our

framework reflects not only spatial dependencies among stations, but also various temporal

patterns over different periods. Additionally, we consider the influence of global variables,

such as weather and weekday/weekend to reflect non-station-level changes. We compare

our framework to other baseline models using the data from Seoul’s bike-sharing system.

Results show that our approach has better performance than existing prediction models.

Introduction

Recently, demand for bike-sharing systems has increased globally, owing to greener and

healthier living styles [1]. However, the supply–demand imbalance remains the biggest obsta-

cle to operating an efficient bike-sharing system [2]. To reduce the gap between supply and

demand, manual monitoring systems have been used to enable bike relocation by truck [3].

Because this method consumes enormous labor and time, the accurate forecasting of real-time

demand has gained importance. In this paper, we propose a framework for forecasting hourly

bike demand at the station level, which can reduce operating costs and time requirements for

bike-sharing systems.

Bike data has both spatial and temporal properties [4]. To improve prediction accuracy, it is

important to understand both characteristics [5]. First, spatial properties indicate dependen-

cies among stations. The inter-station relationship can be represented by geographical dis-

tances among stations. Furthermore, close stations are more similar than distant stations,

according to the first law of geography [6]. For instance, if one station does not have any avail-

able bikes, the user will most likely rent one at a nearby station. However, the relationship

among stations is not merely established by local distance. Another connection can be
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Two kinds of data related to Seoul public bike rental

system were utilized this study: bike transaction

data and bike station data. We obtained the bike

transaction data for Seoul from 2016 to 2018 from

the Seoul Facilities Corporation database (https://

data.seoul.go.kr/dataList/catalogView.do?infId=OA-

13252&srvType=F¤tPageNo=1). The bike

transaction data includes records of bike rental

information of users such as user id, rent/return

time, rent/return stations name and station
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construed in terms of usage patterns. The mobility pattern of bike usage can be identified by

usage pattern and can be utilized for forecasting upcoming demand [7]. For example, we

should expect greater usages between residential stations and commercial stations, especially

during rush-hour commute. These two types of stations are considered closely related, despite

their distance. Second, from the temporal perspective, demand is not only influenced by tem-

poral proximity, but also by repetitive patterns over a constant period [8]. For example, daily

and weekly patterns can be employed to forecast future demand. Thus, these various temporal

properties are just as important as spatial properties.

Most recently, deep learning has been applied to bike demand forecasting. Among the

many approaches, the convolutional neural network (CNN) is one of the popular models

being used to solve real-time bike demand forecasting [6, 9]. However, as CNN extracts the

local features considering relativeness of local architecture of image, they only reflect inter-sta-

tion relationship by geographical distance [1]. In order to overcome this drawback of CNN,

there has been an attempt to apply deep learning architecture to graph data structure [10–11].

Graph represents heterogenous pairwise relationship of nodes, so it can capture non-Euclidean

properties among the nodes [10].

Graph convolutional neural network (GCN), state-of-the-art deep learning model in graph

theorem, is also applied to predict bike usage by exploiting underlying spatial properties [1].

GCN is a neural network technique that works on graph structures composed of nodes and

edges [10]. These graph structures can reflect various relations among stations, so that various

spatial properties can be considered by GCN. However, in our best knowledge, there were no

studies that considered various temporal patterns while taking advantage of the graph theory.

Demand patterns repeat periodically, so it can provide important clues in predicting next

demand. Thus, we construct a GCN-based prediction model which incorporates not only dif-

ferent spatial characteristics, but also various temporal patterns. Moreover, we consider the

influence of global variables, such as weather and weekday/weekend, to consider non-station

level changes. We verify our model using real-world bike data and compare it to other baseline

models in a prediction task.

This paper is organized as follows. We review various studies related to the prediction of

bike demand in Section 2. Then, we propose a GCN architecture reflecting various spatio–

temporal properties and global variables in Section 3. We apply our architecture to the Seoul

bike-sharing system, “ddareungi”, and compare the performance of our model to that of other

prediction models in Section 4. Finally, in Section 5, conclusions and future works are

summarized.

Literature review

Spatio–temporal properties

From simple linear regression to statistically complex methods, early-stage studies were

designed to find the relationship between spatio–temporal variables and bike demand. Frade

and Ribeiro [12] estimated the effects of weather conditions and temporal features. Differing

influences of temperature, rainfall, and snow were explored as weather conditions, and pat-

terns of day-of-week and monthly total demand were extracted as temporal features. Multiple

regression models were used to capture the simultaneous influence of all variables. Thomas

et al. [13] used a similar regression model as did Frade and Ribeiro [12], but they considered

different weather sensitivity for cycling purposes. Depending on the location, the purpose of

riding varies. Thus, the degree of sensitivity to weather will differ depending on personal riding

purposes. For example, recreational purposes are more affected than utilitarian purposes.

Thus, individual sensitivity to weather is reflected by bike demand.
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However, there have been studies that used complicated and hierarchical methods to reflect

complex relationship among spatio–temporal variables. Regue and Recker [14] used a gradient

boosting machine (GBM), a machine-learning method that uses a decision tree structure that

enables prediction of bike demand. Spatio–temporal variables include the number of bikes

concurrently at a station, hourly weather conditions, holidays, and current time. The hierar-

chical relationship among these variables was captured with a tree structure. The results

showed that the GBM showed better performance than simple linear regression models.

Froehlich et al. [15] applied clustering techniques to group bike stations based on their fre-

quency of usage. They performed a simple Bayesian network analysis using current time, pre-

diction window, and the number of currently available bikes to predict delta, a continuous

Gaussian variable that represents forecasted variation of demand in a prediction window. By

adding the delta to the most resent observation, predictions were made. They also showed that

stations in the same cluster had similar circumstances related to location, and each cluster had

different patterns of hourly future usage. Thus, they demonstrated relationships among time-

of-day, geographic location, and demand.

Deep learning approaches

However, because bike demand is affected by many complex factors [9], it is difficult to cap-

ture all the underlying relations of demand solely with observable variables [16]. Deep learning

can extract highly meaningful latent features from raw datasets. Recently, this has been

regarded as one of the most powerful methods for obtaining more predictive power. In the

domain of bike-demand prediction, deep learning models have been proposed [6, 9]. Zhang

et al. [6] presented a CNN study that predicted bike demand using image data, showing

demand based on regions of Beijing. CNN is a deep learning method used for extracting fea-

tures focused on geographical connectivity among station locations [17]. As an image passes

through the convolution layer, the neighboring local information is combined into one grid of

image by localized filter [17]. Through the repetition of this procedure, highly meaningful

local features are extracted. The authors built a CNN model that learned timely sequential

images, so that geographical distance and temporal effects could be captured simultaneously.

Thus, the prediction performance significantly improved. In a subsequent paper, Zhang et al.

[9] showed enhanced results using residual neural network (ResNet), another state-of-the-art

CNN architecture.

Methodology

Framework

This paper presents a GCN based framework that reflects the influence of various spatio-tem-

poral properties and global variables simultaneously. GCN is a neural network designed to

work on a structured graph, instead of regular grids [10]. The graph structure consists of

nodes and edges, so this paper defines nodes as stations, whereas edges as dependencies

among stations. Fig 1 shows the detailed structure of our model. First, we define spatial and

temporal properties for extracting a graph structure from a raw dataset. For spatial properties,

we employ both the geographical distance-based graph and historical usage pattern-based

graph. The performance of GCN relies on the relationship among stations [10]. Thus, we use

the two graph structures separately and investigate which structure is better for demand pre-

diction. For temporal properties, we construct hourly, daily, and weekly GCN models to cap-

ture the repeated patterns over time. For simultaneous training of these three types of

temporal patterns, all features are concatenated and fused into a fully connected layer (FCL).

Subsequently, global variables that can potentially affect bike demand, such as weather
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condition and different pattern of weekday and weekend, are considered. The details of our

architecture are explained below.

Graph convolutional networks

The reason for using GCN is to consider relationship among stations that can be represented

in a graphical structure. Thus, to employ a GCN, the graph structure must first be extracted

from the raw dataset. In this study, the graph is represented as G = (V,E,xi), where V is a set of

bike stations of size Ns, E is the set of edges between stations, and xi is demand for every station

i to predict demand at time t. In this study, we aimed to predict the next time bike demand of

all stations, namely the corresponding target vector yt 2 RNs.
To conduct the graph convolutional process, we first converted the raw information to

graph representations. The graph representations based on bike demand could be expressed in

the form of an adjacency matrix and feature matrix. The adjacency matrix A2RNs×Ns repre-

sents the network connection among nodes, whereas feature matrix H = [Xt-W, . . ., Xt-1] 2

RNs×Nw, where Nw is the time window size that indicates how many previous demands are con-

sidered for every station, refers to the previous demand of each station related to target

demand. We compose two types of A with the distances and usage patterns among stations

and constructed threeH composed of the sequential demand with different time intervals for

the hourly, daily, and weekly GCN model, respectively. Since constructed A andH jointly pre-

dicted the next hour demand, the GCN model could capture spatial and temporal properties

simultaneously.

Fig 2 shows the layer-wise propagation rule of the GCN. In all neural layers, feature matrix

H is multiplied by adjacency matrix A. This matrix product allows dependencies among sta-

tions to project into every feature at each station. The output matrix of each layer becomes a

new feature matrix in the next layer. When a new feature matrix enters the next layer, it is

again multiplied by A. Thus, the connectivity between stations can be continuously injected to

all features at each station. Finally, this process produces a station-level output, Z, the last fea-

ture vector, and station-level demand prediction can be performed by using this extracted

Fig 1. Framework of proposed GCN.

https://doi.org/10.1371/journal.pone.0220782.g001
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feature.

Hðlþ1Þ ¼ fðHðlÞ;AÞ ¼ sðAHðlÞWðlÞÞ;

whereH(l) is a feature matrix of the lth layer,W(l) is a weight matrix of the lth layer, and σ
denotes an activation function. However, A is not normalized. Therefore, the multiplication

process completely changes the scale of the feature matrix. To adjust the scale, the adjacency

matrix, A, should undergo a Laplacian normalization process [11], defined as

f HðlÞ;A
� �

¼ s D� 1
2AD1

2HðlÞWðlÞ
� �

;

where D is the diagonal matrix of A.

Dependence among stations

The GCN’s performance depends on the relationship reflected between nodes. A representa-

tive description of the connection between nodes is in the form of an adjacency matrix. In this

section, two spatial properties are used to define connectivity between stations. Correspond-

ingly, we consider two types of adjacency matrices for quantifying the degree of connection.

(1) Inverse distance weight (IDW) matrix: GCN-IDW

The effect of geographical distance is one of the most basic spatial properties. If two stations

are geographically approximate, they will be strongly connected, according to law of geography

[6]. Thus, we use IDW to decay connectivity by spherical distances, using the stations’ latitudes

and longitudes. The inverse distance weighting function is defined as

AIDWij ¼

1

dij
P 1

dij

ði 6¼ jÞ

1 ði ¼ jÞ

;

8
>>>>><

>>>>>:

where AIDWij is the element of distance weight matrix, and dij is the distance between stations i
and j.

(2) Usage pattern (UP) matrix: GCN-UP

This approach makes use of the return and rent information from the bike usage records.

The return–rent pattern indicates how much the rent record from the other stations (previous

time) is relevant to the present demand of corresponding stations. Some stations, from which

Fig 2. Architecture of GCNs.

https://doi.org/10.1371/journal.pone.0220782.g002
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cyclists prefer to borrow, can easily experience a shortage of rentable bikes [18]. Because this

increases dissatisfaction [19], the relation needs to be reflected in the model. Thus, we create a

usage-pattern matrix based on return-rent trajectory data, described as

AUPij ¼
X

RRij;

where AUPij is the element of usage pattern matrix, and RRij is the number of times borrowed

from station j and returned to station i during the entire period.

Various temporal dependence and fusion stage

Bike data has various temporal patterns that can be used to predict demand [20]. Fig 3 shows

temporal patterns of bike demand according to different time interval. Fig 3(A) shows the

influence of the nearest time. Next time bike demand is close to that of peripheral usage, so

unless there is a special event, this trend will be maintained. Meanwhile, bike usage also has

the regular-patterns that are repeated at certain time intervals, as shown in Fig 3(B) and 3(C).

Thus, sequential timestamp with time interval can be useful for predicting the next time

demand. Reflecting these various temporal patterns can improve the prediction accuracy.

However, it is very difficult to incorporate all properties in a single model [6]. To address

this issue, we create three different GCN models: hourly, daily, and weekly. They differ in

terms of time–feature matrix used. The hourly model is used to evaluate the aspect of the

repeated daily pattern at the same hour. Thus, the feature matrix, stacked with hourly demand,

Fig 3. Various temporal patterns of bike demand. (a) Hourly demand during September 1, 2017; (b) daily demand during August

30-September 5, 2017; and (c) weekly demand for August 25 to September 1, 8, and 15, 2017, where the red point indicates September 1.

https://doi.org/10.1371/journal.pone.0220782.g003

Graph convolutional network approach applied to predict hourly bike-sharing demands

PLOS ONE | https://doi.org/10.1371/journal.pone.0220782 September 16, 2019 6 / 16

https://doi.org/10.1371/journal.pone.0220782.g003
https://doi.org/10.1371/journal.pone.0220782


is offered as shown in Fig 4. Because daily and weekly models are intended to consider daily or

weekly patterns, feature matrices made of daily and weekly demand are organized respectively.

To determine each temporal pattern efficiently, we constructed three single GCN models

(i.e., an hourly, daily, and weekly GCN model). Since each model used an individual temporal

feature matrix and spatial adjacency matrix, the output feature reflected the spatio-temporal

properties simultaneously. As we generate these three models having the same GCN structure.

the outputs of each model are similarly denoted as

Hh
ðZÞ ¼ fðHh

ð0Þ;AÞ;

Hd
ðZÞ ¼ fðHd

ð0Þ;AÞ;

Hw
ðZÞ ¼ fðHw

ð0Þ;AÞ;

where f (H, A) is the GCN propagation rule,H.
(0) is the first feature matrix of each model, and

H.
(Z) is the output feature of each model. To determine the various temporal patterns together,

we combined all output features extracted from each model and fused them into a FCL. The

input feature vector of the FCL was denoted asHc(z) = {Hh(z);Hd(z);Hw(z)}, which concatenated

all the output features.

Global variables

One of the biggest influences on bike usage is the cycling environment [21]. Radical changes to

the cycling environment are big obstacles to improving prediction accuracy [22]. Thus, captur-

ing the change in meteorological conditions was beneficial for predicting bike demand. We

considered these meta features as global variables because of their broad influence, which

worked equally for all stations. In this study, we obtained two meta datasets, namely weather

and weekday/weekend, as global variables for the corresponding time t.
In various cycling environments, weather has the greatest influence on usage [23], and rain-

fall has the strongest impact on demand [24]. It is less enjoyable to cycle in the rain, and also

increases the risk of traffic accidents. As shown in Fig 5(A), bike usage at rainy days would be

much less than usual. We collect hourly precipitation data from the meteorological agency and

estimate the influence of precipitation. The impact of precipitation at every station is assumed

Fig 4. Feature matrix of hourly, daily, and weekly model (optimal Nw can be different for each model; h, d, and w represent 1 hour, 1

day, and 1 week, respectively).

https://doi.org/10.1371/journal.pone.0220782.g004
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to be the same. Another global variable that we considered was different usage patterns during

the weekdays and weekends. Bike usage is closely related to life patterns [25]; in particular, the

different patterns between weekdays and weekends can have a significant impact on identify-

ing the bike usage distribution. Fig 5(B) shows high total bike usage during weekday commutes

and high bike usage in late afternoons on weekends. Thus, we reflected the different influences

depending on whether the corresponding time t was during the weekday or weekend.

We transform these global variables into dummy variables, merging them with the output

of FCL. Finally, the predicted value at time t is defined as

ŷt ¼Wc � Hc
ðzÞ þWw � Gw þWd � Gd;

whereW. is the parameter of output and global variables, with respect to the degree of rainfall

Gw and the weekday/weekend Gd. We use the mean squared error (MSE) as a loss function:

1

T � Ns

XT

i

XNs

j
ðŷij � yijÞ

2
;

where T is number of hours, ŷij is value of prediction, and yij is value of hourly usage per sta-

tion. Learning is progressed to minimize the loss function.

Empirical study

Data description

In this study, we applied our model to a real-world dataset provided from the Seoul bike shar-

ing system, “ddareungi”, from Korea Public Data Portal. It has over 70-million bike records,

spanning from September 19th, 2015 to December 31st, 2017. The original data are divided

into two sections: bike transaction data (i.e., user id, rent/return time, rent/return station

name and station number) and station data (i.e., station name, station number, station address,

number of total usable bike of each station, latitude and longitude).

There were nearly 100 stations at the beginning of 2016, and demand was very sparse. How-

ever, the number of stations increased explosively in 2017 until it has exceeded 1000, and bike-

sharing demand grew. Thus, we only selected the data after 2017, and we used stations that

existed since the beginning of 2017, having more than 1 average usage per hour. As a result, we

used 174 stations and about 12 million bike record data.

Fig 5. Total demand of all stations depending on global variables: (a) Bike usage according to rainfall (b) Bike usage according to weekday or weekend.

https://doi.org/10.1371/journal.pone.0220782.g005
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Data preprocessing

For each station, 6,552 hourly demands were prepared as the total sequential dataset. The stan-

dard normalization was applied to standardize the bike demand per station. The first 5,832

hourly demands (i.e., 8 months) were used as the training set and the last 720 hourly demands

(in September) were prepared as the test set.

To transform the continuous demand into a graphical structure, three feature matrixes H 2
RNs×Nw, where Ns and Nw indicated 174 stations and various temporal window sizes for each

GCN model, respectively, were constructed, and the current demands of whole stations were

converted into the corresponding target vector yt 2 RNs. For each GCN model, the feature

matrix consisted of the previous demand with hourly, daily, and weekly time intervals; the

window size could be different to predict the same target vector.

Experimental Settings

GCN model. For the hyperparameter optimization, a subset of hyperparameters needed

to be selected before the learning process. In machine learning systems, hyperparameters have

a significant influence on determining the optimal model that minimizes the predefined loss

function. To conduct the hyperparameter optimization, we conducted a grid search that

replaced the exhaustive enumeration of all combinations with a manually specified subset of

the hyperparameter space. The performance based on the chosen hyperparameters was mea-

sured using the test set.

We had three different GCN models, namely an hourly, daily, and weekly model. Each

GCN model had a different number of features based on its window size. Table 1 summarizes

the various subsets of the window sizes that we considered. Through trial and error, we

inferred that window sizes smaller than 3 or larger than 5 increased the MSE result because of

a lack of information or because of overfitting. The optimal window size for the hourly model

had an input dataset of t-4, t-3, t-2, and t-1 for predicting demand from time t, and the daily

and weekly models forecasted the demand at time t with the demands from the previous 1–3

days as well as those from the previous 1–3 weeks at time t, respectively.

Our GCN models were constructed using Python and Tensorflow. Note that all the GCN

models had the same internal structure, which was composed of two hidden layers. We

imposed various numbers of nodes to each layer and determined the optimal values as 16 and

32 nodes, respectively. Between the layers, rectified linear unit (ReLU) was used as the activa-

tion function to perform non-linear transformation and the dropout technique was used to

reduce the overfitting problem. For stochastic learning and backpropagation, Adam was cho-

sen as our optimization algorithm and the learning rate was 10−3. Total 500 epochs were

Table 1. Selecting the optimal window size by grid search.

Number of hours Number of days Number of weeks Result (MSE)

3 3 3 5.23

4 4 4 5.50

5 5 5 5.62

3 3 2 5.34

3 4 3 5.17

..

.

4 3 3 5.12

4 4 3 5.20

https://doi.org/10.1371/journal.pone.0220782.t001
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repeatedly executed and the early stopping technique was employed for efficient convergence.

The results of the hyperparameter optimization are presented in Table 2.

Baselines. The proposed GCN model is able to provide accurate prediction of bike

demand. To verify superiority of our proposed model, we considered four regression based

prediction models: autoregressive integrated moving average (ARIMA), extreme gradient

boosting algorithm (XGBoost), recurrent neural network (RNN), long short-term model

(LSTM), and two different methods in the transportation domain, namely the GBM approach

[14] and GCN approach based on a data-driven graph filter (GCN-DDGF) [1]. Moreover, we

built four types of conditional GCN models to test contribution of various temporal patterns

as well as global variables. Each conditional GCN reflects one of the temporal patterns or

global variables. In addition, our proposed GCN models, GCN-UP and GCN-IDW were also

implemented for evaluation.

ARIMA. We use autoregressive integrated moving average (ARIMA) which can reflect

periodicity and seasonality in the time-series [26]. Because ARIMA was the representative

model in the time-series domain, many studies on the transportation domain have used it as a

baseline [27–28, 6, 9]. In the ARIMA model, p, d, and q are represented, where p is the order

of the autoregressive part, d is number of times data series is differenced, and q is the order of

the moving average part. Because the p, d, and q differ according to dataset, we used the

parameters most suitable for each station.

XGBoost. We consider the extreme gradient boosting algorithm (XGBoost) as one of our

baselines. Basically, XGBoost belongs to ensemble tree learning algorithm, but it estimates the

different weight of parallel decision tree [29]. It normally uses classification and regression tree

(CART) and update weights of trees by gradient boosting algorithm. Moreover, it develops

model performance and computational speed by novel distributed techniques such as

weighted quantile sketch, novel sparsity-aware algorithm and cache-aware block structure

[29]. Owing to its powerful performance, XGBoost was recorded as one of the best models in

the 2014 Kaggle Bike Sharing Demand Prediction competition. We have constructed a dataset

of temporal window size 10 where 10 hourly sequential usage is used to predict the following

value and the target value is the following demand. We employed CART as the decision tree

for the regression and set the number of trees to 10, maximum depth of each tree to 3 and

learning rate to 10−2 through trial and error.

RNN & LSTM. We use the recurrent neural network (RNN) that is effective neural net-

work model for time-series data. RNN can handle the sequential information because it has

the feedback connection from input to output by preceding layers [30]. However, since RNN

has gradient vanishing problem that represents shrinking gradient during back propagation,

traditional RNN is not appropriate for capturing long-term dependencies [31]. To avoid this

issue, long short-term models (LSTM), our last baseline model, has been used as alternative to

RNN. The LSTM is RNN based model that can discover the long relationship of time-series

data [32]. Unlike RNN, LSTM has the four gates such as input gate, forget gate, cell and output

gate which are introduced in Hochreiter & Schmidhuber [32], and these gates weaken decreas-

ing tendency of gradient during long-term back propagation. We constructed an RNN model

with 3 RNN layers and temporal window size of 4, and an LSTM model with 3 LSTM layers

Table 2. Description of hyperparameter values.

Hyperparameter Value Hyperparameter Value

Window size (hour/day/week) 4/3/3 Number of hidden nodes 16/32

Activation function ReLU Dropout rate 0.5

Learning rate 0.001 Number of epochs 500

https://doi.org/10.1371/journal.pone.0220782.t002
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and temporal window size of 3. We used 10−2 learning rate and repeated learning process as

much as 1,000 epochs for both models.

Comparison with related approaches. The comparison of the performance of the predic-

tion of bike demand using different methods was also included in the experiment results. We

chose two related methods, namely the GBM approach of Regue & Recker [14] and the

GCN-DDGF approach of Lin et al. [1]. The GBM is a decision tree-based algorithm that has

an internalized variable selection effect that is sensitive to variation in explanatory features and

insensitive to outliers. For GBM implementation, we utilized the gbm package in R developed

by Ridgeway [33]. The learning rate and number of iterations, which are regularization param-

eters in the GBM, were set as 10−2 and 500, respectively.

The GCN-DDGF approach of Lin et al. [1] is similar to our GCN approach, but they

parameterized the adjacency matrix to determine the predefined loss function. In a graphical

analysis, prior knowledge is required to construct the adjacency matrix, and the performance

depends on the extracted component. However, the parameterized adjacency matrix does not

require prior knowledge and provides stable performance for any process. We used the same

GCN structure as that of our model but imposed the parameterized adjacency matrix to per-

form GCN-DDGF.

Conditional graph convolutional neural network models. The proposed novel GCN

model considered various temporal patterns and global variables as the different factors to pre-

dict the next hour demand, and graphical convolution was performed on these indexes. How-

ever, it was not clarified whether GCN can extract useful information that is not only from

spatial characteristics. Therefore, we organized four additional GCN models based on the fol-

lowing separated information: hourly information (HM), daily information (DM), weekly

information (WM), and discarding global information (DGM). We compared their perfor-

mances with those of the GCN-UP and GCN-IDW to demonstrate the superiority of using

incorporated information.

Evaluation metric. In order to compare all these baselines to ours, we use both the MSE

and Pearson correlation as evaluation metrics. The MSE is used to measure the average

squared errors between the actual and predicted values. Meanwhile, continuous demand in

multiple locations at different time points is represented by spatio-temporal distributions,

which is also important to predict spatio-temporal distributions in the transportation domain

[34]. Thus, the average Pearson correlation (APC) was utilized as one of our evaluation metrics

to compare the similarity between actual and predicted distributions. The APC can be

expressed as follows:

APC ¼
1

Ns

XN

s¼1

covðŷs; ysÞ
sŷ s

sys

where ŷs and ys represent the predicted demand and actual demand at station s over the time

period, respectively. cov represents covariance while σ represents standard deviation.

Experiment results

Comparison result with evaluation metrics. Comprehensive comparison among the

results of bike demand prediction are shown in Table 3. For a robust comparison, we con-

ducted experiments for two test periods, August and September. However, as the demand in

August was far less than that in September, there was no significant difference among model

performances in the August test set. Our proposed model has the outstanding performance

compared to other baseline models. This indicates that the simultaneous consideration of spa-

tio-temporal properties can enhance the proposed GCN models (i.e., GCN-IDW and
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GCN-UP) by reflecting implied attributes in bike demand, and that GCN models can extract

useful features from incorporated information of various temporal patterns and global vari-

ables to improve prediction performances.

Between our two GCN models, the GCN-UP had better performance than GCN-IDW for

the test set from both September and August. From this result, it could be considered that the

usage pattern of the user was more related to demand than to the distance between stations.

The GCN-UP model was followed by the GCN-DDGF model, which had better performance

than the GCN-IDW model. While the GCN-DDGF model can capture hidden heterogenous

pairwise correlations between stations [1], it has a risk of overfitting and weakness to time

complexity due to the increased number of parameters. The number of parameters in the

GCN-DDGF model increased exponentially with the number of stations. In addition, the pro-

posed GCN models in this study coped with additional factors related to bike demand. These

were why the GCN-DDGF model did not always perform better than when using a predefined

adjacency matrix.

The next best performance is LSTM, but followed by RNN with a very slight difference.

This indicates that both models can be limited only with the temporal dependencies while

reflecting both spatial and temporal properties makes our model outperform than RNN and

LSTM. The LSTM and RNN were followed by the GCN-DGM model, which had the best per-

formance among the conditional GCM models. The impact of global variables on forecasting

bike demand was superior to capturing various temporal patterns. The XGBoost and GBM

performed better than the other conditional GCN models. The XGBoost is known for its excel-

lent performance, and the GBM has a similar structure to that of XGBoost, but they were not

designed to consider the spatial or temporal dependencies of bike demand. Therefore, their

performances were very poor in our time-series regression task. The GCN-HM, GCN-DM,

and GCN-WM models followed the XGBoost and GBM sequentially, and ARIMA had the

worst prediction power in all the cases. Unlike the RNN or LSTM, ARIMA reflects only the

independent temporal pattern of each station. It also shows the capturing complexity of tem-

poral patterns and has a significant influence on predicting the transportation system.

Prediction power of station-level. The purpose of our study was to increase the predic-

tion accuracy for each station. The predicted value of each station can be poor, even if the MSE

is small for the total demand. To demonstrate the forecasting power at the station level, we pre-

sented plots to show the difference between real demand and predicted values, as in Fig 6. We

Table 3. Performance comparison of different approaches.

August September

Models MSE APC MSE APC

ARIMA 4.96 0.38 8.5 0.3

XGBoost 1.92 0.78 7.24 0.59

RNN 1.36 0.82 6.18 0.63

LSTM 1.36 0.82 6.03 0.64

GBM [14] 2.12 0.78 7.56 0.58

GCN-DDGF [1] 1.16 0.84 5.62 0.67

GCN-HM 1.86 0.79 7.61 0.49

GCN-DM 1.96 0.79 7.92 0.44

GCN-WM 1.96 0.8 8.22 0.34

GCN-DGM 1.88 0.8 6.81 0.59

GCN-IDW 1.25 0.83 5.65 0.67

GCN-UP 1.14 0.83 5.15 0.69

https://doi.org/10.1371/journal.pone.0220782.t003

Graph convolutional network approach applied to predict hourly bike-sharing demands

PLOS ONE | https://doi.org/10.1371/journal.pone.0220782 September 16, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0220782.t003
https://doi.org/10.1371/journal.pone.0220782


selected the top three busiest stations, which recorded the highest total bike usage among all

stations. Results show that our model predicted the actual demand well, and the performance

of our model was robust to sudden environmental changes. This is because our model well

reflects the spatio–temporal properties as well as the influence of global variables. Thus, the

performance of our model is robust to the dynamic changes in the cycling environment.

Multi-step ahead prediction. Generally, time-series forecasting predicts the observation

at the next time step. However, with the same historical data and trained model, we can predict

multi step-ahead values in advance. This multi-step ahead prediction shows the robustness of

the prediction power, regardless of the forecasting horizon size. The traditional method of per-

forming multi-step ahead prediction is through a direct multi-step forecast strategy. The direct

method involves developing a separate model with an independent training process as the step

size changes [35].

Fig 7 shows the comparison results of our model to baselines. As the step size grows, the

MSE of ARIMA model increases rapidly. Thus, we only display the MSE of ARIMA up to step-

size 3. However, our model and LSTM, which are deep learning models with enough complex-

ity, enjoyed stabilized performance irrespective of the forecasting step-size. From steps 1 to 6,

their performances were nearly equal; however, after step 6, the difference in performance

increased. Our GCN model had better performance compared to the other time-series base-

lines. Moreover, the MSE of ARIMA and LSTM continuously increased, while our GCN

model showed a decreasing trend in MSE in step 7 and 12. Thus, it was demonstrated that our

GCN model performed best in terms of both prediction and stabilization.

Fig 6. Plot comparing the predicted value with the actual value of the three busiest stations: Blue line is value of

label and orange line is value of prediction.

https://doi.org/10.1371/journal.pone.0220782.g006
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Conclusion

This paper proposed a GCN framework for hourly demand prediction of bike usage at the sta-

tion level. We used two graph structures (i.e., GCN–IDW and GCN–UP) to reflect different

spatial properties and compare performance. To consider various temporal patterns simulta-

neously, we trained three individual GCN models with hourly, daily, and weekly patterns,

respectively. Additionally, the influences of rainfall and weekday/weekend were considered as

global variables. Thus, the predictive power of our model was robust to sudden changes in the

cycling environment. Experiments show that our model outperformed the other prediction

models, and the historical usage pattern was a more suitable spatial property of demand than

geographical distance. Thus, our study contributes to reducing the supply–demand imbalance.

However, GCN can only extract features from a predefined graph structure. The appear-

ance of a new station cannot be reflected in the analysis. If GCN can flexibly cope with a new

station, it will be able to reflect changing relationships in real time. Furthermore, considering

more variables such as sudden events or other weather can make more accurate prediction.

Moreover, current proposed models can also be utilized to other transportation problem

which is also threatened by supply-demand imbalance problem. These issues should be investi-

gated further.
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