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Abstract

Reprogramming of somatic cells to induced pluripotent stem cells, by overexpressing cer-

tain factors referred to as the reprogramming factors, can revolutionize regenerative medi-

cine. To provide a coherent description of induced pluripotency from the gene regulation

perspective, we use 35 microarray datasets to construct a reprogramming gene regulatory

network. Comprising 276 nodes and 4471 links, the resulting network is, to the best of our

knowledge, the largest gene regulatory network constructed for human fibroblast repro-

gramming and it is the only one built using a large number of experimental datasets. To

build the network, a model that relates the expression profiles of the initial (fibroblast) and

final (induced pluripotent stem cell) states is proposed and the model parameters (link

strengths) are fitted using the experimental data. Twenty nine additional experimental

datasets are collectively used to test the model/network, and good agreement between

experimental and predicted gene expression profiles is found. We show that the model in

conjunction with the constructed network can make useful predictions. For example, we

demonstrate that our approach can incorporate the effect of reprogramming factor stoichi-

ometry and that its predictions are consistent with the experimentally observed trends in

reprogramming efficiency when the stoichiometric ratios vary. Using our model/network, we

also suggest new (not used in training of the model) candidate sets of reprogramming fac-

tors, many of which have already been experimentally verified. These results suggest our

model/network can potentially be used in devising new recipes for induced pluripotency with

higher efficiencies. Additionally, we classify the links of the network into three classes of dif-

ferent importance, prioritizing them for experimental verification. We show that many of the

links in the top ranked class are experimentally known to be important in reprogramming.

Finally, comparing with other methods, we show that using our model is advantageous.

Introduction

Induced pluripotency (IP) in somatic cells, first achieved in mouse by Takahashi and Yama-

naka [1], and then in human by Takahashi et al. [2] and Yu et al. [3], was a huge step forward
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for regenerative medicine. These studies demonstrated that somatic cells can be repro-

grammed to induced pluripotent stem cells (iPSCs) by forced overexpression of certain tran-

scription factors (TFs), referred to as reprogramming factors (RFs). OCT4 (also known as

POU5F1), SOX2, KLF4, and MYC (collectively referred to as OSKM) constitute the most

widely used set of RFs in IP experiments. But other factors, including NANOG and LIN28

(also known as LIN28A), have also been utilized in conjunction with some or all of the OSKM

factors to generate iPSCs. Among these factors, OCT4, NANOG, and SOX2 are particularly

important, because they form the core [4] of the pluripotency gene regulatory network (GRN).

The RFs are thought to reprogram somatic cells by activating pluripotency-associated genes

and by repressing somatic ones [5]. However, the underlying mechanism remains elusive

despite the vast amount of accumulated research.

In many studies, a GRN has been constructed and used in conjunction with a model

describing the network dynamics to provide insights into IP. However, most of these have

employed a small network of known (curated) regulatory relations. Mitra et al. [6] described

the dynamics of a single auto-regulating node by an ordinary differential equation (ODE).

They showed that in the presence of an external input, the system can be driven from one

steady state, i.e. somatic cell, to another, i.e. iPSC. Despite its simplicity, this study demon-

strates the general idea behind many GRN-based models, i.e. reprogramming as a driven tran-

sition between two steady states. Garcio et al. [7] considered the three essential genes OCT4,

SOX2, and NANOG and assumed 8 epigenetic states for each gene. The time evolution of the

concentration of each possible gene state was then modeled using ODEs, assuming mass-

action kinetics. The authors showed that their model is bistable and that the system can be

driven from one state to another by adding exogenous SOX2 and OCT4. Using GRNs with

four or five nodes (governed by ODEs) and adding epigenetic variables to the model, Miya-

moto et al. [8] showed that pluripotency can be achieved from a differentiated state by overex-

pressing the pluripotency genes present in the model. Chickarmane and Peterson [9] used a

GRN consisting of seven nodes and ODEs to provide a framework for exploring new strategies

for IP. Employing ODEs, MacArthur et al. [10] proposed a model based on a GRN of 8 nodes,

including the three core pluripotency genes and differentiation-specific genes. They demon-

strated that, under certain circumstances, stochastic fluctuations in transcriptional status

could result in reprogramming. Zhang and Wolynes [11] modeled cell differentiation by devel-

oping an analogy with quantum many-body problems. They wrote a master equation for the

probability of the states of genes and, by applying the model to a GRN with 9 nodes, showed

that the steady states of their model correspond to pluripotent and differentiated cells. Chang

et al. [12] constructed a 52-node GRN by searching the literature for pluripotency-related reg-

ulations and used a dynamic Bayesian network, in which each node can be either on or off, for

modeling gene regulations. This model produced results in good agreement with observed

gene expressions after knockdown of OCT4 and suggested new recipes for pluripotency.

Unlike aforementioned studies that have used curated (and usually small) GRNs, Zhana

et al. [13] built a much larger, 1625-node mouse GRN by fitting their proposed model

(based on the work of Wang et al. [14]) to a time course microarray dataset obtained from a

single mouse IP experiment. Assuming that TFs/genes with similar expression time courses

are good candidates for having regulatory relations, the authors built a starting GRN and

minimized a cost function to find the directions, signs, and weights of the links. They

described the dynamics of the system using linear ODEs, and approximated the derivatives

by differences.

The approaches taken by Chang et al. [12] and Zhana et al. [13] have useful features that are

complementary. The former is capable of suggesting new RF combinations but uses a rather

small curated network. The latter, specifically designed to infer a GRN, finds a large network,
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but it cannot suggest new IP recipes. In fact there are no parameters corresponding to the RFs

in this model. On the other hand, in the method of [12] the variables corresponding to the RFs

can take only two values (0 or 1), and so the model is not applicable to experiments in which

the RFs are overexpressed at different levels. It is therefore desirable, albeit challenging, to have

a GRN/model that goes beyond small curated networks, is capable of suggesting new RF com-

binations, and is able to account for RF stoichiometry. We circumvent these difficulties by

building a rather large GRN (276 nodes) that provides all these desirable features.

To construct the GRN, we begin with a set of non-linear ODEs and find a relation between

the (log-transformed) gene expression profiles of somatic cells and those of iPSCs. In this rela-

tion, the key role is played by a matrix whose elements encode the regulatory relations. We

determine the signs (upregulation vs. downregulation) and the magnitudes (link strengths) of

these matrix elements by fitting to a large set of experimental data. We test our GRN with an

additional set of experimental data and find good agreement.

The constructed GRN may contain false positives, indirect links, or links that are not

important for IP. To address this issue, we use a heuristic approach to classify the links based

on their importance. We show that our GRN/model, unlike that of Chang et al. [12], can take

into account the stoichiometry of the RFs and that our predictions regarding the effects of stoi-

chiometry agree well with experimental observations. Additionally, we use the constructed

GRN to suggest new RF cocktails for IP. Finally, since our approach is somewhat similar to

that of Zhana et al. [13], we compare our GRN/model to theirs and show that using our GRN/

model is advantageous. Note that since the majority of human iPSCs have been derived from

fibroblasts, we limit our analysis to this cell type.

Model

IP starts with forced overexpression of a few RFs that drive the cell out of its initial steady state

(somatic cell) to the pluripotent state, after which the exogenous RFs are silenced [15] by de
novo DNA methylation within iPSCs [16] and/or removed (completely) by other means [17].

We assume that the pluripotent state before the silencing/removal of exogenous RFs is another

steady state allowed by the underlying dynamics.

At time t the state of the GRN, comprising N nodes, is characterized by the vector E(t)
whose components are the expression levels of the genes. (We do not distinguish between a

gene and its corresponding protein). The time evolution of E(t) is assumed to be described by

the following set of N nonlinear ODEs [18]

dElðtÞ
dt
¼ RlðEðtÞÞ � blElðtÞ; l ¼ 1; 2; . . . ; N: ð1Þ

where El(t) is the lth element of E(t), Rl(E(t)) is a non-linear rate function and βl is a constant.

The first and second terms in Eq 1 represent gene regulation and protein degradation respec-

tively. The function Rl(E(t)) can be written as [19]

RlðEðtÞÞ ¼
YN

j¼1

fljðEjðtÞÞ; ð2Þ

where flj(Ej(t)) is a regulation function describing how node j regulates node l (if no regulatory

relation exists between the two then flj(Ej(t)) = 1). In the widely used Michaelis-Menten kinet-

ics, for example, fljðEjðtÞÞ ¼ f max
lj ðaljKlj þ bljEjðtÞÞ=ðKlj þ EjðtÞÞ [19], where Klj is a constant,

f max
lj is the maximum rate, (alj, blj) = (0, 1) for upregulation, (alj, blj) = (1, 0) for downregulation,

and (alj, blj) = (1, 1) with f max
lj ¼ 1 for no regulation.

A gene regulatory network for induced pluripotency
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A somatic cell is stable and remains in this steady state until exogenous RFs are delivered.

We introduce such a perturbation by multiplying the production rate of the node l by the con-

stant Al, where Al> 1 if node l is an RF and Al = 1 otherwise. In other words, when the pertur-

bation is turned on, the rate function changes to Rpert

l ðEðtÞÞ ¼ AlRlðEðtÞÞ.
Fitting the parameters in Eq 1 demands a large number of time course datasets generated

using many different RF combinations. Unfortunately, one simply does not have this many

time course datasets. For example, none of the 64 (Tables A and B in S1 File) experimental

datasets used in this study contain such data. However, an important observation is that iPSCs

share similar gene expression profiles regardless of which RF combination is used. This implies

that the final expression profiles are universal and leads us to focus on steady states.

Noting that in any steady state the expression levels are time-independent, we use Eq 1 to

write

EðpÞl

EðiÞl
¼

Rpert
l ðE

ðpÞÞ

RlðE
ðiÞÞ
¼ Al

RlðE
ðpÞÞ

RlðE
ðiÞÞ

; ð3Þ

where the superscripts (i) and (p) denote respectively the initial somatic steady state and the plu-

ripotent state before silencing/removal of exogenous RFs. Next we define the matrix P as fol-

lows

Plj �
log

2
ðfljðE

ðpÞ
j ÞÞ � log

2
ðfljðE

ðiÞ
j ÞÞ

log
2
ðEðpÞj Þ � log

2
ðEðiÞj Þ

: ð4Þ

Note that Plj is positive (negative) if node j upregulates (downregulates) node l and vanishes

otherwise.

Taking the logarithm of the two sides of Eq 3, we get

WðpÞ ¼ PWðpÞ þWs; ð5Þ

where the source vector Ws and the W(p) vector have elements respectively given by Wsl
¼

log
2
ðAlÞ and WðpÞ

l ¼ log
2
ðEðpÞl =E

ðiÞ
l Þ. Assuming that I − P (I is the identity matrix) is invertible,

Eq 5 can be written as

WðpÞ ¼ ðI � PÞ� 1Ws: ð6Þ

Before we can use Eq 6 we need to modify it slightly, because LIN28 upregulates OCT4
post-transcriptionally [20]. In other words, upregulation of OCT4 by LIN28 must be taken

into account when computing the changes in expression levels of OCT4 targets, but it should

be ignored as far as the expression level of OCT4 is concerned. Eq 5 implies that the direct con-

tribution of LIN28 to WðpÞ
OCT4 is POLW

ðpÞ
LIN28, where POL is the element of P that represents the

regulation of OCT4 by LIN28. Thus, we should replace WðpÞ
OCT4 by WðpÞ

OCT4 � POLW
ðpÞ
LIN28. Let ~P be

a matrix with elements ~Plj ¼ Plj for all l and j except when these indices correspond to OCT4

and LIN28 respectively, in which case ~Plj ¼ 0. This implies that we should replace W(p) by

WðpÞ � ðP � ~PÞWðpÞ ¼ ð~P þ I � PÞWðpÞ ¼ ~PðI � PÞ� 1Ws þWs.

The silencing/removal of the exogenous RFs, which is done after pluripotency is established

[15–17], can be simply modeled by subtracting the source term Ws from the modified W(p).

Thus, we arrive at

W ¼ ~PðI � PÞ� 1Ws; ð7Þ

A gene regulatory network for induced pluripotency
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where W is the vector of log-transformed fold changes between the final iPSC and the initial

somatic state.

Despite its appearance, Eq 7 is not a linear relation as P depends on the initial and final

gene expressions and varies by experiment. However, since iPSCs derived in different experi-

ments have similar expression profiles (as do their parental fibroblasts), an effective yet some-

what universal, time-independent P (GRN) that takes the system from the start to finish can

be envisioned even though IP is a dynamic process and regulatory relations may change dur-

ing this process. Therefore, we look for an “average” P that is constant (the same for all experi-

ments) and that can give results as close as possible to experimental data. In other words, we

treat elements of P as constant parameters to be fitted. Note that even with this approximation

the relation between the expression profiles of the fibroblasts and iPSCs is still non-linear as W

contains the log-transformed fold changes.

Finally, one can calculate the predicted final expressions using

log
2
E ¼ log

2
EðiÞ þW; ð8Þ

where log2 E is a vector whose elements are log2 El.

We now turn to the source vector Ws. Within an IP experiment, we write Al = 2c Sl for an

RF represented by the node l in the network. While Sls are the known stoichiometric ratios of

the RFs used, the unknown constant c is determined by fitting. As an illustration, consider an

experiment where the level of OCT4 is three times those of the other RFs, we have SOCT4 = 3

for OCT4 and S = 1 for the others. In other words, we write

Ws ¼ cWsI
þWsII

; ð9Þ

where the nonzero components of WsI
are all ones, and the lth component of WsII

is log2(Sl). It

should be noted that the only nonzero elements of Ws, WsI
, and WsII

are the ones that corre-

spond to the RFs.

To summarize this section we note that if P, the stoichiometric ratios {Sl}, and c are

known, Eqs 7, 8 and 9 allow us to calculate the iPSC expression profile resulting from the

reprogramming of fibroblasts whose expression profile is given by E(i). Conversely, if M
experimental datasets (with known stoichiometric ratios) are available, one can use these

equations to fit the elements of P and the set of coefficients {cm} (m ¼ 1; 2 . . . M) provided

that M is large enough. In the following section we construct a human fibroblast reprogram-

ming GRN by fitting these equations to a large number of experimental datasets. For details

regarding the fitting process we refer the reader to the “Fitting and cross validation” section

of Methods.

Results and discussion

Construction of the GRN

We constructed our reprogramming GRN by computing the matrix P via fitting Eq 7 to a

large set of experimental data. However, to avoid prohibitively expensive calculations, only the

nearest neighbors of the master regulators of pluripotency, i.e. OCT4/SOX2/NANOG, were

considered, forming a reduced network of 276 nodes and 4471 links (“Constructing the start-

ing network” section of Methods). To find P, we used this network in conjunction with 35

experimental gene expression datasets obtained from 20 Gene Expression Omnibus (GEO)

[21] Series (“Experimental data” section of Methods and Table A in S1 File). Fitting was

performed by minimizing the distance between the predicted (Eq 7) and experimental log-

transformed fold changes. A repeated (10 times) 10-fold cross validation (100 fittings) was

A gene regulatory network for induced pluripotency
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performed and the elements of P were computed by averaging the 100 fitted networks

obtained from the 100 minimizations (“Fitting and cross validation” section of Methods). The

nonzero elements of P and their uncertainties (the standard deviations computed from the

100 minimizations) are given in S2 File.

It is worth noting that only 7 out of the 35 experimental datasets used for fitting are

independent (there are 6 distinct RF combinations and 1 OSKM study, from GEO Series

GSE23583, in which OCT4 has been overexpressed more than the other RFs; see Tables A

and B in S1 File). Hence, using the 35 datasets, the number of independent equations implied

by Eq 7 is 1932 (7 × 276), which is less than half of the number of variables (number of links,

4471, plus the number of coefficients {cm}) present in the model. In other words, this is an

underdetermined system. However, there are many constraints applied to the system, under

which we find a unique solution. For details about these constraints and the rationale behind

them see the “Fitting and cross validation” section of Methods. It is also worth mentioning

that, although Eq 7 expresses W as a product of two matrices W = QWs, it is not just a matrix

factorization. Unlike P, Q ¼ ~PðI � PÞ� 1
is not sparse, and without a proper model relating Q

to P the relation W = QWs is useless in determining P, which is needed for construction of the

GRN.

To the best of our knowledge our network is the largest constructed GRN for reprogram-

ming of human fibroblasts and our study is the only one that has used a large set of experimen-

tal data to built such a GRN. There are, however, limitations for our model and the resulting

GRN. Reprogramming is a dynamic process, but our model only relates the beginning (fibro-

blasts) and the end (iPSCs) of the process, resulting in an effective GRN that is expected to con-

tain links that may be important only at some stages of reprogramming. Also, due to missing

genes in the network, some of the regulatory links in the constructed GRN are likely to be indi-

rect and some may not even exist (false positives). Despite these limitations, in the following

sections we show that our model/GRN is capable of predicting log-transformed fold changes

during the IP process as well as the experimentally observed trends of IP efficiency upon vary-

ing the stoichiometric ratios of the RFs. Additionally, we demonstrate that the model/GRN

can be used in predicting new (i.e. not included in training of our model) RF combinations for

IP, many of which have already been experimentally validated. We also address the issue of

false positives in the “Link classes and subnetworks” section where we classify the links into

three classes of different importance.

Testing the model/GRN

In this subsection we test our model/GRN by: (1) comparing the predicted and experimental

fold changes using 29 additional experimental datasets, and (2) investigating whether the effect

of varying RF stoichiometry on our results is consistent with experimental observations.

Comparing predicted and experimental fold changes. We used 29 experimental datasets

from 12 additional GEO Series as the “testing set” (see the “Experimental data” section of

Methods and Table B in S1 File) to calculate the average correlation between the predicted (see

“Computation of the predicted expression profiles” section of Methods) and experimental log-

transformed fold changes. We found an average correlation of rtest = 0.8805, indicating good

agreement between predicted and experimental values. In comparison, for the 35 training

datasets the average correlation was rtrain = 0.9292, which is (as expected) slightly higher. We

also used goodness of fit, defined by G = 1 − Fa, as another measure of comparison between

the experimental and theoretical values. Here Fa is the cost function (see Eq 11) calculated

using the average (indicated by superscript a) fitted network. G was found to be 0.8712

and 0.7820 for the training and testing sets respectively, suggesting good agreement with

A gene regulatory network for induced pluripotency
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experimental data. The closeness of rtrain and rtest (as well as Gtrain and Gtest) suggests the

absence of overfitting.

We also compared the predicted and experimental fold changes for an experiment per-

formed using the RF cocktail OSK+PRDM14 (OSKP) [22], which was not used in the training

of our model. We found the goodness of fit and the correlation between the theoretical and

experimental values to be GOSKP = 0.6119 and rOSKP = 0.7751 respectively. These numbers are

lower than the average values reported here for the testing set (rtest and Gtest), but they are

within 3 standard deviations from these averages. In fact, GOSKP is larger than Gtest
min
¼ 0:5740

that is the minimum goodness of fit calculated for the 29 testing datasets. The correlation

rOSKP is also close to rtest
min
¼ 0:8176. Overall these results indicate reasonably good agreement

between experimental and theoretical values for this RF cocktail, which was not used in the

training of the model.

The effect of RF stoichiometry. In IP experiments with OSKM the efficiency of repro-

gramming has been reported to be dependent on the stoichiometric ratios of these RFs

[23–26]. Here we show that the results of our model/GRN are largely consistent with these

reports.

Since there is no theoretical measure that can be used to determine, for certain, whether a

given expression profile is from an iPSC, we infer the reprogramming efficiency via a probabil-
ity that we define below. Let Eth, EhESC, and EiPSC be vectors whose components are the pre-

dicted (by our model, Eq 8), human embryonic stem cell (hESC), and iPSC gene expression

levels respectively. Experimental results suggest that the expression profiles of iPSCs are very

close to those of hESCs. Therefore, if the distribution of g� 1 − ((klog2(EiPSC) − log2(EhESC)k)/

(klog2(EhESC)k))2 is known, one can assign a probability of representing an iPSC to any

predicted log-transformed expression profile log2(Eth) (k•k denotes the L2 norm of •).

Such a probability is simply calculated as the percentage of iPSCs for which g � G, where

G ¼ 1 � ððklog
2
ðEthÞ � log

2
ðEhESCÞkÞ=ðklog

2
ðEhESCÞkÞÞ

2
.

Using the available expression profiles of experimentally verified iPSCs and hESCs, the

cumulative distribution of g can be approximated by computing a large number (denoted by

M) of gs and sorting them in ascending order: g1� g2� � ��gM. The probability for log2(Eth)

to represent an iPSC is defined as qðGÞ ¼ ð1=MÞ½iþ ðG � giÞ=ðgiþ1 � giÞ� if gi � G < giþ1.

Note that qðGÞ ¼ 0 and qðGÞ ¼ 1 for G < g1 and G � gM respectively. For this study,

M = 447 gs were calculated using the iPSC and hESC samples included in the 32 GEO Series

listed in Tables A and B in S1 File. Note that not all included GEO Series contain hESC sam-

ples. To avoid errors that may arise when comparing data from different Series, only iPSC

and hESC samples published in the same Series were used for these calculations (Series not

containing any hESC sample were excluded in the calculation of the probability q).

To measure how RF stoichiometry affects IP efficiency, we use the equal stoichiometry

(O:S:K:M = 1:1:1:1) point as the reference. Fifty-eight fibroblast samples (Tables A and B in S1

File) are used as the initial somatic states for calculating the 58 corresponding log2(Eth) profiles

(“Computation of the predicted expression profiles” section of Methods). With the aforemen-

tioned procedure, we calculated the 58 corresponding probabilities (“Computation of proba-

bility q” section of Methods) and denote their average by �qRef , our reference probability of the

1:1:1:1 stoichiometry for producing an iPSC.

Using this approach one can calculate a set of 58 probabilities qj (j = 1, 2. . ., 58) and their

average �q for any given stoichiometry (or in general for any RF cocktail). To assess the effect of

stoichiometry on �q, we varied one at a time the levels of the RFs by a factor of 1/6� x� 6 and

calculated �qðxÞ for each RF. For the 4 RFs we then calculated ρ(x) defined as

rðxÞ � ð�qðxÞ � �qRefÞ=�qRef ; ð10Þ

A gene regulatory network for induced pluripotency
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which are plotted in Fig 1. A positive (negative) ρ indicates a larger (smaller) �q compared to

the reference, suggesting efficiency increase (decrease). To see if the difference ð�qFðxÞ � �qRefÞ

is statistically significant, in each case we performed a t-test, see Methods section. Whenever

the difference is significant at the 0.01 level, the corresponding point is shown in red. As

detailed below, our results show overall good qualitative agreement with the experimentally

observed efficiency trends:

Increased/decreased level of OCT4 (the + symbols): Our model predicts a lower efficiency when

OCT4 is expressed less than the other RFs and an increased efficiency with increased levels

of OCT4, although the increased efficiency is statistically significant only up to a point. This

agrees with what Papapetrou et al. [23] observed.

Increased/decreased level of SOX2 (the circles): We find reduced efficiency for higher SOX2

levels in agreement with Papapetrou et al. [23] and increased efficiency when the level of

SOX2 is lowered, albeit the increase is statistically significant only when x is close to unity.

Experimentally, Papapetrou et al. [23] and Yamaguchi et al. [24] both reported an improve-

ment in efficiency with lowered SOX2 level, but [23] found the efficiency increase to be

small and statistically insignificant. Examining our model prediction at x much smaller

than 1 and at x close to but smaller than 1, provides a possible explanation for the different

observations by [23] and [24] respectively.

Increased/decreased level of KLF4 (the squares): We find a lower efficiency with lower KLF4

levels in agreement with [23, 25], although [23] reported a small (and statistically insignifi-

cant) decrease. The reported experimental efficiency trends due to increased levels of KLF4

are conflicting. Although Papapetrou et al. [23] found a significantly lower efficiency, Kim

et. al. [26] reported an improved efficiency in mouse reprogramming experiments. Our

result agrees with that of [26].

Increased/decreased level of MYC (the hexagrams): In agreement with our findings, Papapetrou

et al. [23] reported a significant efficiency decrease when the level of MYC was increased

relative to the other RFs. On the other hand, [23] observed no significant efficiency change

with MYC level lowered, which is what we predict for most values of x< 1 (for one value of

x shown in the figure we find a small but significant efficiency increase).

Fig 1. Effect of stoichiometry. For different stoichiometric ratios (O:S:K:M) ρ(x), defined in Eq 10, are plotted. Here x
is the relative decrease or increase in the level of one of the RFs while those of the rest of the RFs remain unchanged. A

positive (negative) ρ is suggestive of a higher/lower IP efficiency.

https://doi.org/10.1371/journal.pone.0220742.g001
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Link classes and subnetworks

As mentioned previously, our GRN may contain false positive links and therefore false vari-

ables. One way to limit the number of false variables is to penalize the number of variables

introduced. Such a scheme results in networks whose numbers of links depend on the magni-

tude of the penalty term. We opted not to add such a term to our cost function because

minimizing a function containing a discrete term is computationally too expensive, if not

impossible, in the current context. Instead we limited the number of variables based on avail-

able evidence (“Constructing the starting network” of Methods) and devised a method to con-

struct smaller subnetworks that presumably contain fewer false positives but have comparable

performance to the whole network (hereafter referred to as WN).

To construct such subnetworks, we first assign (see the “Link scores” section of Methods) a

score slj to the link from node j to node l. The link score is defined as the change in the cost

function upon removal of that link. The link ranking, inevitably, depends on the fitted net-

work: changes in the number or strengths of the links are likely to change the ranking. We

nonetheless show that by removing links with scores less than a cutoff and re-fitting the

remaining links one can construct subnetworks that produce results in good agreement with

experimental observations. The cutoff, however, cannot be too large as it results in a subnet-

work too sparse to give good results. For example, using the cutoff value 10−2 yields a subnet-

work of 105 links with the goodness of fit being 0.4172 (0.3897) for the training (testing) set.

This is significantly lower than the value found for WN (0.8712/0.7820 for the training/testing

set). Therefore, we chose two smaller cutoffs δ1 = 10−3 and δ2 = 10−4 to construct two subnet-

works, referred to as SUBN1 and SUBN2 respectively, that have significantly lower numbers of

links than WN but give results that are comparable to that of WN. The link strengths for these

two subnetworks (given in S2 File) were found via the same procedure used for fitting WN.

The number of links L, goodness of fit G, and average correlation r for these subnetworks and

WN are given in Table 1. It is clear from the table that links with s< 10−4 collectively contrib-

ute little to the cost function and removing all of them has almost no effect on the predicted

gene expression. Therefore, we did not use cutoffs smaller than δ2 = 10−4.

Table 1 also indicates that the two subnetworks can predict the log-transformed fold

changes with good accuracy (measured by G and r). Although the accuracy improves as the

number of links increases, the improvement is small when comparing SUBN1 with SUBN2

and even smaller when comparing SUBN2 with WN. To further investigate the performance

of SUBN1 and SUBN2, we next examined whether they can predict the experimentally

observed IP efficiency trends. Using the procedure described in the previous section, we

calculated ρ for different stoichiometric ratios and the results are plotted in Fig 2A and 2B for

SUBN1 and SUBN2 respectively. Comparing these figures with Fig 1 it is clear that SUBN2

and WN predictions are quite close and that SUBN1 also shows qualitatively the same trends

although for some x values the networks do not agree on the statistical significance of ρ. Since

SUBN1 and SUBN2 have comparable performance to that of WN but contain significantly

fewer links, they are expected to have fewer false positives than WN.

Table 1. Performance comparison between WN and the subnetworks.

Network L Gtrain Gtest rtrain rtest

SUBN1 445 0.8263 0.7646 0.9036 0.8700

SUBN2 1078 0.8650 0.7792 0.9257 0.8788

WN 4471 0.8712 0.7820 0.9292 0.8805

L, G, and r denote number of links, goodness of fit, and average correlation respectively.

https://doi.org/10.1371/journal.pone.0220742.t001
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The results above lead us to classify the links into 3 classes denoted by Ck (k = 1, 2, 3): Ck

contains links whose scores satisfy δk< slj� δk−1, with δ0 = max({slj}), δ1 = 10−3, δ2 = 10−4, and

δ3 = min({slj}). The 3 classes C1, C2, and C3, respectively have 445, 633, and 3393 links (class

assignments are given in S2 File). Note that SUBN1 consists of links in C1, SUBN2 comprises

links in C1 [ C2, and WN contains all links (C1 [ C2 [ C3). The results summarized in Table 1

suggest that in SUBN2 members of C2 are less likely than those in C1 to be important in the IP

process. Similarly, these results indicate that in WN, Ck+1 is collectively less important than Ck

(because adding Ck+1 to the network results in a smaller accuracy improvement than adding

Ck). However, it should be emphasized that this importance assignment is conditional, i.e. Ck

is more important than Ck+1 if Ck is present in the GRN. To investigate what would happen if

the GRN contained Ck+1 but not Ck, we constructed the other 4 possible subnetworks that may

be built using the 3 link classes, i.e. subnetworks consisting of links in C2, C3, C1 [ C3, and

C2 [ C3. The link strengths of these 4 subnetworks were computed by the same fitting and

cross validation procedure as used for WN and SUBN1/SUBN2. We found that some of these

4 subnetworks give Gs and rs comparable to those of WN/SUBN1/SUBN2 (Table C in S1 File).

However, as shown in Fig 2C and 2D (for C1 [ C3, C2 [ C3) and also in Fig A in S1 File (for

C2, C3), we observed that none of the 4 subnetworks can predict the IP efficiency trends as well

as WN, SUBN1, or SUBN2 (compare these figures with Fig 1 or Fig 2A and 2B). These findings

indicate that only subnetworks built by adding the classes in a certain order can produce

results that agree well with the experimentally observed efficiency trends. Based on these find-

ings and those summarized in Table 1 we conclude that links in Ck are more likely to be impor-

tant than those in Ck+1 for reprogramming and that our classification is appropriate.

We also looked at the distribution of the number of links per node in these 3 classes as well

as the whole network. The results, shown in Fig 3, indicate that the distribution of the links in

the whole network (Fig 3A) and in C3 (Fig 3B) are much more uniform than in C2 (Fig 3C)

and C1 (Fig 3D). Specifically, in C1 (Fig 3D) there are two nodes that have more than 100 out-

going links and the rest of the nodes have 21 or less. Not surprisingly, these two nodes are

Fig 2. Effect of stoichiometry if the subnetworks are used. For different stoichiometric ratios (O:S:K:M) ρ, defined in Eq 10, are plotted as a function of x for

(A) SUBN1, (B) SUBN2, (C) C1 [ C3, and (D) C2 [ C3. Here x is the relative decrease or increase in the level of one of the RFs while those of the rest of the RFs

remain unchanged. Ck denotes the set of links in Class k (see text for definition). SUBN1 and SUBN2 are the two subnetworks comprising links in C1 and

C1 [ C2, respectively. A positive (negative) ρ is suggestive of a higher/lower IP efficiency.

https://doi.org/10.1371/journal.pone.0220742.g002
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OCT4 and SOX2. This is what we expect to observe in the most important Class as OCT4 and

SOX2, in addition to being in the core of pluripotency circuitry, are the most widely used RFs

and so their links must be the most important ones. Interestingly, in C1 NANOG (with 18

links) is ranked 5th after KLF4 (19 links) and ZIC3 (21 links). (Note that ZIC3 is also a pluripo-

tency gene [27]). This suggests that NANOG may not be as important as OCT4 and SOX2,

although it is, along with OCT4 and SOX2, a part of the core regulatory network of pluripo-

tency in hESCs. This finding may explain why NANOG has been used much less frequently

than OCT4, SOX2 for reprogramming. As another RF used in the training of our model,

MYC, with 10 links, is ranked 12th in C1. It is worth noting that, in our GRN, LIN28 has only

1 outgoing link to OCT4. We could not find other experimentally verified or even inferred

links for LIN28. This is a limitation of our GRN (but not of our model).

In C2 (Fig 3C), OCT4 is again separate from the rest of the pack (with 68 links), but the sep-

aration is not as big as it is in C1. In fact, KLF4 (50 links), NANOG (41 links), SOX2 (40 links),

FOXO1 (38 links) and MYC (31 links) are not far behind. In C3 (Fig 3B), on the other hand,

none of the 6 RFs used in the training of our model is among the top 10. The highest ranking

one is NANOG with 91 links (ranked 14th). OCT4 (35 links) and SOX2 (33 links) are ranked

41st and 43rd respectively. Overall the results shown in Fig 3 indicates that OCT4 and SOX2

become more important (have higher relative number of links) in comparison to other nodes

in C2 and especially in C1, suggesting again that Ck is more likely than Ck+1 to contain impor-

tant reprogramming links.

As a test for our link classification method, we also investigated the effect of randomly

shuffling the genes (the rows of the matrix W) on the performance of our model. If all genes

(nodes) in the starting network are connected to each other, the nodes will be equivalent and

shuffling the data should not significantly change the performance of the model. In other

words, the two performance measures (average correlation and goodness of fit) should not

change significantly if one uses randomized, rather than real, data. On the other hand, if the

use of prior biological knowledge in constructing the starting network is successful in reducing

the number of false positives, we should observe a lower performance in the case of random

Fig 3. Link distribution in different classes. The distribution of the number of outgoing links per node is shown for (A) WN, (B) C3, (C) C2, and (D)

C1, where Ck denotes the set of links in Class k (see the text for the definition of the link classes). The figure indicates that the distributions of links in C2

(panel C) and C1 (panel D) are much more non-uniform in comparison with that of links in C3. In C1 and C2 OCT4 and SOX2 have the largest number

of outgoing links. The gap between these two TFs and others is especially large in C1 (panel D), indicating the importance of OCT4 and SOX2 in C1.

https://doi.org/10.1371/journal.pone.0220742.g003
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data. Additionally, if our classification method is successful, the difference in performances

(when random vs. real data are used) should be even more pronounced in the subnetworks

(because they will have fewer false positive links). As detailed below, this is exactly what we

observed.

We did the shuffling 100 times for the training set and re-fit the link strengths, i.e. we per-

formed minimizations and cross validations 100 times and constructed 100 networks. For

each of these 100 networks we then compared the predicted fold changes with the randomly

generated data that was used to construct the network. In other words, for each of the 100 net-

works the two performance measures r (correlation) and G (goodness of fit) were computed.

We performed this whole procedure for WN as well as SUBN1 and SUBN2. In all three cases,

the 100 networks constructed using the randomized data performed worse than the ones built

using the real data. In the case of WN the two measures r and G, respectively, ranged from

0.8678 to 0.9276, and from 0.7675 to 0.8685. Table 1 indicates that even the maxima of these

values (0.9276 and 0.8685) are smaller than the ones obtained using the real data (rtrain =

0.9292 and Gtrain = 0.8712), although the differences are not large. As expected, we observed

much larger performance differences using the subnetworks. Specifically, we found 0.7957�

r� 0.8998 and 0.6543� G� 0.8203 when randomized data were used in conjunction with

SUBN2. We observed even lower values, i.e. 0.5858� r� 0.7649 and 0.3700� G� 0.6058, for

SUBN1. Comparing these values with the ones obtained using the real data given in Table 1,

we find that the decreases in correlation and goodness of fit (due to randomization) is largest

when SUBN1 is used. The effect is also larger in the case of SUBN2 as compared to WN. These

findings suggest that our classification method is successful and that Ck is more likely than

Ck+1 to contain important links.

There are a few points worth mentioning regarding our link classification: (1) As previ-

ously mentioned, the individual link scores are network-dependent. For example, the rank

correlation (measured by Kendall’s Tau) between the two score sets calculated using WN

and SUBN1 for links in C1 is low (0.37). However, we have shown that C1 is more important

than the other classes for producing acceptable results both in presence and in absence of

the other classes. In other words, removing C3 and C2 does not change the fact that Class 1 is

more important, but it significantly alters the ranking of its individual links. Link classes are

also network-dependent, but to a much less extent. For example, defining new classes CSUBN2
1

and CSUBN2
2

using SUBN2 (instead of WN) to compute the link scores, we found that 77%

(79%) of C1 (C2) links were are also in CSUBN2
1

(CSUBN2
2

), indicating a good overlap. Overall

these results suggest that the link scores are helpful for classifying links in classes, but they

are not good enough for ranking the links individually. (2) Although we explained the ratio-

nale behind our choice of cutoffs, the number and magnitude of the cutoffs, and thus the

number of classes and their membership, are to a large extent arbitrary. However, our goal is

not to develop a rigorous classification algorithm but to offer a pragmatic classification for

prioritizing links for experimental verification and for finding smaller subnetworks (that are

likely to have fewer false positives) with comparable performance to that of WN. (3) Ranking

Ck higher than Ck+1 does not mean that every link in the former is more important than all

links in the latter. Instead this ranking suggests that overall links in Ck are more likely to be

important than those in Ck+1.

Biological validation of links in SUBN1. We have shown that C1 links, which constitute

SUBN1, are collectively more important than the rest of the links for predicting experimental

observations. We have also shown a network without C1 links cannot predict the correct IP

efficiency trends. Therefore, it is useful to take a closer look at SUBN1 and to investigate

whether the C1 links are supported by prior biological knowledge. We first note that 137 out of
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445 links in SUBN1 are known direct targets/regulators of OCT4, SOX2, NANOG, or

PRDM14 in hESCs and thus in iPSCs (for references see S2 File). Since these 4 TFs are essen-

tial in maintenance of pluripotency [4, 22, 28], their direct links in hESCs are likely to be

important in reprogramming. As indicated in the “Constructing the starting network” section

of Methods, we refer to these as Group 1 links, denoted by T1, and the rest of the links are

assigned to Group 2, denoted by T2 (see S2 File for the lists of links in T1, T2, and C1 \ T1).

Note that this categorization of links has nothing to do with the classification proposed here

and that not all links in T1 are members of C1. However, the percentage of Class 1 links that

are also in Group 1 is 31%, which is significantly higher than those of Class 2 (18%) and Class

3 (4%), indicating Ck is more likely than Ck+1 to include biologically important links.

The largest connected component of SUBN1, shown in Fig 4, has 179 nodes, making the

network effectively smaller (some nodes are disconnected in this subnetwork). Thus, we inves-

tigated if these nodes are of importance in the IP process. We found that more than half (99

out of 179) of these genes undergo a 4 fold change or more when averaged over the 64 experi-

mental datasets (Tables A and B in S1 File). In comparison, among the 97 disconnected nodes

only 5 have fold changes larger than 4. Many of the 99 genes with large fold changes are well-

known pluripotency genes [27] such as DPPA4, LEFTY2, ZIC3, and TDGF1 that need to be

upregulated. Others may be involved in a pathway that is important for pluripotency. For

example, expression of DKK1 has been shown to inhibit Wnt signaling that is important for IP

[29], and so its downregulation by OCT4 plays an important role. On the other hand, in some

cases like upregulation (about 80 fold when averaged over the 64 datasets) of NMU and down-

regulation (about 8 fold on average) of SULF1, we have not yet found literature evidence on

the role of these genes in IP. Interestingly, the only Group 1 link to SULF1 is a positive one

from OCT4 (not included in Class 1). Note that the signs of Group 1 links are known from the

literature (see “Constructing the starting network”) and were fixed during the fitting process

(“Fitting and cross validation” section of the Methods). The fact that SULF1 is highly downre-

gulated requires at least a negative Group 2 link to SULF1. Indeed a link from SOX2 exists in

SUBN1 that not only counters the effect of OCT4 but also downregulates SULF1. This example

shows at least some of Group 2 links are important for producing the right expression profiles.

In fact, when we constructed a network consisting of only the 137 links in C1 \ T1 and fitted

them using our procedure, we found a much lower goodness of fit (G = 0.5011) compared to

that of SUBN1 (Table 1). This demonstrates the importance of including the Group 2 links

when constructing the starting network.

Let us note that we could not confirm (or reject) any of the C1 \ T2 links via literature

search. This is partly because we did an extensive literature search while constructing the start-

ing network and included whatever we found in T1. Lacking a real gold standard to validate

C1 \ T2 links, we chose an indirect validation method. We treated some of the links in C1 \ T1

as if they were in T2 (i.e. we did not fix their signs) and re-fitted WN. We then investigated

whether our classification method still assigns these links to C1. Specifically, the C1 \ T1 links

were randomly partitioned into 10 subsets. They were then moved, one subset at a time, to

Group 2 (while the other 9 subsets remained in Group 1), the corresponding P matrices were

found by fitting, and in each case the links were classified using our method. We performed

this whole procedure 10 times, resulting in 100 (10 × 10) GRNs and thus 100 new classifica-

tions. We found that, on average, 78% of the links moved to Group 2 were assigned to the new

Class1 after re-fitting. Also, 78% of these links were assigned correct signs by the fitting proce-

dure. These results suggest that our fitting process yields good sign assignment and good link

classifications. However, the best way to verify C1 \ T2 links (see S2 File), be they direct or

effective, is by performing experiments. In fact suggesting links for experimental verification is

a main goal of the current study.
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Fig 4. The SUBN1 network. The regulating nodes are shown as yellow circles whose radii increase linearly with the number of outgoing links. In magenta are the

nodes that, in this subnetwork, do not regulate other nodes. Each magenta node that has only a numeric label k represents a collection of k nodes regulated in the

same way. A “tee” arrowhead denotes downregulation, while a “normal” one indicates upregulation. If two nodes mutually regulate each other, only one link is

shown with an arrowhead at each end.

https://doi.org/10.1371/journal.pone.0220742.g004
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Suggested new RF combinations

Encouraged by the overall good agreement between our results and experimental observations,

we used our model for suggesting “new” (i.e. not used in training of our model) RF combina-

tions for IP. We first compiled a list of RF candidates. An RF must be able to provide signifi-

cant feedback to the core of the GRN. Thus, we considered a list comprising of OCT4/SOX2/

KLF4/MYC/NANOG (already confirmed RFs) and any TF in our GRN that directly regulates

the core (OCT4/SOX2/NANOG) via a link in Class 1. The identified candidate RFs, in addi-

tion to the already confirmed RFs, were EMX2, FOXC1, HESX1, LEF1, MEIS1, PRDM14,

ZIC2, and ZIC3. We did not include LIN28 in the list as it has only one outgoing link in our

network (post-transcriptional regulation of OCT4). Hence, overexpression of LIN28 results in

that of OCT4, meaning that in our GRN LIN28 can replace OCT4 in most RF combinations,

which is not the case experimentally. This limitation of our GRN is due to the lack of evidence

of other possible targets of LIN28. More experimental data are required to truly reveal the role

of LIN28 in our GRN.

We used the members of the aforementioned list in groups of 1, 2, 3, or 4 as RFs (overex-

pressed at the same level) and calculated, using SUBN1/SUBN2/WN, the predicted log-trans-

formed expression profiles for each combination as well as the 58 probabilities {qj} described

earlier. We then ranked the RF cocktails based on the average probability �q. Out of 1092 RF

combinations tested using WN, 136 had nonzero �q (Table D in S1 File). Results from using

SUBN1 and SUBN2 are also available (Tables E and F in S1 File). Excluding the RF combina-

tions used in the training data, the three sets of top 10 suggested RF combinations, calculated

using SUBN1, SUBN2, and WN respectively, are given in Table 2. The three sets of RF cock-

tails are largely similar, suggesting a good agreement among the 3 networks.

A literature search showed that 6 out of the top 10 (including 4 out of the top 5) RF cocktails

suggested by WN i.e. OS [30], OSN (OS+NANOG) [3], OSKN [31], OSNM [32], OSK

+PRDM14 (OSKP) [22], and OSMP [22] have been already experimentally verified. However,

OSM has been reported to be unable to produces iPSCs in mouse [1]. Interestingly, OSK

+ZIC3 (OSKZ) have been successfully used as RFs in IP experiments in mouse [33], but in

human it has been reported to reprogram fibroblasts to neural progenitors [34]. Note that

instead of OSKZ, SUBN2 suggests SKM, which like OSKZ is a false positive [1]. On the other

hand, SUBN1 (when compared to WN) suggests OSM+HESX1 (OSMH) and OSK+HESX1

(OSKH) in place of OSKZ and OSMP. We could not find literature support for these two

combinations (OSMH and OSKH), but OKM+HESX1 has been shown to produce iPSCs

when combined with some other factors [35], confirming HESX1 as an RF. We failed to find

experimental confirmation (or rejection) for other cocktails listed in Table 2. However, the

unconfirmed RF sets are in fact more interesting, because they are natural candidates for

experimental verification.

One should be careful when comparing the ranks of the suggested RF sets with the corre-

sponding experimentally observed relative efficiencies. Specifically, efficiencies obtained

using different experimental protocols cannot be compared to each other. This is because

Table 2. Suggested RF combinations.

Rank 1 2 3 4 5 6 7 8 9 10

WN OS OSM OSN OSKN OSNM OSKP OSP OSNP OSMP OSKZ

SUBN2 OS OSM OSN OSKP OSNM OSP OSKN OSMP OSNP SKM

SUBN1 OS OSM OSNM OSN OSKN OSNP OSKP OSMH OSKH OSP

Abbreviations: O: OCT4, S: SOX2, K: KLF4, M: MYC, P: PRDM14, Z: ZIC3, and H: HESX1.

https://doi.org/10.1371/journal.pone.0220742.t002
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reprogramming efficiency does not solely depend on RFs used. Experimental details and the

RF delivery method also affect the efficiency of IP [36, 37]. Therefore, to study how IP effi-

ciency varies due only to change in the employed set of RFs, one needs to compare results

obtained from the same experimental protocol. Keeping this in mind, we searched the litera-

ture for information regarding the relative efficiencies of the confirmed RF cocktails listed in

the table. The results of our literature search can be summarized as: e(OSKM) > e(OSK) [38],

e(OSKM) > e(OSNM) [32], e(OSK) > e(OS) [30], e(OSKP)> e(OSK) [22], and e(OSKN)�

e(OSK) [31], where e(XYZ) denotes the efficiency of IP if XYZ are used as RFs. (Note that

using our model the OSKM and OSK RF combinations rank higher than other cocktails but

they are not listed in the table because they are used in our training dataset. See Tables D, E,

and F in S1 File). A comparison between these 5 experimental observations and our results

indicates that our model correctly predicts the first 3.

Given the fact that our method ranks OSKM the highest in terms of predicted efficiency

one might ask what the point is of suggesting other RF cocktails with lower efficiencies. Obvi-

ously, this ranking is predicted and, in some cases, may be wrong (For example, OSKP has

been shown to reprogram with a higher efficiency than OSK). Much more importantly, effi-

ciency is not the only concern when deciding what RF set to use. There are other reasons

why one may want to choose other RF combinations. The fact that, despite high efficiency of

OSKM, many experimental studies have used other RF sets demonstrates an interest in alter-

native approaches for practical purposes. For example, MYC is a well-known oncogene. There-

fore, other factors have been used in its place to produce safer iPSCs (see, for instance, [38]).

As another example, consider the study that showed OSKP is capable of reprogramming fibro-

blasts [22]. This study was performed primarily to shed light on the molecular mechanisms of

the reprogramming process, which are still poorly understood today.

As mentioned previously, we used a selected list of TFs to suggest new RF combinations

given in Table 2. This was necessary to remove a large number of false positives. To explain

why absence of such selection criteria leads to numerous false positives, let us give an example.

Consider the cocktail OSKX (OSK+X), where X is an arbitrary TF in the network. If X pro-

vides little or no feedback to the network, the gene expression, and so �q, predicted for OSK

and OSKX will be almost identical. In other words, our model would rank OSK and OSKX at

the same level and suggests OSKX as a new RF cocktail. Obviously, a TF that cannot affect the

network may not produce iPSCs and thus any RF combination that includes X is a false posi-

tive. Note that the reverse is not true, i.e. if OSKX and OSK have the same �q, we cannot con-

clude that X does not affect the GRN or that OSKX is a false positive. For example, it has been

experimentally shown that OSK and OSKN have comparable efficiencies [31]. It is thus not

possible to find false positives by comparing �q values. The only way to avoid these false posi-

tives is to restrict considered TFs to the ones that provide significant feedback to the network.

Therefore, we applied the aforementioned selection criteria for RF candidates. Note that we

excluded LIN28 for the same reason, i.e. to avoid false positives. In the case of LIN28, as men-

tioned previously, false positives arise from the fact that in our network LIN28 has only 1 out-

going link (to OCT4). This is a limitation of our GRN (but not of our model). However, this

limitation only reflects the fact that we could not find more experimentally verified or even

inferred links for LIN28.

Although, to reduce the number of false positives, it was necessary to restrict the list of

potential RFs, such restrictions may bias the results towards previously known RFs. Therefore,

we repeated our search for suggested RF combinations (as described above) without any

restrictions on the RF candidates. We tested all possible combinations of (up to 4) RFs (a total

of 317682 combinations) and used WN for the calculations. Out of these 317682, we found

16861 RF cocktails with �q > 0, which are given in S3 File. Note that the six previously
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mentioned experimentally verified RF sets (OS, OSN, OSKN, OSNM, OSKP, and OSMP) are

among top 1.5% in the complete list. We would like to emphasize again that the complete list

given in S3 File contains a lot of false positives, but at the same time it may provide more new

ideas as compared to the list given in Table 2.

Which network to use

The results of the previous sections indicate that the three networks (WN, SUBN1, and

SUBN2) give comparable performance in suggesting new RF sets, predicting the efficiency

trends, and predicting the fold changes (although the goodness of fit for SUBN1 is a bit lower).

In other words, it appears that for practical calculations one may use any of these networks.

However, using a larger network has two effects: it is more likely to contain false positive links

but less likely to have false negative links.

Performance comparison

Although numerous methods have been proposed to infer GRNs from experimental data

(for example, see [39] and references therein), to the best of our knowledge only one method,

proposed by Zhana et al. [13], has been specifically proposed for constructing a large (> 100

nodes) GRN for reprogramming. Therefore, we only compare the performance of our method

to that of Zhana’s. This method, based on the approach taken by [14], is somewhat similar to

ours as it finds the GRN by minimizing a cost function. However, there are significant differ-

ences. Most importantly, Zhana’s method does not include any parameters corresponding to

the RFs and their cost function is different from ours. Also, seeking a sparse solution, their cost

function includes a penalty term (the sum of absolute link strengths multiplied by a positive

parameter λ). The parameter λ controls the number of nonzero links, denoted by L, in their

GRN: higher λ means lower L. We refer to a fitted network with L links by Zhana’s method as

ZNL (for example, ZN1075 denotes a network with 1075 links).

Zhana’s method was developed to use time course expression data. Unfortunately, datasets

that include expression profiles of intermediate states between human fibroblast and iPSC are

very rare. However, all experimental datasets used in this study can be regarded as a time series

consisting of two time points: the initial (fibroblast) and the final (iPSC) states. For this reason,

and also to have a fair comparison, we used our 35 training datasets for fitting and the addi-

tional 29 datasets for testing Zhana’s method. The same starting network described in the

“Constructing the starting network” section of Methods was used for fitting Zhana’s model.

We performed the calculations for 0.01� λ� 60, and used the aforementioned similarity

measures (average correlation, r, and goodness of fit, G) to compare the predicted and experi-

mental (from the 29 testing datasets) log-transformed fold changes. Since different λs corre-

spond to different networks with varying number of links, in Fig 5 we plot the similarity

measures as a function of L. For comparison, we also plot the results of our method obtained

using WN, SUBN1, and SUBN2 (Table 1).

The figure indicates that, unlike our method that gives comparable results using all 3 net-

works, the performance of Zhana’s method depends on L and deteriorates as L increases (λ
decreases). For small values of λ (L≳ 3000), our method provides significantly better results.

Interestingly, SUBN2 and ZN1075 (obtained with λ = 10) have almost the same number of

links (1078 vs. 1075) and give very close r and G (the corresponding points in the figure are on

top of each other).

For λ> 10, i.e. L< 1075, the methods are comparable, although Zhana’s method seems

slightly better. However, a careful look revealed that ZN432 and SUBN1 (with L = 445) share

only 50 links, indicating a significant difference between them. Upon further investigation we
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found that ZNL with L< 1075 appear to miss some important links based on available experi-

mental evidence. For example, PRDM14 has been reported to have an important role in pluri-

potency and has been successfully used as an RF in reprogramming of human fibroblasts [22,

28]. However, in ZNL with L< 1075, PRDM14 has very few targets and they do not regulate

any other nodes. In such networks PRDM14 is unlikely to induce pluripotency. In compari-

son, as shown in the previous section, calculations performed with SUBN1 suggests PRDM14

as a new RF (Table 2). As another example, ZIC2 is reported to have an important role in

maintaining pluripotency [40], but it does not regulate any node in ZNL with L< 1075. On

the other hand, in SUBN1, ZIC2 regulates 18 nodes and provides feedback to the core pluripo-

tency genes. Therefore, ZNL with L< 1075 (λ> 10) seems to disagree with some experimental

evidence. On the other hand, for λ� 10, both similarity measures obtained using ZNL are

either comparable to or worse than the ones given by our method.

Even if/when the two models are comparable (in terms of predicting the expression pro-

files) our method has an important advantage. The model developed by Zhana et al. can be

used only for inferring gene regulatory relations, whereas our model, in addition to inferring

the GRN links, can suggest new RF combinations and/or stoichiometric ratios for IP. To the

best of our knowledge, the method proposed by Chang et al. [12] is the only one that can take

RFs as parameters and has the ability to predict new RF cocktails, though their model cannot

take into account the RF stoichiometry and uses a small curated GRN. Unfortunately, the

code implementing the approach of [12] was unavailable, making it difficult to compare their

method with ours. Nonetheless, even absent a performance comparison our method has the

clear advantage of being able to take into account the RF stoichiometry.

Methods

Experimental data

From the Gene Expression Omnibus (GEO) database [21], we collected data, obtained using

platform GPL570, from reprogramming of human fibroblasts. We chose GPL570 and fibro-

blasts because they are widely used. We looked for GEO Series containing raw microarray data

of both the derived iPSCs and the parental fibroblasts. Experiments using RFs not present in

our starting network (see “Constructing the starting network” section) were excluded with few

Fig 5. Comparing the two methods. The average correlation r, and goodness of fit G are plotted as functions of number of links

using both our method (in blue) and Zhana’s (in red). Note that SUBN2 and ZN1075 have almost the same number of links (1078

and 1075 respectively) and give almost identical results, and so the blue symbols are on top of the red ones.

https://doi.org/10.1371/journal.pone.0220742.g005
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exceptions. In some studies factors such as hTERT and SV40LT have been used in addition to

the RFs to facilitate the process. However, these factors have been shown to have only an indi-

rect and non-essential role in induction [41]. Thus, we included such studies even though the

additional factors are not included in our network. We found 32 GEO Series satisfying our cri-

teria. In each GEO Series the iPSC samples derived from the same type of fibroblast using the

same experimental procedure were grouped together, and so were their corresponding fibro-

blast samples. Each iPSC group and its corresponding fibroblast group constitute a “dataset”.

If an iPSC cell line was included (perhaps for comparison purpose) in multiple Series, we

assigned it to only one dataset. Some GEO Series contain multiple experiments using different

fibroblast types and/or experimental protocols, resulting in multiple datasets. Overall 64 data-

sets were included in our analysis, out of which 35 were used for training in a repeated cross

validation (CV), as described in the “Fitting and cross validation” section, and the rest (29

datasets) were employed for testing. A detailed description of the included datasets and the

corresponding references are given in Tables A and B in S1 File for the training and testing

sets respectively. The raw data from each dataset were processed using the robust multi-array

average (RMA) algorithm to find the expression levels of the probesets and their correspond-

ing genes. If a gene had multiple corresponding probesets, their expression levels were aver-

aged. In each dataset the samples in the iPSC (fibroblast) group were averaged resulting in a

single expression profile for iPSC (fibroblast).

To split the 64 datasets into training and testing sets, we noted three points. First, to avoid

overfitting, it is important to have as many different RF cocktails as possible in the training set.

So, we made sure every RF cocktail used in these 64 datasets is represented in the training set.

Second, datasets published in the same GEO Series may not be completely independent.

Although such datasets differ in some way (for example, reprogramming with different sets of

RFs), they share some other important experimental details, for example use the same parental

fibroblasts, or employ the same experimental design, etc. Therefore, to make sure the testing and

training sets are totally independent, we did not split a GEO Series. In other words, all datasets in

a Series were assigned to either the testing or training set. Third, the vast majority of the RF cock-

tails used in these experiments contain KLF4 and MYC. Specifically, out of the 64 experiments,

59 (51) have used KLF4 (MYC). Thus, to avoid a potential bias against NANOG and LIN28, we

decided to assign most (2/3) of the datasets using NANOG or LIN28 to the training set.

Based on all these observations, we split the 32 GEO Series as follows. We assigned all Series

using OS+NANOG+LIN28 (OSNL) to the training set, because these are the only ones not

using KLF4 or MYC (these include 5 datasets, see Table A in S1 File). We also included the 1

Series using OSKML in the training set. Similarly, the 3 Series containing 3 datasets using

OSKMN, were assigned to the training set. The OSKMNL is the cocktail with the largest num-

ber of associated experiments (8 datasets included in 3 Series) among the ones using NANOG

or LIN28. Therefore, datasets employing OSKMNL were split between the training and testing

sets as follows: 2 datasets were included in the training set and the rest were used for testing.

This procedure resulted in a 67/33% (training/testing) split of the 18 datasets that have used

NANOG or LIN28. The rest of the Series were randomly divided between the training and

testing sets in such a way that each set has 19 OSKM datasets and 4 OSK datasets (a 50/50%

split). As mentioned previously, this whole procedure resulted in 35 and 29 datasets in the

training and testing sets respectively (a 55/45% split; see Tables A and B in S1 File).

Constructing the starting network

As mentioned in the introduction, the previously constructed human reprogramming GRNs

are small. This is because of the huge computational cost of fitting the model parameters when
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the GRN is large. Although our intention here is to construct a much bigger network com-

pared to previous works, we still need to limit the size of the GRN in terms of the number of

nodes and links. Obviously, when a selection like this is necessary, it must be done based on

prior biological knowledge. A common way for obtaining the necessary prior knowledge is

conducting a literature search (for example, many of the works cited in the introduction have

used this approach). We perform this selection process in two main steps: (1) selecting the

nodes to include in the GRN, and (2) adding links between the selected nodes. The second

step in turn is performed in two stages: (1) adding experimentally verified links, and (2)

including inferred links. Fig 6 summarizes this whole process. In the figure a small sample of

nodes are shown to represent the network.

For the first step, i.e. deciding which nodes to include, we note the following experimental

findings: (1) iPSCs are almost identical to hESCs, (2) OCT4, SOX2, and NANOG constitute the

core of the regulatory network responsible for maintaining pluripotency in hESCs [4], and (3)

these three are well-established RFs, although NANOG has been much less frequently used as

an RF (Tables A and B in S1 File). Note that the second point gives OCT4, SOX2, and NANOG

special status that no other TF has. Although there are other genes important for pluripotency,

like PRDM14 [22, 28], none of these genes are considered part of the core. It could be argued

that NANOG does not have the same status as OCT4 and SOX2, because it has been less fre-

quently used as an RF and also because replacing NANOG (in OSNM) by KLF4 increases the

efficiency of reprogramming [32]. Nonetheless, since NAONG has been shown to be a part of

the core pluripotency circuitry, we decided to build the starting network around OCT4, SOX2,

and NANOG. In other words, we included, as nodes, the direct targets and regulators of these

factors in hESCs. But we also added the established RFs LIN28, KLF4, and MYC.

To identify the direct targets or regulators of the core (OCT4, SOX2, and NANOG) in

hESCs, we conducted a literature search. During our literature search we found two types of

study. Some papers, based on their experimental findings, specifically name a handful of genes

as the targets or regulators of the core [43–49]. We included all these targets and regulators in

the network. On the other hand, we found three large scale knockdown experiments of OCT4,

SOX2, and/or NANOG. Note that up or downregulation of a gene after knocking down

OCT4, for example, does not necessarily mean the gene is a direct target of OCT4. The change

in the expression of the gene could just be an indirect effect. Boyer et al. [4] have published

lists of potential targets of the core factors based on their binding sites. Thus, in the case of

these three knockdown studies we considered a gene a direct target of OCT4, for example, if

that gene was in the Boyer list of potential OCT4 targets and it had undergone a more than 1.5

fold change in at least one of the knockdown experiments. Out of the three knockdown studies

two [50, 51] have gene expression data available, and so we computed the average fold changes

from the expression data collected three or more days after the knockdown. For the other

knockdown experiment [52], we used the reported fold changes (after three days). At this

point we had completed adding the targets and regulators of the core. Since KLF4 and LIN28

were already in the network, we added MYC (see the previous paragraph). This resulted in a

network of 276 nodes.

The next step was to connect the nodes. We first added the experimentally verified links

that we found during our literature search. These included links connecting the core TFs to

their direct targets or regulators. However, we found other links while performing the search,

including regulation of LIN28 by MYC [53] in hESCs and several direct targets of PRDM14

[22, 54] in hESCs. One of the papers studying PRDM14 [22] reports a knockdown experiment

with additional experimental data on PRDM14 biding sites. In this case, again we considered a

gene a direct target of PRDM14 if PRDM14 had been found to bind to the gene and the gene

had undergone at least 1.5 fold change upon knockdown of PRDM14.
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In rare cases our literature search found conflicting results regarding the nature of the links

(upregulation vs downregulation). Such links were removed. At this point our starting net-

work had 400 links, which we refer to as the Group 1 links (represented by green links in the

lower half of Fig 6). We distinguish these links from any other added to the network, because

Fig 6. Construction of the starting network. Using a small representative subset of nodes, the figure explains how the starting network was constructed. We started from

OCT4, SOX2, and NANOG and built the network around these TFs by adding their experimentally verified direct targets and regulators and MYC (see the text for

details). We then connected the nodes of the network by adding regulatory links in two steps. First, the experimentally verified links (Group 1; colored in green) were

added. These included the links between OCT4/SOX2/NANOG and their targets/regulators as well as other experimentally verified links that we found. We then added a

large number of inferred links (Group 2; colored in black) based on a database developed by Marbach et al. [42].

https://doi.org/10.1371/journal.pone.0220742.g006
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these are supported by strong experimental evidence and their signs (upregulation vs downre-

gulation) are known.

A network consisting of only Group 1 links has many missing links, because it does not

include links between most of the TFs present in the network and their targets. Unfortunately,

experimentally verified regulatory relations are not available for the vast majority of the TFs.

An alternative is to add all links to the network, i.e. connect each TF to all other nodes. Since

87 out of the 276 nodes are considered TFs [55], the number of all links is 20412. Obviously,

many of these links are false positives, because TFs regulate only a fraction of genes, not all of

them. On the other hand, fitting such a large number of links require a lot of computational

power. Both of these scenarios, i.e. keeping only the 400 links in Group 1 or adding all links,

are impractical extremes. Thus, we opted for something in the middle, i.e. adding all inferred

(based on TF sequence motif) links. Therefore, we used a database, developed by Marbach

et al. [42] (http://regulatorycircuits.org), of inferred type- and tissue-specific regulatory net-

works. Note that, due to regulatory changes during reprogramming, an average GRN that

takes the system from a somatic state to a pluripotent one is likely to include links that are not

present in hESCs, or even in fibroblasts. Therefore, we included all links suggested by this data-

base regardless of tissue or cell type.

After including links from Marbach et al. [42], which are referred to as Group2 links (repre-

sented by black links in Fig 6), we reached a final list of 4471 links (S2 File). Note that Group2

links are not supported by knockdown experiments and are only inferred, without any specific

relation to pluripotency. Hence these links are considered much less reliable in comparison to

those from Group 1. Also note that by using this database we reduced the number of links 4.5

times (from 20412, i.e. the number of all possible links, to 4471). Our procedure thus removed

a large number of false positives. However, many false positives may still exist in the network.

This is exactly why we developed our heuristic algorithm for classifying the links (described in

the “Link classes and subnetworks” section of Results) that allowed us to identify links that are

more likely to be important in the IP process.

Fitting and cross validation

Given a starting network and a set of training data, the following cost function was minimized

F ¼ hFmi ¼
kWth

m � Wexp
m k

kWexp
m k

� �2
* +

; ð11Þ

where h•i is the average of • over the included datasets, k•k denotes the L2 norm of •, Wth

m

(given by Eq 7) is a vector containing predicted log-transformed fold changes corresponding

to the mth dataset, and the lth component of Wexp

m is defined as Wexp

lm ¼ log
2
EiPSC

lm =EFIB
lm . Here

Elm represents the expression level of lth node from the mth dataset. Note that in addition to

the nonzero elements of P, the coefficients cm (defined in Eq 9) are also unknowns in our

model and are determined by fitting. The L-BFGS-B algorithm [56] was used in conjunction

with SciPy’s [57] “minimize” function which requires a specified tolerance (denoted by �). Let-

ting the cost function evaluated at step k be F(k), the routine stops when [F(k) − F(k + 1)]/max

{|F(k)|, |F(k + 1)|, 1}��. Each minimization was subject to the following constraints: (1) Plj = 0

unless j was a candidate regulator of l, (2) the sign of each Group 1 link was fixed, (3) |Plj|< 1

(In a system governed by Michaelis-Menten kinetics one can show |Plj|< 1 for all l and j,
which we assume throughout the analysis.), (4) cm> 0. For more details about the minimiza-

tions and their convergence/robustness see the “Robustness and convergence” subsection

below.
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We performed a repeated (10 times) 10-fold cross validation (CV) for all minimizations.

Every time the 35 training datasets were randomly divided into 10 batches each comprising 3

or 4 datasets. Each batch was then left out while the other 9 were grouped together and used in

the minimization. Thus, for a given list of starting values, 100 minimizations were run result-

ing in 100 fitted networks, which were then averaged to find what we refer to as the average fit-

ted network.

Computation of the predicted expression profiles. Once an average fitted network is

found, for any given initial expression profile (fibroblast) and any given source term (Ws), one

can use Eqs 7 and 8 to calculate the predicted expression levels of the resulting iPSC. However,

if only the stoichioemtric ratios are known, Ws remains unknown because it depends on the

unknown variable c (Eq 9), which can vary from experiment to experiment. To address this

issue, we note that the goal of an IP experiment is to derive cells that are as close as possible to

hESCs. Given an hESC expression profile (or any reference profile) denoted by EREF, one can

find an optimal c that minimizes kWth − WREFk, where WREF
l ¼ log

2
ðEREF

l =EFIB
l Þ. Such a c is

given by

c ¼
ðWth

I ;W
REF � Wth

II Þ

kWth
I k

2
; ð12Þ

where Wth

I ¼
~PðI � PÞ� 1WSI

, Wth

II ¼
~PðI � PÞ� 1WSII

, and with (X, Y) denoting the dot prod-

uct of X and Y. Usually the reference profile is that of an hESC, but given an iPSC expression

profile one can use Eq 12 (with WREF = WiPSC) to find the c that produces the closest profile to

that of the iPSC. In this paper, we have used Eq 12 to find c whenever it was needed to compute

the predicted fold changes using an average fitted network. Note that if in an experiment the

RFs are overexpressed at the same level, Wth

II ¼ 0 and thus Wth is proportional to Wth

I . Hence,

in such a situation one can find the correlation between the predicted and the experimental

log-transformed fold changes without knowledge of c (this is the case for all 29 datasets chosen

for testing our method).

Robustness and convergence. We first ran a set of 100 minimizations using the starting

network described in the “Constructing the starting network” section with � = 10−8 and for

a set of initial values. The initial c values for different datasets were chosen to be the same,

denoted by c0. The initializing procedure for the link strengths is described later in this subsec-

tion. The resulting fitted cm values were all close to the initial value c0, suggesting that the

cost function is a slowly varying function of cm and that one set of minimizations may not be

enough to find the optimal network. Therefore, we repeated the minimizations (and cross vali-

dation) for various c0 values ranging from 2 to 18.

For a given c0 the average fitted network was found by averaging the link strengths over

the 100 minimizations. Note that the fitted cm values obtained from the set of 100 minimiza-

tions were not averaged. Instead, to find the cm values corresponding to an average fitted net-

work we used Eq 12 with WREF

m ¼WiPSC

m . The predicted log-transformed fold changes Wth

m

(m = 1. . .35) were computed and were subsequently fed to Eq 11 to find the cost function cor-

responding to the average network, denoted by Fa(c0). Here the superscript a indicates that the

cost function was computed using the average fitted network and the argument c0 shows that

the average fitted network was found using the initial value c0.

We found that Fa(c0) indeed varies slowly as a function of c0 with a shallow minimum at

c0 = 12 (Table G in S1 File). On the other hand, further analysis showed (Table G in S1 File)

that for c0� 8, the link strengths of the corresponding average fitted networks have very high

correlations and rank correlations with the network obtained using c0 = 12. In other words, for

c0� 8 the obtained fitted average networks are very similar (in terms of the relative strengths
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of the links). It is worth noting that since Al = 2c (if the RFs are overexpressed at the same

level), values of c that are close to zero or are much higher than 10 are not likely to be used in

practice. This is because a small c indicates only modest increases in the production rates of

the RFs, whereas c = 18, for example, means hundreds of thousands fold increase in the pro-

duction rates. Based on these observations we chose c0 = 12 for all minimizations used in this

study.

In the minimizations the initial link strengths P0lj
were chosen using the following proce-

dure. For the links in Group 2 the initial values were set to zero whereas for the Group 1 links

they were chosen randomly. This choice was made because there are no information available

on the signs of Group 2 links, and hence choosing random signs for these links may produce

biased results. Additionally, many of these links may not even exist and so setting their initial

values to zero appears to be reasonable.

For each node j, regulating at least one node, we also subjected the initial values P0lj
to the

following constraint:

X

l

jP0lj
j ¼ d; ð13Þ

where d is a random number between zero and unity. This constraint forces the initial link

strengths to be less than 1, but it is more restrictive thanjP0lj
j < 1 and guarantees that all eigen-

values of the matrix P0 have magnitudes smaller than 1. This constraint was applied because

we found that in its absence the minimization algorithm has difficulty finding the minimum.

We ran 10 sets of 100 minimizations with the constraint given by Eq 13 applied (with different

initial values for Group 1 links), and another 10 sets requiringjP0lj
j < 1 instead. For each set

we computed the average link strengths, and then calculated the correlations between different

sets of average link strengths. We found that the 45 pairwise correlations between the 10 sets of

link strengths obtained under the constraint defined by Eq 13 were all larger than 0.9602 (with

an average of 0.9914), indicating that the corresponding 10 sets of minimizations have con-

verged to practically the same point (in terms of relative strengths of the links). On other

hand, we observed that when Eq 13 was not applied the results were dependent on the initial

strengths of Group 1 links (the 45 pairwise correlations ranged between 0.4882 and 0.7485).

The 100 pairwise correlations between average link strengths obtained in the presence and in

the absence of the constraint (given by Eq 13) were also low, ranging from 0.2526 to 0.3635.

More importantly, we found that the goodness of fit was always higher when Eq 13 was applied

in comparison to minimizations without this constraint (Table H in S1 File). These results sug-

gest the constraint represented by Eq 13 must be applied to find the minimum. Interestingly,

we observed that in all 10 cases |λm|< 1 (|λm| > 1) if Eq 13 was (not) applied, where λm is the

eigenvalue of the average fitted matrix P with the largest absolute value. This provides an

explanation as to why applying Eq 13 as a constraint is useful (note that all minimizations for

this purpose were performed with c0 = 12).

The convergence of the minimizations was also investigated by running minimizations

with different tolerances ranging from 10−2 to 10−8. We observed a monotonic increase in

correlation (Spearman rank correlation) between link strengths corresponding to � = 10−i and

� = 10−(i+1) from 0.6399 (0.5591) to 0.9765 (0.9746) for i� 3, indicating reasonably converged

results.

Averaging over 100 minimizations also has the advantage that it provides a measure of

uncertainty for each obtained link strength. We use the standard deviation of the 100 values

for each link as its uncertainty.
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Computation of probability q
Suppose the expression profile EFIB of the parental fibroblasts and the stoichiometric ratios of

the RFs are given. One can use Eqs 7, 8, 9 and 12 to calculate the predicted expression profile

log2(Eth) that is closest to a given log
2
ðEhESC

i Þ. However, since the expression profiles of differ-

ent hESC cell lines (or different replicates of the same cell line) are slightly different, the coeffi-

cient c and hence log2(Eth) vary slightly depending on the reference hESC profile used. In

other words, if there are m hESC samples in an included GEO Series, for a given EFIB in this

Series one finds m slightly different predicted expression vectors, each corresponding to an

hESC profile. One can then compute Gi ¼ 1 � ððklog
2
ðEth

i Þ � log
2
ðEhESC

i ÞkÞ=ðklog
2
ðEhESC

i ÞkÞÞ
2

(for i = 1, 2, . . ., m) and the corresponding probability qðGiÞ. For the fibroblast sample consid-

ered, the probability of turning into iPSCs (under the IP procedure) is assumed to be the aver-

age of these m probabilities.

Link scores

A simple way to rank a link in a given network is to assess the impact of the removal of the link

on the network. In a GRN such a removal is likely to result in a change in the expression profile

and consequently in the cost function (see Eq 11). Presumably, a larger change indicates a

higher degree of importance for the removed link. Suppose an averaged fitted network has

been obtained and let Fa be the cost function corresponding to this network and calculated

using the 35 training datasets. One may compute Fa
km that is the cost function when the link

km is removed from the network while the rest of it remains intact. The “score” skm ¼ Fa
km � Fa

can then be assigned to the link km. It is worth mentioning that by definition the magnitudes

of the scores are all less than 1 and they are generally very small. This is because there are

many links in the network, making the change due to removal of one link small. What is

important in this analysis is the ranking of the scores and not their magnitudes.

Statistical significance

For every point shown in Figs 1 and 2, and Fig A in S1 File, the statistical significance of ρ,

defined in Eq 10, was determined using a two-sided, one-sample t-test. Specifically, in each

case the null hypothesis was that ρ is from a normal distribution with a mean equal to zero.

Given the large number of points in each sample (i.e. 58) the assumption of the normal distri-

bution and thus the use of a t-test is reasonable.
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