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Abstract

Nowadays CHK2 mutation is studied frequently in hereditary breast and ovarian cancer

patients in addition to BRCA1/BRCA2. CHK2 is a tumor suppressor gene that encodes a

serine/threonine kinase, also involved in pathways such as DNA repair, cell cycle regulation

and apoptosis in response to DNA damage. CHK2 is a well-studied moderate penetrance

gene that correlates with third high risk susceptibility gene with an increased risk for breast

cancer. Hence before planning large population study, it is better to scrutinize putative func-

tional SNPs of CHK2 using different computational tools. In this study, we have used various

computational approaches to identify nsSNPs which are deleterious to the structure and/or

function of CHK2 protein that might be causing this disease. Computational analysis was

performed by different in silico tools including SIFT, Align GVGD, SNAP-2, PROVEAN,

Poly-Phen-2, PANTHER, PhD-SNP, MUpro, iPTREE-STAB, Consurf, InterPro, NCBI Con-

served Domain Search tool, ModPred, SPARKS-X, RAMPAGE, Verify-3D, FT Site,

COACH and PyMol. Out of 78 nsSNP of human CHK2 gene, seven nsSNPs were predicted

functionally most significant SNPs. Among these seven nsSNP, p.Arg160Gly, p.Gly210Arg

and p.Ser415Phe are highly conserved residues with conservation score of 9 and three

nsSNP were predicted to be involved in post translational modification. The p.Arg160Gly

and p.Gly210Arg may interfere in phosphopeptide binding site on FHA conserved domain.

The p.Ser415Phe may interfere in formation of activation loop of protein-kinase domain and

might interfere in interactions of CHK2 with ligand. The study concludes that mutation of ser-

ine to phenylalanine at position 415 is a major mutation in native CHK2 protein which might

contribute to its malfunction, ultimately causing disease. This is the first comprehensive

study, where CHK2 gene variants are analyzed using in silico tools hence it will be of great

help while considering large scale studies and also in developing precision medicines

related to these polymorphisms in the era of personalized medicine.
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Introduction

Of all cancers, one of the main cause of cancer related deaths is breast cancer among women

worldwide, with 5% to 10% of cases being due to hereditary risk [1]. The CHK2 gene is moder-

ately penetrance gene most extensively studied as possible third high risk susceptibility gene in

hereditary breast and ovarian cancer. CHK2 gene is the human homolog of Rad53 (Saccharo-
myces cerevisiae) and Cds1 (Schizosaccharomyces pombe). Human CHK2 gene is a tumor sup-

pressor gene, located on long arm of chromosome 22 at q12.1 and encoded by CHK2 serine/

threonine kinase. It consists of three major domains. 1) N-terminal has SQ/TQ cluster domain

that serves as a site for phosphorylation in response to DNA damage, 2) forkhead-associated

protein interaction domain (FHA) which is essential for activation in response to DNA dam-

age and is rapidly phosphorylated in response to replication blocks and DNA damage. In FHA

domain residues 112–175 are involved in dimerization of CHK2 molecules in phosphorylation

manner, for full activation of CHK2 by trans-autophosphorylation of the activation loop. The

major function of FHA domain is to regulate the kinase activities in CHK2 by interacting with

other proteins thus mediates protein-protein interactions [2, 3] and 3) C-terminal which has

serine/threonine kinase activity [4]. CHK2 is activated by the kinases ATM and ATR in

response to DNA double-strand breaks or replicative stress [5]. These proteins catalyze the

phosphorylation of threonine 68 of CHK2 causing its transient dimerization via the FHA

domain leading to CHK2 trans-autophosphorylation and its full activation. In response to

DNA damage, CHK2 gene is involved in different pathways such as cell cycle regulation, DNA

repair and apoptosis. CHK2 phosphorylates downstream cell cycle regulators such as p53,

Cdc25, and BRCA1 to activate checkpoint repair or recovery responses, as well as concurrently

delay entry into mitosis [6, 7]. Deviation from its normal physiological function is likely to

contribute to disease pathogenesis. In particular, the missense variants of CHK2 p.Ile157Thr,

p.Asp252Gly, c.1100delC, p.His371Tyr, p.Glu161del, p.Ser428Phe, c.591delA, p.Arg117Gly, p.

Thr476Met and p.Asp438Tyr were significantly associated with germ-line variants in heredi-

tary breast and ovarian cancer [8–11]. Finnish population (1.4%) and Polish population (0.2%)

confer a relative risk for developing breast tumors of about 2 for women and 10 for men if

c.1100delC mutation is present [12, 13]. Variant p.Ile157Thr, present in 5.3% of the Finnish

population and in 4.8% of the Polish population, confers a relative risk of breast cancer of 1.5

[14, 15]. A recent analysis by the Breast Cancer Association Consortium (BCAC) estimated a

relative risk of 2.26 for p.Thr367MetfsTer15 (rs555607708) [16]. Limited data is available for

whole CHK2 gene for hereditary breast and ovarian cancer. Further, impact of missense vari-

ants on protein function is not known fully, although substitutions in the FHA domain and

the kinase domain have been shown to abolish activity [17–19].

Single nucleotide polymorphism is a common genetic variant in human and about 93%

SNPs are present in human genes [20]. SNPs can be present in coding, noncoding or inter-

genic regions [21, 22]. Both non-coding and intergenic SNPs may have slight impact, but non-

synonymous coding SNPs (nsSNPs) have more impact on protein [20]. Identification of the

impact of variants on structure, stability and function of the protein is an important task as not

all reported polymorphisms are deleterious [23]. Therefore there is a need to understand the

deleterious impact of nsSNPs on protein structure and function using different recent molecu-

lar biology techniques. Till now large numbers of SNPs are reported in NCBI data, to screen

these nsSNPS for their impact on biological function through experimental work is very

tedious and costly. However, utilization of computational methods could be an efficient alter-

native for the same.

Nowadays, different computational tools have been extensively used for predicting deleteri-

ous nsSNP and their role in protein function, stability and structure maintenance. Taking all
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these in consideration, the present study is aimed to determine various deleterious nsSNPs of

human CHK2 gene using SIFT, Align GVGD, SNAP-2, PROVEAN, PolyPhen-2, PANTHER,

PhD-SNP, I-Mutant, iPTREE-STAB, Mupro etc. Conservation of amino acid residues was pre-

dicted using ConSurf. ModPred was used to identify post-translational modification site pres-

ent in protein. The 3D structure of the CHK2 protein was generated using SPARK-X and

refined using ModRefiner. The quality of model was checked using RAMPAGE and Varify3D.

The ligand binding sites were predicted using FTsite and COACH. The visualization of 3-D

structure and labelling of native as well mutant amino acid was done using Pymol and Swiss

PDB viewer.

Materials and methods

SNP dataset

The data related to human CHK2 gene was retrieved from following databases: Uniport data-

base (https://www.uniprot.org) (UniprotKB ID 096017), the NCBI database SNP (rsIDs) and

FASTA nucleotide sequence (NC_000022.11) and amino acid sequence (NP_001005735)

sequence from (https://www.ncbi.nlm.nih.gov) for further computational analysis [24, 25].

Prediction of functional consequence of non-synonymous SNPs

The functional consequences of the nsSNP of human CHK2 gene were analysed using different

computational tools.

SIFT. SIFT (Sorting intolerant from tolerant) predicts whether an amino acid substitution

affects protein function based on sequence homology and the physical properties of amino

acids. SIFT can be applied to naturally occurring nonsynonymous polymorphisms and labora-

tory-induced missense variants. SIFT (http://siftdna.org/www/SIFT_dbSNP.html) determines

if an amino acid substitution is deleterious to protein function [26]. A SIFT score predicts

whether an amino acid substitution affects protein function. The SIFT score ranges from 0.0

(deleterious) to 1.0 (tolerated). The input query for SIFT algorithm is rsIds of SNPs from

dbSNP.

Align GVGD. Align GVGD is a web based program available at http://agvgd.hci.utah.

edu/. It combines the biophysical characteristics of amino acids, protein multiple sequence

alignments to predict whether the missense substitution is deleterious or not [27]. The input

query is FASTA sequence of protein and amino acid substitution.

SNAP2. SNAP2 (Screening of non-acceptable Polymorphism 2) predicts the functional

consequences of amino acid variation based on neutral network classification method [28]. It

is a web based tool available at https://www.rostlab.org/services/SNAP/ in which the input

query is a protein sequence of CHK2 in FASTA format.

PROVEAN. PROVEAN (Protein variation effect analyzer) predicts whether single nucle-

otide variant affects protein function through alignment based score [29]. It is an online soft-

ware available at http://provean.jcvi.org/index.php produced by J Craig Venture Institute.

Based on this, if the score is below threshold value of 2.5, variant is predicted deleterious

whereas the variant is neutral if the score is above 2.5. The input query is the FASTA sequence

of protein CHK2 and amino acid variants.

PolyPhen-2. PolyPhen-2 (Polymorphism Phenotyping V2) predicts the impact of amino

acid substitution on protein structure and function by using straight forward physical and

comparative consideration [30]. It is a web based tool available online at http://genetics.bwh.

harvard.edu/pph2/. It calculates the PSIC (Position-Specific independent score). If score is

>0.85, then variant is probably damaging and score is >0.15 possibly damaging and rest are
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considered as benign. The input query for PolyPhen-2 is FASTA sequence of protein CHK2

and amino acid variants.

PANTHER. PANTHER cSNP (Protein analysis through evolutionary relationship- cod-

ing SNP) predicts functional consequences of variants on the protein. It is an online tool avail-

able at http://pantherdb.org/tools/csnpScoreForm.jsp. It compares the sequence of protein

with a family of evolutionarily related protein. Longer the preservation time, higher the func-

tional impact of amino acid variant. It calculates the subPSEC (Substitution Position Specific

evolutionary conservation) score on the basis of alignment of evolutionary related proteins

[31]. The input query is plain protein sequence, amino acid variants and human organism.

PhD-SNP. PhD-SNP (Predictor of human deleterious single nucleotide polymorphism)

server is a Support Vector Machine (SVM) based method to discriminate between neutral and

disease-related single point protein variants [32]. It is an online tool available at http://snps.

biofold.org/phd-snp/phd-snp.html. Results were obtained through evolutionary information

and using hybrid predictive model. The input query is plain protein sequence, position of SNP

along with new residue.

MUpro. MUpro is a set of machine learning programs which predicts the protein stability

changes for single nucleotide variation in amino acid sequence [33]. It is a web based server

available at http://mupro.proteomics.ics.uci.edu/. Prediction of result based on both value and

sign of energy change using SVM and sequence information only. The input query for this is

also a plain sequence of protein followed by original and substituted amino acid.

iPTREE-STAB. iPTREE-STAB is a web based server available at http://203.64.84.

190:8080/IPTREEr/iptree.html which is based on decision tree. It predicts the impact of single

amino acid change on protein stability [34]. The input query is original amino acid as well as

mutated amino acid residue followed by three flanking residues from both sides of the mutated

residue.

Phylogenetic conservation

Consurf is a computational tool available at http://consurf.tau.ac.il which calculates the evolu-

tionary conservation of amino acid position through phylogenic relations between homolo-

gous sequences [35]. Consurf calculates conservation score from 0 to 9 which is classified into

variable, average and highly conserved. The input query for consurf is FASTA sequence of pro-

tein CHK2.

Prediction of post translational modification sites

The ModPred server is available at http://www.modpred.org which is used to predict post

translational modification sites within CHK2 protein sequence. ModPred is a sequence-based

predictor of potential post-translational modification (PTM) sites in proteins. It consists of 34

ensembles of logistic regression models, trained separately on a combined set of 126,036 non-

redundant experimentally verified sites for 23 different modifications, obtained from public

databases and an ad-hoc literature search [36].

ExAC browser beta

ExAC browser is freely available at http://exac.broadinstitute.org. The minor allele frequency

(MAF) was retrieved from ExAC Browser Beta for the nsSNPs of human CHK2 gene. The

Exome Aggregation Consortium (ExAC) is a coalition of investigators seeking to aggregate

and harmonize exome sequencing data from a variety of large-scale sequencing projects and

to make summary data available for the wider scientific community. The ExAC browser pro-

vides gene and transcriptcentric displays of variation, a critical view for clinical applications.
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Additionally, it provides a variant display, which includes population frequency and functional

annotation data as well as short read support for the called variant. ExAC has already been

used extensively by clinical laboratories worldwide [37]. The input query is name of human

CHK2 gene.

Prediction of nsSNPs position in different protein domains

NCBI Conserved Domain Search tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

and InterPro (https://www.ebi.ac.uk/interpro/) were used to locate the position of SNPs in dif-

ferent domains of CHK2 protein structure [38, 39]. Input query for InterPro is a plain

sequence of CHK2 and for NCBI Conserved Domain Search tool the input query is FASTA

amino acid sequence of protein CHK2.

Protein 3D modelling and structural analysis

The 3D structure of full length CHK2 protein is not available in protein data bank. The 3D

structure of protein CHK2 was generated using SPARKS-X fold recognition server (http://

sparks-lab.org/yueyang/server/SPARKS-X) [40]. The input query for SPARKS-X server is

FASTA amino acid sequence of protein CHK2. The degree of similarity of templates used by

SPARKS-X server for 3D model prediction was checked by BLASTp. The 3D structure pre-

dicted by SPARKS-X server was further refined using Modrefiner (https://zhanglab.ccmb.

med.umich.edu/ModRefiner) [41]. The quality of refined model was checked using Varify3D

(http://servicesn.mbi.ucla.edu/Verify3D) and RAMPAGE (http://mordred.bioc.cam.ac.uk/~

rapper/rampage.php) [42]. Input query for Varify3D and RAMPAGE analysis is refined struc-

ture predicted using SPARKS-X.

Ligand binding site prediction

The ligand binding sites within CHK2 protein were predicted using FT site server (http://

ftsite.bu.edu/) and COACH server (https://zhanglab.ccmb.med.umich.edu/COACH/). FT site

is freely available online tool which predicts ligand binding sites of CHK2 protein. FT site

accurately identifies binding sites in over 94% of apoproteins, including structure based pre-

diction of protein, the explanation of functional relationships among proteins, protein engi-

neering and drug designing [43]. COACH is a meta-server based approach used for protein-

ligand binding site prediction. Using two comparative methods, TM-SITE and S-SITE

COACH predicts complementary ligand binding sites [44]. The input query for COACH is

refined structure generated by modrefiner. PyMol and Swiss PDB viewer were used to visualize

3D structure of protein.

Results

SNP database

The CHK2 gene investigated in the present study was retrieved from dbSNP database (dbSNP-

NCBI: https://www.ncbi.nlm.nih.gov/snp/?term=chek2). It contained a total of 13929 SNPs

out of which 753 are missense (nsSNP), 105 are frame shift, 642 in 5’UTR, 55 in 3’ UTR, 50

nonsense, 13062 intronic, 50 stop gained, 19 in 3’ splice site, 24 in 5’ splice site and 266 in cod-

ing synonymous SNPs (Fig 1). Only nsSNP of CHK2 were selected for this investigation.

Prediction of functional nsSNPs in CHK2
The CHK2 single nucleotide variants obtained from dbSNP analysis were subjected to compu-

tational analysis through variety of tools. According to SIFT result out of 753 nsSNPs of CHK2
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gene total 78 SNP were predicted to be tolerated or deleterious and rest of 675 were not found

in SIFT results. From these 78 SNPs, SIFT classified 35 nsSNPs as damaging, 43 as tolerated.

To increase the accuracy of computational techniques, all the 78 SNPs predicted in SIFT were

further validated by Align GVGD, SNAP2, PROVEAN, PolyPhen2 and PANTHER tools.

Align GVGD is a method that combines Grantham Variation (GV) and Grantham Deviation

(GD) scores to predicts whether the missense substitution is deleterious or not. In Align

GVGD, if GD score is less than C15 then substitution is less likely affected and score is greater

C65 then substitution is most likely affected. Out of 78 nsSNP Align GVGD predicted 43 SNPs

as most likely affected and 10 nsSNPs as less likely affected. SNAP2 predicts whether the

impact of amino acid variation is neutral or has effect on a query protein function by evaluat-

ing mutability landscape of the entire query protein sequence. Out of 78 SNPs subjected to

SNAP2 prediction, 41 showed effect on protein function and 37 predicted as neutral SNPs.

Among 78 SNPs subjected to PROVEAN analysis, 35 SNPs were predicted as deleterious and

43 SNPs were predicted as neutral. Out of 78 SNPs subjected to PolyPhen2 analysis 41 were

predicted probably damaging, 10 predicted possibly damaging, 26 predicted benign and 1 was

not predicted by PolyPhen2. For every input variant PolyPhen2 calculates PSIC (Position spe-

cific independent score). Out of 78 nsSNPs, 37 SNPs were predicted probably damaging, 17

predicted possibly damaging and rest 24 SNPs predicted probably benign by PANTHER

cSNP. The nsSNP predicted as probably damaging by PolyPhen and PANTHER were consid-

ered as damaging and used for further analysis.

All the 78 nsSNPs of CHK2 gene were further analyzed for correlation with disease after

functional impact through PhD-SNP. PhD-SNP is a SVM based classifier which predicts the

result through evolutionary information and hybrid predictive method with the accuracy of

78% of human protein [29]. PhD-SNP revealed the most unique results showing only 20

nsSNPs as diseased and rest of 58 SNPs as neutral.

We predicted any stability alteration in the CHK2 protein with the help of MuPro and

iPTREE-STAB which predict the result by considering single site variant. MuPro predicted 56

Fig 1. Distribution of SNPs in different functional classes of CHK2 gene according to the dbSNP database.

https://doi.org/10.1371/journal.pone.0220711.g001
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nsSNP which decrease stability of CHK2 protein and rest of 22 SNPs increase stability.

iPTREE-STAB result revealed to decrease stability of 74 nsSNP and 4 nsSNP showed increase

in protein stability. According to some studies, decreased protein stability causes increase in

degradation, misfolding and aggregation of proteins. We shortlisted those nsSNP which are

common in all 9 different algorithm tools and predicted as deleterious SNPs. Total 7 SNPs out

of 78 SNPs met the criteria and classified them as high risk and selected for further analysis.

Result of SIFT, Align GVGD, SNAP2, PROVEAN, PANTHER, Ph-D SNP, MuPro and

iPTREE-STAB is shown in Table 1.

Conservation profile of deleterious nsSNP in CHK2
Evolutionary information is used to predict whether the substitution of amino acid affects the

protein functions or not. Consurf web server was used to calculate the conservation score of

amino acid residue of CHK2 protein to further analyze possible effect of 7 most deleterious

nsSNP predicted through different computational tool. Results were obtained in the form of

structural representation of the protein (S1 Fig). Highly conserved residues are predicted as

either functional or structural based on their location either on protein surface or inside its

core. Results obtained via conSurf represented all residues of CHK2 showing their structural

and functional conservation levels. But we focused only on those residues which matched their

positions with 7 high risk nsSNPs which we have identified. Taking this into consideration,

those nsSNPs which are located at these conserved regions are considered immensely damag-

ing to protein as compared to those at non-conserved sites [45, 46]. According to consurf out-

put, p.Arg160Gly, p.Gly210Arg, p.Ser415Phe are highly conserved residues with conservation

score of 9. Four amino acids were predicted average conserved. The result of consurf is shown

in Table 2. The summary of deleterious prediction for each SNP is shown in Fig 2.

Prediction of post translational modification sites

Post translational modification sites present within human CHK2 protein were predicted

using ModPred. Out of 7 most significant nsSNPs, three amino acids p.Arg160Gly,

p.Arg223Cys, p.Arg188Trp were predicted to be involved in post translational modification

sites including proteolytic cleavage and ADP ribosylation. The results of modpred are shown

in Table 2.

ExAC

The minor allele frequency (MAF) was retrieved from ExAC Browser Beta (http://exac.

broadinstitute.org/gene/ENSG00000183765) for the nsSNPs of human CHK2 gene. The result

of minor allele frequency of nsSNPs is shown in Table 2.

Prediction of nsSNPs position in different protein domains

According to Interpro and NCBI Conserved Domain Search tool two major domains were

predicted in CHK2 protein. One was STKc_Chk2 domain (serine/threonine kinase, cell cycle

checkpoint kinase 2) which comprises 256–529 amino acids and another one was FHA

domain (Forkhead associated domain) which comprises 156 to 244 amino acids. In CHK2

amino acid sequences 269–411 were predicted catalytic domain of ATP Binding site; 264–471

were predicted catalytic domain of dimer interface; 269–434 amino acid sequences were

present in active site; 273–434 amino acid sequences were present in polypeptide substrate

binding site. The 22 amino acid residues present in activation loop (Thr, Asp, Phe, Gly, His,

Ser at 415, Lys, Ile, Leu, Gly, Glu, Thr, Ser, Leu, Met, Arg, Thr, Leu, Cys, Gly, Thr, Pro, Thr) of
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Table 1. Prediction of functional consequences of nsSNP in human CHK2.

SNPs rs ID AA Variant SIFT Align GVGD SNAP2 PRO

VEAN

Poly Phen-2 Panther Ph-D SNP MuPro iPTREE-STAB

rs17879961 I200T T C65 Effect N PosD PosD N-1 # -ve

rs17882942 L555V T C25 Neutral N Ben. ProB N-9 # -ve

rs17883172 E544K T C55 Neutral N Ben. ProB N-3 # -ve

rs17883862 P85L T C65 Effect N ProD PosD N-6 " -ve

rs17886163 I491S T C65 Neutral N Ben. PosD N-5 # -ve

rs28909980 D390N D C15 Effect D ProD ProD N-0 # -ve

rs28909982 R160G D C65 Effect D ProD ProD Di-5 # -ve

rs72552322 G210R D C65 Effect D ProD ProD Di-7 # -ve

rs72552323 I203T D C65 Effect D ProD ProD Di-2 # -ve

rs77130927 R223C D C65 Neutral D PosD PosD Di-10 # -ve

rs121908694 S41F D C65 Effect N ProD ProD N-6 # -ve

rs121908701 R224H T C25 Neutral N Ben. ProB Di-2 # -ve

rs121908702 E282K T C55 Neutral N ProD PosD Di-2 # -ve

rs121908703 S399L T C65 Neutral D PosD PosD N-2 " -ve

rs121908704 T444A T C55 Neutral N Ben. ProB N-6 # -ve

rs121908705 N489D T C15 Neutral N Ben. ProB N-7 # -ve

rs121908706 R517H T C25 Effect D ProD ProD Di-7 # -ve

rs137853007 R188W D C65 Effect D ProD ProD Di-2 # -ve

rs137853008 A17S T C65 Neutral N Ben ProB N-5 # -ve

rs137853009 R223H D C25 Neutral D Ben PosD Di-4 # -ve

rs137853010 R224C T C65 Neutral N Ben ProB Di-4 # -ve

rs137853011 S471F T C65 Neutral D ProD PosD Di-1 " -ve

rs138040612 E571K T C55 Neutral N ProD PosD N-6 # -ve

rs139088611 V494A T C55 Neutral N Ben ProB Di-0 # -ve

rs139366548 Y467H T C65 Effect D ProD ProD N-8 # -ve

rs141568342 E64K D C55 Effect N Ben ProB N-6 # -ve

rs141776984 C286R T C65 Effect D PosD ProD Di-1 # -ve

rs142243299 V25I T C25 Neutral N Ben ProB N-5 # -ve

rs142763740 T519M D C65 Effect D ProD PosD N-7 # -ve

rs143611747 R361H T C25 Neutral N Ben PosD N-6 # -ve

rs143965148 D540N T C15 Neutral N Ben ProB N-8 # -ve

rs144850845 G210E D C65 Effect D ProD ProD N-1 # -ve

rs145324174 C428Y D C65 Effect D ProD ProD N-1 # -ve

rs146198085 N229H D C65 Neutral D ProD ProD Di-8 # -ve

rs147877722 S415F D C65 Effect D ProD ProD Di-5 # -ve

rs148053495 R361C D C65 Effect D ProD PosD Di-3 # -ve

rs149501505 R566C T C65 Effect N ProD ProB N-5 # -ve

rs149991239 T59K D C65 Effect D ProD ProD N-4 # -ve

rs199708878 R3W D C65 Effect N ProD ProD N-8 # -ve

rs199749372 I264V T C25 Neutral N Ben ProD N-8 # -ve

rs199859140 D404H T C65 Neutral N PosD ProB Di-7 # -ve

rs200050883 D481Y D C65 Effect D PosD PosD Di-7 # -ve

rs200432447 R562G D C65 Effect D Ben ProD N-2 # -ve

rs200451612 I264M T C0 Neutral N PosD ProD N-3 # -ve

rs200649225 R449H T C25 Neutral N ProD PosD N-3 # -ve

rs200928781 Y433C D C65 Effect D ProD ProD N-6 # -ve

(Continued)
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STKc_Chk2 domain. The 160 to 210 amino acid sequences present in polypeptide binding site

on conserved domain of FHA domain (Arg at 160th and Gly at 210th position).

Protein 3D modeling and structural analysis

The 3D structure of full length CHK2 protein was not available in protein data bank.

SPARKS-X modeled 3D structure of CHK2 protein by submitting FASTA amino acid

sequences, where 10 best full length models were generated using different similar templates.

The quality of full length models were predicted based on (>6) Z-score. All the templates were

subjected to BLASTp analysis to identify the sequence similarity of the templates with CHK2

protein. The 3D structure generated using 3i6wA as a template was used for further analysis.

Table 1. (Continued)

SNPs rs ID AA Variant SIFT Align GVGD SNAP2 PRO

VEAN

Poly Phen-2 Panther Ph-D SNP MuPro iPTREE-STAB

rs201084748 S5L T C65 Effect N Ben ProB N-8 # -ve

rs201206424 R389C D C65 Effect D ProD ProD N-7 # -ve

rs202051128 I387M T C0 Effect N ProD ProD N-7 # -ve

rs202089930 T426I D C65 Effect D ProD ProD N-1 # -ve

rs267606211 S422F D C65 Effect D PosD ProD N-2 " +ve

rs368570187 R180Q T C35 Neutral N Ben ProB N-7 # -ve

rs369070738 N448S T C45 Neutral N Ben ProB N-2 # -ve

rs369223840 N229S T C45 Neutral D ProD ProD N-4 # -ve

rs369256181 Q11R T C35 Neutral N Ben ProD N-7 # -ve

rs370968992 F518I T C15 Neutral N Ben ProB N-7 # -ve

rs371207635 H382Y D C65 Effect D ProD ProD N-6 # -ve

rs371657037 S53T D C55 Neutral N ProD ProD N-5 # -ve

rs372874441 D177H T C65 Neutral N ProD ProB N-8 # -ve

rs373073383 A435V D C55 Effect D ProD ProD N-8 # -ve

rs373648967 K162R T C25 Neutral N Ben ProB N-6 # +ve

rs373959274 R564Q D C35 Effect N ProD ProD N-3 # -ve

rs374395284 E364A D C65 Effect D ProD ProD N-4 # -ve

rs374660293 L381H D C65 Effect D ProD ProD N-4 # -ve

rs375130261 M424V D C15 Effect D ProD ProD N-8 # -ve

rs17880867 N489K T C65 Neutral N Ben ProB N-4 # -ve

rs17881473 F490I D C15 Effect D Ben ProD N-8 # -ve

rs17882922 L479M D C0 Neutral N ProD ProD N-1 # -ve

rs112032663 G30D T C65 Effect N ProD ProB N-3 # +ve

rs113947614 I264T T C65 Neutral N Ben ProD N-4 # -ve

rs137926355 R144Q T C35 Neutral N - - N-8 # -ve

rs141502354 I386V T C25 Neutral N PosD PosD N-6 # -ve

rs142966756 R191M D C65 Effect D ProD PosD N-5 # -ve

rs150677496 L173Q T C65 Effect D ProD PosD Di-5 # -ve

rs151218932 C18Y T C65 Effect N Ben ProB N-4 # -ve

rs372168051 P225H D C65 Effect D ProD ProD Di-5 # -ve

rs375507194 Q20H D C15 Neutral N ProD ProB N-6 # -ve

rs376736188 Q27E T C25 Effect N PosD ProB N-9 # +ve

Where D: Deleterious; T: Tolerated; GD�C65 = most likely affected; GD�C0 = less likely affected; N: Neutral; D: Deleterious; ProD: Probably damaging; ProB:

Probably benign; PosD: Possibly damaging; Ben: Benign; N: Neutral; Di: Disease: #: Decrease; ": Increase; -ve: negative; +ve: positive

https://doi.org/10.1371/journal.pone.0220711.t001
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The 3D structure was further refined by submitting structure in ModRefiner server which

showed RMSD value 2.821 and TM-score of 0.9685 to initial model. After that refined struc-

ture was further validated using Verify3D and RAMPAGE tools. Ramachandran plot analysis

by RAMAPAGE for the native protein model showed 541 (92.6%) residues in favoured region,

38 (6.5%) residues in allowed region and 5 (0.9) residues in outlier region. Varify-3D showed

66.21% of the amino acids have scored�0.2 in 3D-1D profile. The results of both tools are

shown in Table 3.

Ligand binding site prediction

FT site server predicted 3 binding sites present in CHK2 protein. First binding site consisted

residues Lys at 292th, Leu at 320th, Ile at 329th, Ile at 342th, Ile at 331th, Leu at 344th, Thr at

Table 2. ConSurf predictions of most deleterious nsSNP showing conservation profile and their post translation sites prediction by ModPred and their clinical sig-

nificance in clinvar with their minor allelic frequency (MAF).

SNP ID Residue and

Position

Conser-vation

score

B/E F/S PTM Clinvar MAF

rs28909982 R160G 9 E F Proteolytic

cleavage

Conflicting-interpretations-of-pathogenicity, likely-pathogenic 0.0001320

rs137853007 R188W 6 E F Proteolytic

cleavage

not-provided, pathogenic, likely-benign, likely-pathogenic 0.00003296

rs72552323 I203T 6 B - - Variable of uncertain-significance 0.000008240

rs72552322 G210R 9 E - - uncertain-significance, conflicting-interpretations of pathogenicity,

likely-pathogenic

0.00004120

rs77130927 R223C 5 E - ADP ribosylation uncertain-significance, conflicting-interpretations of pathogenicity 0.001360

rs372168051 P225H 5 B S - uncertain-significance -

rs147877722 S415F 9 E - - uncertain-significance -

B: Buried; E: exposed; F: functional; S: structural; PTM: post translation modification site; MAF: minor allele frequency

https://doi.org/10.1371/journal.pone.0220711.t002

Fig 2. Graphical representation of the position of nsSNP in CHK2 gene and protein.

https://doi.org/10.1371/journal.pone.0220711.g002
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410th, Asp at 411th, Phe at 412th, Gly at 413th,His at 414 and Ser at 415th position. Second bind-

ing site consisted residues Trp at 93th, Tyr at 199th, Ile at 200th, Ala at 201th, Pro at 225th, Leu

at 226th, Asn at 227th and Asp at 246th position. Third binding site constituted Trp at 93th, Asn

at 197th, Ser at 198th, Tyr at 199th, Asp at 246th, Thr at 248th and Val at 249th position. Two

binding sites are presented using PyMOL in Fig 3. Coach server also predicted Ser at 415

within ligand binding sites. The detailed results of COACH prediction are shown in Table 4.

3D structure prediction of mutant and model validation

The 3D structure of mutant of CHK2 protein was generated by substituting serine with

phenylalanine at 415th position in wild type sequence and the sequence was submitted to

SPARKS-X server. The 3D structure generated was further refined by submitting structure in

ModRefiner server which showed RMSD value 2.310 and TM score of 0.9517. The prediction

of TM score suggested the structural deviation of mutant protein as compared to native. After

that refined structure was further validated using Verify3D and RAMPAGE. Verify 3D showed

60.75% of the amino acids have scored�0.2 in 3D-1D profile. Mutant model is a good quality

as having more than 90% region in favoured region. Mutant model showed (93.3%) residues

in favoured region, 31 residues (5.3%) residues in allowed region and 8 (1.4%) residues in out-

lier region.

Discussion

The CHK2 gene is a tumor suppressor gene, involved in cell-cycle regulation, in response to

DNA damage, DNA repair and apoptosis pathway. Variants of CHK2 have been implicated in

various types of cancer including breast cancer [47]. Single nucleotide polymorphism plays an

important role in most of the diseases. About more than 4 million unique human single nucle-

otide polymorphism (SNPs) have been described by dbSNPs and 2% of the reported SNPs

associate with monogenic diseases are present in protein coding region and hence predicted

that these SNPs can be related to complex inherited disease traits [48]. Testing the functional

Table 3. Validation of protein structure.

Varify3D RAMPAGE

Percentage of the amino acids have scored�0.2 in 3D-1D

profile

Favoured region Allowed region Outlier region

66.21% 541 (92.6%) 38 (6.5%) 5 (0.9)

https://doi.org/10.1371/journal.pone.0220711.t003

Fig 3. Ft site prediction showing Ser at 415 and Pro at 225 positions in 1st and 2nd ligand binding site respectively.

A) Pink, green and purple coloured mesh are 1st, 2nd and 3rd ligand binding site respectively of human CHK2 protein

predicted using FT site server B) Zoom in on interaction at Pro 225 C) Zoom in on at Ser 415.

https://doi.org/10.1371/journal.pone.0220711.g003
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consequences of variant by using functional assay can be the best approach but it is quite costly

and time consuming too. Hence, for this purpose we have exploited computational approach

by using various in silico tools of different algorithms for the analysis of SNVs in CHK2 gene.

To date, 13929 human CHK2 gene SNPs are reported in NCBI dbSNP (database) which have

been located in non-coding, coding and regulatory regions. The coding SNVs cause amino

acid variation which further alters the protein function and leads to disease susceptibility. All

the nsSNPs may not have major deleterious effect on protein function, some may have neutral

effect. Therefore it is necessary to differentiate deleterious SNPs from the neutral SNPs to ana-

lyze susceptibility of individual SNPs to diseases, and also to focus on those SNVs which are

responsible for structural and functional consequences of CHK2 protein [49]. However, to

Table 4. Prediction of ligand binding sites within CHK2 protein using COACH.

COACH Result

C-Score Cluster Size Name of ligands Residue number

0.88 2636 MP6 269,270,271,277,290,292,329,344,345,346,347,348,350,351,394,395,397,410,411

0.07 148 2K5 269,277,290,292,316,320,329,342,344,345,346,347,350,397,411,412

0.03 73 MG 272,392,395,411

0.01 58 07Q 269,272,275,276,277,290,292,293,294,344,345,346,347,411

0.01 52 PEPTIDE 271,273,351,353,357,361,390,392,393,394,415,430,431,432,462,466,467,468,471,472,473,479,480

0.01 24 1RA 270,271,272,277,290,292,316,320,329,342,344,345,346,410,411,412,416

0.0 1 MG 312,315,413

0.0 1 CA 535,536,537

0.0 2 CA 282,333

0.0 11 MG 292,316,411,415

TM-site

C-Score Cluster Size Name of ligands Residue number

0.58 308 ANP, ADP, ATP 269,270,271,277,290,292,329,344,345,346,347,348,350,351,394,395,397,410,411

0.29 11 AMP,FMM,I76 269,277,290,292,316,320,329,342,344,345,346,347,350,397,411,412

0.20 30 III 271,272,273,274,351,353,357,392,393,394,415,431,432,434,462,467,468,471,472,473,479,480

0.19 9 Mg, ANP, B11 292,395,411

0.18 5 AF3, MG, PO4 272,273,274,390,392,395,411

S-Site

C-Score Cluster Size Name of ligands Residue number

0.41 488 ANP, ADP, ATP 267,269,270,271,272,273,274,275,277,290,292,316,329,344,345,346,347,348,350,351,354,394,395,397,410,411

0.19 66 MG, MN, IMD 273,274,292,351,390,392,394,395,410,411

0.14 27 MG, 7PE, MN 269,270,271,273,274,275,277,290,292,294,304,309,312,313,316,317,320,329,342,344,345,346,347,397,410,411,

412,413,414,415,416,423

0.13 18 PDY, IMD, AGX 353,354,355,356,357,358,359,393,394,433,462,466,467,468,469,470,471,472

0.11 9 III, TAR 351,353,354,356,357,360,390,392,393,394,411,414,427,428,429,430,431,432,434,438,439,440,441,462,466,467,

468,469,470,471,476,477,479,480,482,488,489,491,492,493,494

FINDSITE

C-Score Cluster Size Name of ligands Residue number

0.82 115 Site 1 269,270,272,274,275,277,290,292,294,329,344,346,347,351,395,397,410,411

0.04 6 Site 2 269,270,272,273,274,275,277,290,292,305,312,329,344,346,347,351,353,357,390,392,393,394,397,410,411,415,427,

428,429,430,431,432,433,434,462,468,471

0.04 5 Site 3 325,376,379,380,524,535,536,539,540

0.04 5 Site 4 273,302,303,305,351,353,354,357,390,392,393,394,415,427,428,429,430,431,432,433,434,462,467,468,471,473,476,

479,480

0.01 2 Site 5 428,430,434,438,439,476,480

https://doi.org/10.1371/journal.pone.0220711.t004
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predict the pathogenic effect of nsSNP using single bioinformatic tool may not be reliable [50].

In present study prediction of CHK2 genetic variants was accomplished by utilizing sequence

and structure based bioinformatics tools- SIFT, Align GVGD, SNAP2, PolyPhen 2, PRO-

VEAN, PANTHER, PhD SNP, MuPro and iPTREE-STAB. According to study of Hicks et al.,

and Thusberg and Vihinen, to identify most deleterious nsSNPs, SIFT and PolyPhen 2 were

reported as best performing tools [51, 52]. To check the stability of protein, MuPro and

iPTREE-STAB were used. Out of 79 nsSNP subjected to functional analysis 7 SNPs (p.Arg160-

Gly, p.Arg188Trp, p.Ile203Thr, p.Gly210Arg, p.Arg223Cys, p.Pro225His and p.Ser415Phe)

were predicted to be most deleterious nsSNP in human CHK2 protein. To the best of our

knowledge none of the studies showed the genetic risk of p.Arg160Gly, p.Arg188Try,

p.Ile203Thr, p.Gly210Arg, p.Arg223Cys, p.Pro225His and p.Ser415phe with any known

disease condition. p.Arg160Gly, p.Arg188Try, p.Ile203Thr, p.Gly210Arg, p.Arg223Cys and

p.Pro225His all nsSNP are part of FHA domain which is activated in response to DNA dam-

age. p.Arg160Gly marks the substitution of arginine (basic amino acid) by glycine (non-polar

amino acid) and vice-versa in p.Gly210Arg substitution. p.Ile203Thr entails the substitution of

isoleucine (nonpolar) to threonine (-OH containing amino acids) leading to decrease in stabil-

ity of protein. In FHA domain, 2 SNPs (p.Arg223Cysand p.Arg188Try) leads to substitution of

arginine (basic amino acids) to cysteine (sulphar containing amino acid) and tryptophan (non-

polar aromatic amino acid) which decrease protein stability. R160, G210, S415 are highly con-

served residues with conservation score of 9. Four amino acids (R160, I203, R223 and P225)

were predicted average conserved. p.Arg160Gly, p.Gly210Arg and p.Arg223Cys might inter-

fere in post-translational modification of CHK2 protein as these residues were predicted to be

involved in post translational modifications through ModPred. The Arg at 160 and Gly at 210

residue present in polypeptide binding site on conserved site of FHA domain. Ser 415 residue

is present in STKc_Chk2 domain. In p.Ser415Phe substitution of serine (-OH containing

amino acid) to phenyl alanine (non-polar amino acid). This residue is part of aimer interface,

catalytic domain of ATP binding site and active site of STKc_Chk2 domain. Any change in

this residue alters the stability of protein which is predicted by Mupro and iPTREE_STAB.

Two amino acids S415 and P225 were predicted to be involved in ligand binding site interac-

tions. These suggest that p.Pro225His and p.Ser415Phe might interfere in ligand binding site

interactions. Several studies have investigated the role of CHK2 polymorphism as a genetic

determinant for susceptibility to diseases. Several polymorphisms (p.Ile157Val, p.Asp252Gly,

c.1100delC, p.Asp438Tyr and p.His371Tyr) have been reported for the CHK2 gene [53, 54].

Pritzlaff and their colleagues assessed multi-gene panel testing using male breast cancer

patients and identified pathogenic variants i.e.c.591delA, p.Arg117Gly, p.Thr476Met,

p.Ser428Phe, p.Iso157Thr, p.Gln29� andc.1100delC in different population [55].

CHK2�c.1100delC and p.Ile157Thr were most studied in populations all over the world. The

inherited variants CHK2 c.1100delC truncates the kinase domain of the CHK2 protein and

is responsible for a two fold increase in breast cancer risk in families of northern and north-

western European ancestry [12, 13, 56]. According to Delimitsou and his colleagues study,

p.Ile160Arg and p.Ile160Thr variants were characterized as damaging and p.Asp203Gly vari-

ant was characterized as benign. All these variants were located within the kinase domain [57].

p.Ile160Arg was characterized as intermediate according to study done by Roeb et al in 2012

[58]. Different CHK2 variants were categorized as damaging according to in silico tools and

yeast based assay i.e p.Trp93Arg, p.Cys108Arg, p.Arg117Gly, p.Arg145Trp, p.Arg148Gly, p.

Ile160Arg, p.Ile160Thr, p.Asp162Gly, p.Asn166Ser, p.Gly167Arg, p.Leu183Ser, p.Leu183Phe,

p.Leu236Pro, p.Ile251Phe, p.Arg346Cys, p.Arg346His, p.Asp347Ala, p.Asn352Asp, p.Gly370-

Glu, p.Cys385Arg, p.Thr387Ser, p.Tyr390Ser, p.Ala392Pro, p.Ala392Val, p.Glu394Lys, p.

Cys420Thr, p.Tyr424His, p.Arg474Cys and p.His483Arg [57]. Avraham Shaag and his team
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discovered two novel amino acid substitutions, p.Ser428Phe in the kinase domain and

p.Pro85Leu in the N-terminal region [59]. The individual having CHK2 sequence variants

(c.1100delC) may contribute to the Li-Fraumeni syndrome in Dutch families [60]. In Pakistan,

two novel mutations p.Gln20X and p.Glu85X at exons 1 and 2 respectively have been identi-

fied in breast cancer patients [61]. However the results were contradictory among different

studies. By means of in silico, deleterious prediction done in the present study, the p.Gln20His

and p.Pro85Leu were not predicted highly deleterious. However, Pro at 85 and Gln at 20th

were predicted as conserved residue with conservation score of 7. However none of the study

till now available that identify p.Pro225His and p.Ser415Phe nsSNPs as damaging. CHK2 vari-

ants found in this study have not been reported earlier so they need to be validated to check its

significance. The major limitation of this study is the fact that it is in silico study thus the results

cannot be blindly extrapolated to humans without validation by wet lab study. When we pre-

dict pathogenicity of CHK2 variants, it is important to conduct functional assay in cell-lines.

In addition to this, analysing data from epidemiological and genetic studies as well as segrega-

tion analysis would provide more accurate classification.

As multiple CHK2 variants of unknown clinical significance emerge every day when per-

forming genetic testing analyses in patients with cancer, a rapid variant assessment is of great

importance. Therefore, the in silico assay used herein provides essential, fast and low -cost eval-

uation for the largest series of tested CHK2 variants to date, thus providing valuable informa-

tion that can be ultimately implemented in clinical practice. Thus, the present study indicates

that the procedure of computational approach provides an alternative approach to select SNPs

targets by considering the role of SNPs on the functional attributes or molecular phenotype of

protein. These results may be helpful for further understanding of CHK2 SNPs in disease sus-

ceptibility by laboratory experiments.

Conclusion

The present study suggests that structure and function of CHK2 can be distributed by various

nsSNPs. In native protein of CHK2 gene, out of 79 SNPs, seven major variants found were:

p.Arg160Gly, p.Arg188Trp, p.Ile203Thr, p.Gly210Arg, p.Arg223Cys, p.Pro225His and

p.Ser415Phe. Among seven most significant SNPs, 3 were highly conserved and 4 SNPs were

averaged conserved residues. Among 7 most significant SNPs, 3 were predicted to be involved

in post translational modifications. A variant of Serine!Phenyl alanine at position 415 occurs

in activation loop of protein-kinase domain of CHK2 protein hence is of particular concern as

this is the functional domain of the protein. The one SNP p.Ser415Phe might interfere in inter-

actions of CHK2 with ligand. Therefore, these nsSNPs can be strongly considered as key candi-

dates in causing diseases related to CHK2 malfunction and hence will help in effective drug

discovery and developing precision medicines. Wet lab experiments are needed to explore the

effects of these polymorphisms on structure and function of protein.
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13. Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O, et al. A CHEK2 genetic variant

contributing to a substantial fraction of familial breast cancer. The American Journal of Human Genet-

ics. 2002; 71(2):432–8. https://doi.org/10.1086/341943 PMID: 12094328
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