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Abstract

The construction of biologically plausible models of neural circuits is crucial for understand-

ing the computational properties of the nervous system. Constructing functional networks

composed of separate excitatory and inhibitory neurons obeying Dale’s law presents a num-

ber of challenges. We show how a target-based approach, when combined with a fast online

constrained optimization technique, is capable of building functional models of rate and spik-

ing recurrent neural networks in which excitation and inhibition are balanced. Balanced net-

works can be trained to produce complicated temporal patterns and to solve input-output

tasks while retaining biologically desirable features such as Dale’s law and response

variability.

Introduction

Cortical neurons typically require only a small fraction of their thousands of excitatory inputs

to reach firing threshold. This suggests an overabundance of excitation that must be balanced

by inhibition to keep neurons within their functional operating ranges. An interesting sugges-

tion is that this balance does not require fine-tuning of synaptic strengths, what we will call

parametric balance, but rather occurs dynamically [1–8].

Dynamically balanced neural network models were originally introduced to account for the

high variability of neural activity. Various forms of excitatory-inhibitory balance have been

proposed for recurrent network models [9]. Because our aim is to construct networks that

operate autonomously, we need to be in a strong-coupling regime, which means that the bal-

ance we discuss is of the ‘tight’ variety as defined by Hennequin et al. [9]. We subdivide tight

balance into two classes, parametric and dynamic, depending on whether or not fine tuning of

parameters is involved in maintaining the tight balance. This is important within the context

of our study because, although parametrically balanced networks can be constructed and func-

tion as models, it is unclear whether the required fine tuning could be accomplished in a bio-

logical network. For this reason, we place emphasis on ways of training networks that result in

a dynamically balanced configuration.

Variants of balanced networks have been used to model response selectivity [10, 11] and

associative memory [12], but a general approach to task learning in these models has not
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previously been developed. The challenge is that learning can push a network that is initially in

a dynamic balance into the parametrically balanced regime. We present approaches for train-

ing networks while retaining dynamic balance.

In addition to the issues with balancing outlined above, training networks with sign-con-

strained weights presents some technical challenges. Batch approaches to learning can handle

sign constraints quite efficiently, but batch training of recurrent networks often leads to insta-

bilities during testing, even when the training error is small [13, 14]. The use of an online strat-

egy is critical to quench spontaneous chaotic fluctuations during training and to assure

stability of the trained dynamics. These requirements demand fast learning algorithms capable

of adjusting weights as the network is running. In previous work [13, 15, 16], this was achieved

by using a recursive least squares (RLS) algorithm that has the favorable feature of constraining

network dynamics while permitting fluctuations during training that are critical for post-train-

ing stability. Unfortunately, when sign-constraints are imposed, standard online training pro-

cedures, including RLS, are no longer viable. Here, we developed a fast sign-constrained

online method that proves effective at training both rate and spiking balanced network

models.

Results

Dynamically and parametrically balanced networks

The networks we consider are composed of either spiking neurons interacting via synaptic

currents or so-called rate units. A task is generally specified by a set of desired output signals

Fout
k ðtÞ, for k = 1, 2, . . .Kout that are read out through channels zk. These signals can either be

autonomously generated by the network or arise in response to Kin external inputs Fin
k ðtÞ

entering the network through input weight vectors win
k . The input weights are generally chosen

randomly and not subject to learning, whereas the readout weights, which are not sign-con-

strained, are trained using RLS. Recurrent weights are modified by an algorithm we discuss

below. In rate models, zk ¼ wout
k � �ðxÞ, where ϕ(x) is the rate activity for a unit with total input

x. The equations of the N units of the network, for i = 1, 2, . . ., N, are

t
dxi
dt
¼ � xi þ

XN

j¼1

Jij� xj

� �
þ I þ

XKin

k¼1

win
ikF

in
k ð1Þ

where I 2 {IE, II} is a vector of constant and uniform external currents into the E and I popula-

tions, and win
:k are the weight vectors for each of the Kin input channels. To verify that our

approach is general, we employ a variety of activation functions, e.g. halftanh (ϕ(x) = θ(x) tanh

(x)), sigmoid (ϕ(x) = 1/(1 + exp(−x))) or ReLU (ϕ(x) = θ(x)x), where θ is the Heaviside step

function (θ(x) = 1 when x> 0 and 0 otherwise).

For the spiking networks, we use leaky integrate-and-fire (LIF) dynamics (although good

performances can be achieved with other neuronal models) of the form

tm
dVi

dt
¼ � Vi þ

XN

j¼1

Jijsj þ
XKin

k¼1

win
ikF

in
k þ I ð2Þ

ts
dsi
dt
¼ � si þ ts

X

tfi<t

dðt � tfi Þ ð3Þ

where τm is the membrane time constant (τm = 20 ms in all simulations) and tfi is a list of the

times when neuron i fired. When Vi(t) reaches the spiking threshold Vth (usually set to 1) a
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spike is emitted and the voltage Vi is reset to Vres and kept constant for a period of time equal

to the refractory period τref. We typically take either τref = 2 ms or no refractoriness (τref = 0),

and τs = 50 ms or τs = 100 ms. The readouts for spiking networks are given by zk ¼ wout
k � s.

For networks with distinct excitatory and inhibitory neurons, the connection matrix J in

Eqs (1) and (2), with elements Jij, is divided into 4 blocks, JEE, JEI, JIE and JII, where the sub-

scripts denote the type of post- and pre-synaptic neurons, respectively. For NE excitatory and

NI inhibitory neurons, the dimensions of these submatrices are NE × NE, NE × NI, NI × NE and

NI × NI, respectively. To encompass both Eqs 1 and 2, we introduce the symbol r to signify

either ϕ(x) or s and define the vectors rE and rI for excitatory and inhibitory neurons. Finally,

we write each connection submatrix as the sum of its mean over elements and fluctuations

around this mean: JXY ¼ �JXY=
ffiffiffiffiffiffi
NY

p
þ dJXY, where X and Y = E or I and �JXY is a scalar. We are

interested in properties of the middle two terms in Eqs (1) and (2) and, for later analysis, we

average these over both units (denoted by a square bracket) and time (denoted by an angle

bracket). Thus, we define

~hE ¼
�J EEmE

ffiffiffiffiffiffi
NE
p

þ �J EImI
ffiffiffiffiffi
NI
p

þ IE and ~hI ¼
�J IEmE

ffiffiffiffiffiffi
NE
p

þ �J IImI
ffiffiffiffiffi
NI
p

þ II ; ð4Þ

where mX = [hrXi], and

cE ¼ ½dJEEhrEi þ dJEIhrIi� and cI ¼ ½dJIEhrEi þ dJIIhrIi� : ð5Þ

The existence and type of balance exhibited by a network can be characterized by the sizes

of ~h and c. We focus on cases with equal numbers of E and I neurons, so we refer to both NE

and NI as being of order N, where N = NE + NI is the total number of units. For a network to

function properly, the sum of ~h and c in both the excitatory and inhibitory cases should be of

order 1 despite the presence of the factors
ffiffiffiffiffiffi
NE
p

and
ffiffiffiffiffi
NI
p

in the expressions for ~h. In a standard

dynamically balanced model, with random connectivity, this is assured by making IE of order
ffiffiffiffiffiffi
NE
p

and II of order
ffiffiffiffiffi
NI
p

. If appropriate balance stability conditions are met, mE and mI will

dynamically adjust themselves to make both ~h’s of order 1, not of order
ffiffiffiffi
N
p

. The condition

determining these average rates is

Jeff
mE

ffiffiffiffiffiffi
NE
p

mI
ffiffiffiffiffi
NI
p

 !

þ
IE

II

 !

� 0 ; where Jeff ¼
�JEE �JEI

�J IE �J II

 !

; ð6Þ

and the symbol� implies equality to within a discrepancy of order 1 between terms of order
ffiffiffiffi
N
p

. Our study is designed to find a learning procedure that assures that a similar cancelation

occurs when the connection matrix is modified to make the network perform a task. The chal-

lenge is that, when learning adjusts the connection strengths, parametric rather than dynamic

balance can arise.

One form of parametric balance occurs when IE = II = 0 (or of order 1). In this case, if the

trained recurrent weights scale like 1=
ffiffiffiffi
N
p

and the network requires appreciable firing rates to

do the task, Eq 6 must be evaded, because this would imply small rates if satisfied. A learning

rule can achieve this by setting the determinate of Jeff to 0. This keeps ~h of order 1, despite the

lack of a balancing external current. Parametric balance can also occur when IE and II are of

order
ffiffiffiffi
N
p

. Again, this is signaled by the learning rule setting detJeff = 0 but, in this case, ~h
remains of order

ffiffiffiffi
N
p

, that is, it does not balance. Instead, the overly large term ~h is canceled,

in this case, by terms of similar magnitude in c. The fine tuning required for the learning pro-

cedure to make the appropriate adjustments is why we call this parametrically balanced.
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In our experience, many learning schemes result in connection matrices that realize a

parametric rather than dynamic balance [12]. This comes about even if the initial connectivity

J has a Jeff with determinant of order 1. One common way for this to occur is if learning sets

the excitatory and inhibitory mean weight values so they are proportional to each other. We

now show that an online learning scheme, combined with the appropriate regularization, can

construct dynamically balanced models that solve a variety of tasks.

Full-FORCE in E/I networks

We build upon a previously developed target-based approach for training rate and spiking net-

works [17–19] (Fig 1). A basic problem in network learning is that it is not clear what different

units should do to help support the desired output. To solve this problem, we use a target-

based approach [20]. If we knew the total synaptic input, Jr that each unit needed to function

properly, finding the desired connection matrix J would be a simple least-squares problem.

The trick is knowing what the targets are for these inputs. Full-FORCE is a scheme in which

the target inputs are obtained from a second ‘teacher’ network [17–19].

In the full-FORCE scheme, the teacher network (T), which in the cases we consider is an E/

I rate model, is driven by the desired output signals Fout
k ðtÞ. This is done by adding a term

PKout
k¼1

wT
ikF

out
k to Eq (1) with random weights wT

ik (we use superscript T to denote quantities asso-

ciated with the teacher network). We then extract a set of target currents,

hT
iðtÞ ¼

XN

j¼1

JTij�ðx
T
j ðtÞÞ þ

XKout

k¼1

wT
ikF

out
k ðtÞ ; ð7Þ

from the teacher network. The full recurrent synaptic matrix J of the network we are training

(called the student network; variables without superscripts T are associated with the student

network) is then trained to generate these target currents autonomously without any driving

input. Specifically, for each neuron the training goal is to minimize the cost function, for a run

of duration trun, E = ∑i Ei with

Ei ¼
1

trun

Z trun

0

dtðhT
iðtÞ �

XN

j¼1

Jij�ðxjðtÞÞÞ
2
þ aRi : ð8Þ

Ri is a regularization term to be discussed below. In our case, the expression in Eq (8) is mini-

mized subject to sign constraints on the elements of the matrix J. The teacher networks we use

are usually in a dynamically balanced configuration, but this is not essential.

In the original full-FORCE scheme [17, 18], the cost (8) is minimized using RLS but, as dis-

cussed above, this is not a viable procedure when sign constraints are imposed. Instead, we use

bounded constrained coordinate descent (BCD) [21], which proves to be a fast and reliable

strategy for training both rate and spiking models with sign constrained weights (Methods).

The resulting learning algorithm is fast enough to effectively clamp the network dynamics

close to the desired trajectory during training, suppressing chaos and assuring stability.

Training dynamically balanced networks

For a given task, the distribution of synaptic weights after training depends on a variety of fac-

tors including the initial value of the J matrix, which we call J0, the choice of regularizer, and

whether the network is tonically driven by large constant external current (I in Eqs (1) and

(2)). We begin by considering a task in which the network must autonomously (meaning with

time-independent input) generate the periodic output shown in Fig 2A. When no constant

external current is present (I = 0), Eq (6) requires a parametric balance for any appreciable
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(larger than order 1=
ffiffiffiffi
N
p

) activity to exist in the network. The resulting parametrically bal-

anced network can perform the task. We find that an extensive fraction of synaptic weights are

set to zero by the training algorithm, so that the resulting networks display a connection prob-

ability� 0.5 and a symmetric weight distribution (Fig 2Bi).

In the presence of constant external currents of order
ffiffiffiffi
N
p

, the network has the potential to

be dynamically balanced, but we find that, with a commonly used L2 weight regularization

(Ri ¼
P

j J
2
ij), the network also goes into a parametrically balanced configuration, though of a

different form. This occurs regardless of the structure of the teacher network or the value of

det Jeff for the initial weights J0. In this case, the weight distribution typically shows an exten-

sive number of zero weights and a distribution of excitatory synapses that is approximately

Gaussian but cut-off at zero (Fig 2Bii). The determinant of Jeff is small but, unlike the case with

zero external current, it is not of order 1=
ffiffiffiffi
N
p

(Fig 2C).

To determine the nature of the balance exhibited by the network trained with the L2 regu-

larizer, we determined the scaling with N of various input terms, focusing on input to excit-

atory units. Both ~hE and cE (Eqs 4 and 5) are of order
ffiffiffiffi
N
p

, but they cancel to produce a total

current hE ¼
~hE þ cE of order 1 (Fig 2D). This is indicative of parametric balance.

These results illustrate that dynamically balanced networks do not arise naturally from

learning, even if the teacher network and the initial weight matrix of the student network are

configured to be dynamically balanced and I is of order
ffiffiffiffi
N
p

. The learning algorithm with L2

regularization tends to push the weight matrix to a parametrically balanced regime. We found

a simple way to prevent this: choose J0 to satisfy the dynamically balanced condition (stable

solution to Eq (6) with order 1 rates) and use regularization to keep J from straying too far

from J0. The regularization that does this still uses an L2 norm, but on the difference between J
and J0 rather than on the magnitude of J. Specifically, we define what we call the J0 regularizer

by Ri ¼
P

jðJij � J0
ijÞ

2
. With this regularizer, the weights after training display a Gaussian-like

distribution (Fig 2Biii), block-wise average weights scaling as 1=
ffiffiffiffi
N
p

and a Jeff determinant of

order 1 (Fig 2E). Furthermore, the total current hE and the two components we have intro-

duced, ~hE and cE, are all of order 1 (Fig 2F). Thus, dynamically balanced networks trained by

Fig 1. Schematic of the target-based method. Target currents hT
i ðtÞ are produced by a balanced teacher network (T,

Left) driven by the desired output. The student network (Right) is trained to reproduce the target currents

autonomously. We train the recurrent weights of both the excitatory (E) and inhibitory (I) populations, together with

the connections between them. A linear decoder wout is trained with a standard online method (RLS) to reproduce the

prescribed output target from a readout of the neurons in the network.

https://doi.org/10.1371/journal.pone.0220547.g001
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means of J0 regularization, even when they are fairly small, have average activities and currents

in agreement with what is expected from a dynamically balanced regime.

To further examine the different forms of balance in these networks, we divide the total cur-

rent hE ¼
~hE þ cE into a component arising from excitatory input (including IE), which we call

Fig 2. Trained balanced networks. A: Target output Fout (in black) for all the networks in this figure. Red curve is an example readout z(t) from a trained spiking

network of N = 200 units. B: Histogram of recurrent weights in three prototypical trained rate networks (N = 300, ϕ = halftanh): i, Zero external current (IE = II = 0) and

L2 regularization; ii, ½IE; II� ¼ ð0:3
ffiffiffiffiffiffi
NE
p

; 0:4
ffiffiffiffiffiffi
NE
p
Þ and L2 regularization; iii, balanced initialization and J0 regularization, external currents as in ii. Regularization

parameter α = 1.0 in all three cases. C: Time course of the determinant of the effective matrix Jeff during training of spiking networks of size N = 200 for I of order
ffiffiffiffi
N
p

(grey dashed lines) and I of order 1 (black line on horizontal axis). Both cases use L2 regularization. D: The full excitatory current and its two defined components (Eqs 4

& 5) as a function of N for a parametrically balanced network performing the task in panel A. E: Time course of the determinant of the effective matrix Jeff during training

of spiking networks of size N = 200 for I of order
ffiffiffiffi
N
p

and J0 regularization. F: The full excitatory current and its two defined components (Eqs 4 & 5) as a function of N

for a dynamically balanced network performing the task in panel A. Results in C-F are from ten different initializations of J0 or JT. G: The total average current onto E

neurons (hE) and its excitatory (hEE) and inhibitory (hEI) components as a function of network size N for balanced networks (balanced initialization and J0 regularization,

full lines) and networks trained with zero external currents (I = 0 and L2 regularization, dashed lines). H: Eigenvalue spectrum of the weight matrices J of two networks

trained to perform the task in panel A (N = 200, ϕ = halftanh). Blue: Zero external current (IE = II = 0) and L2 regularization; red: balanced initialization and J0

regularization.

https://doi.org/10.1371/journal.pone.0220547.g002
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hEE, and a component from inhibitory input, hEI. In the I = 0 parametrically balanced case,

both these components and the total current are of order 1 (Fig 2G). In contrast, in the case of

the dynamically balanced network generated using J0 regularization (Fig 2G), the total current

is of order 1, while both its excitatory and inhibitory components scale like
ffiffiffiffi
N
p

. Another dif-

ference between the parametrically balanced I = 0 (PB) and the dynamically balanced (DB) is

seen in the spectrum of their connectivity matrices (Fig 2H): dynamically balanced networks

show large negative eigenvalues [9].

We can use BCD and J0 regularization to train dynamically balanced spiking networks as

well (Fig 3). One common consequence of employing long synaptic time-scales is that a bursty

spiking behavior emerges. The level of burstiness in trained networks can be varied by means

of the ωh parameter, that scales the intensity of the learned currents, generated by the slow syn-

apses, with respect to the contribution provided by the random synapses with a fast time-con-

stant (Methods). The irregularity of spiking in trained networks depends on the amplitude of

the current fluctuations. To generate irregular spiking (Fig 3B–3D), we included random

untrained fast-synapses (with synaptic time constant 2 ms; see [18]) and an average excess of

inhibition. The level of spiking irregularity can be quantified by computing the distribution of

coefficient of variations (CV) of interspike intervals across the neurons of the network (Fig

3D). The average CV�1.

Perturbations in trained balanced networks. Balanced networks trained on autonomous

oscillation tasks can suppress homogeneous perturbations in a way similar to the decorrelation

effect mediated by the strong inhibitory feedback in such networks [3, 22]. As an example, we

consider spiking networks trained to reproduce autonomously the periodic signal shown in

Fig 2A. We constructed both dynamically and parametrically balanced examples of these net-

works and perturbed them at random times with 10 ms duration current pulses. These pulses

come in two types, either identical for all neurons, or identical in magnitude but opposite in

sign for excitatory and inhibitory neurons, with positive input to the excitatory neurons. We

call these E+I and E-I perturbations, respectively. Balanced networks generally exhibit a strong

resilience to E+I perturbations (Fig 4A, top) compared to external pulses in the E-I direction

(Fig 4A, bottom). The latter produce a longer lasting transient and a subsequent larger phase

shift in the network output. This response to temporary imbalance in the collective activity of

the E and I populations is reminiscent of balance-amplified transients, previously described by

a linear theory [23].

The role of inhibitory feedback is also apparent when a rate network is trained to produce

the same rhythmic behavior. In this case, we perturbed the network with ongoing noise rather

than with a transient. Homogeneous E+I input disturbances are cancelled by strong inhibitory

recurrence in dynamically (Fig 4B, top) but not in parametrically (Fig 4B, bottom) balanced

networks. E-I perturbations produce the strongest effect, and random heterogeneous perturba-

tions produce similar effects in both networks, which are intermediate between E+I and E-I

perturbations in the dynamically balanced case. E-I perturbations are somewhat amplified for

the parametrically balanced case (Fig 4B, bottom). For these studies, we examined the effect

not merely on the output, as in Fig 4A, but rather on the full network activity, defining

Dx ¼

R
dt
P

iðxiðtÞ � ~xiðtÞÞ
2

R
dt
P

iðxiðtÞÞ
2

; ð9Þ

where x(t) is the noiseless activity of the rate network and ~xðtÞ the perturbed activity. We

expect similar results to hold for spiking networks [5].

Autonomous activity in trained networks. We found that the generation of oscillatory

activity in trained network (such as that shown in Fig 5A) could be described by a simple
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mechanism, at least when a single frequency dominates that output pattern. After training, the

spectrum of the synaptic matrix J usually shows a complex conjugate pair of eigenvalues with

largest real part. This is not limited to target-based learning methods: we trained networks of

different sizes with a variety of activation functions using back propagation through time

(either employing stochastic gradient descent or ADAM [24]), and we consistently observed

this phenomenon for different target readout signals of various frequencies. For differentiable

activation functions, the oscillatory frequency is approximately predicted to be f = Im(λ1)/

2πτRe(λ1), where λ1 is one of the two complex eigenvalues with largest real part of the matrix

Jϕ0|x0 (Fig 5B), with entries Jij ϕ0(x0,j), and ϕ0|x0 is the derivative of the activation function com-

puted at the (not necessarily zero) fixed point x0 from which the oscillations arise by means of

a supercritical Hopf transition.

This analysis can be verified after training is completed by artificially lowering the effective

gain of the obtained connectivity matrix J using a fictitious gain parameter gtest in the testing

phase, such that Jtest = gtestJ. Nonlinear oscillations arise at the critical value g�test where the pre-

viously stable fixed point loses its stability as the two dominant conjugate eigenvalues cross the

imaginary axis (Fig 5C). At the bifurcation, the frequency is controlled by the imaginary part

of the dominant eigenvalues and the network dynamics is essentially two-dimensional. As gtest

is increased, there is a small change of frequency of the readout signal as nonlinear effects start

to grow and other frequencies and harmonics kick in (Fig 5B). This picture is consistent with

previous work in random E/I separated rate models [25] as well as a recent study of low-rank

perturbations to random connectivity matrices [26].

Fig 3. Dynamics in dynamically balanced trained spiking networks. A: Input currents onto a neuron in a spiking

network trained to produce a superposition of 4 sine waves as in Fig 2A. Red curve: total excitatory current hE + IE;

Blue curve: inhibitory synaptic current hI; black curve: total current h. B: Voltage traces of 5 sample units the network

with random fast synaptic currents (time constant 2 ms). C: Spike raster of 200 neurons for the network in B. D:

Histogram of the coefficient of variation of interspike intervals across neurons for the network in B.

https://doi.org/10.1371/journal.pone.0220547.g003
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Fig 4. Response to perturbations in trained balanced networks. A: An E/I spiking network of size N = 200 trained

on an oscillation task receives strong input pulses at random times (dark blue vertical lines), either in the E+I direction

(top) or in the E-I direction (bottom). B: Median test error of two types of rate networks of size N = 200 trained to

produce the same output signal as in A. Errorbars indicate 25% and 75% percentiles over 100 networks and 50

realizations of input white noise with intensity σ. The networks are driven either by N independent white noise inputs

(black curve, legend: het) or by a single common white noise input in the E+I (red curve, legend E+I) or E-I (yellow

curve, legend E-I) direction. Top: dynamically balanced network; bottom: parametrically balanced network with zero

external input. Halftanh activation function, see Eq (9) for the definition of Δx.

https://doi.org/10.1371/journal.pone.0220547.g004

Fig 5. Nonlinear oscillations. A: Top: Balanced E/I spiking network of size N = 300 producing a sawtooth wave of frequency 1 Hz. Bottom: E/I rate

network producing a frequency-modulated oscillation obtained by Fout(t) = sin (ω(t)t) with ω(t) linearly increasing from 2π to 6π Hz for the first half of the

oscillation period, then reflected in time around the midpoint of the period. Parameters: N = 500, ϕ = halftanh, trained using feedback (Methods, ΔtL = 1 s).

B: Top: Eigenvalue spectrum of Jtestϕ0|x0 for a dynamically balanced rate network with sigmoid activation function trained to produce a square wave

(N = 200, output frequency f = 0.04, τ = 1), for gtest = 0.8. The two red dots indicate the two conjugate eigenvalues λ1,2 with largest real value. Bottom:

Oscillation frequency as a function of gtest comparing simulation results (solid curve) with approximate prediction (dashed lines). C: Readout signal with

gtest = 0.8 (top) and gtest = 1.0 (bottom).

https://doi.org/10.1371/journal.pone.0220547.g005
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Balanced networks can also be trained to produce prescribed chaotic dynamics (like the

Lorenz attractor in Fig 6A) or multiple complex quasi-periodic trajectories. In another task,

inspired by the work of Laje, and Buonomano [15] in rate networks, and similar to recent

extensions to the QIF spiking case in [27], we trained a spiking network to reproduce a desired

transient dynamics in response to an external stimulus. To do so, we recorded innate current

trajectories hT
i ðtÞ generated by a randomly initialized LIF balanced network for a short period

of time (2 sec) during its spontaneous activity. We then trained the same network to reproduce

its innate current trajectories whenever a strong external input was applied (dark blue line in

Fig 6B). The brief external pulse (50 ms) is able to elicit the target trajectory, after which the

network naturally resumes its irregular activity. Finally, the example in Fig 6C shows an E/I

spiking network instructed to generate the quasi-periodic dynamics of human walking behav-

ior shortly after a 50 ms unitary pulse. We trained 56 linear decoders on the network activity

to reproduce the time-course of each joint-angle from a human Motion-Capture dataset, as in

[13, 28]. The average firing rate of the network is 20 Hz. A brief input pulse can trigger the

motion generation from asynchronous spontaneous activity or reset the phase of a previously

stable quasi-periodic dynamics.

Input-output tasks. Our learning procedure can also be employed to train dynamically

balanced E/I networks capable of performing complex temporal categorization tasks. As our

first example, a spiking network implements an exclusive OR function [18] anytime an appro-

priate sequence of inputs is presented, despite disturbance induced by its spontaneous asyn-

chronous activity (Fig 7A). In each trial, the network is presented with two pulses of durations

that are chosen randomly to be either short (100 ms) or long (300 ms), coding for the truth val-

ues 0 (False) or 1 (True). The network computes the XOR function of the two inputs and

responds with an appropriate positive or negative readout signal (duration: 500 ms) after a

delay period (300 ms). We used online BCD to train a balanced network of N = 1000 LIF neu-

rons and measured the number of correct responses. The trained network responds promptly

when the two impulses are presented at any random time over the course of its spontaneous

activity and reaches a test accuracy of 96%.

As a second example, we construct an E/I spiking network to solve a more complex interval

time-matching task, inspired by the “ready-set-go” task employed in [29]. This task has been

solved previously using networks with unconstrained synaptic weights [19]. In this task, the

network receives two brief input pulses separated by a random delay ΔT, and it is trained to

generate a response after exactly the same delay, following the second pulse. As in the temporal

XOR task described above, it is crucial here that the network retains information about the

first pulse during the whole delay period in the absence of any external input. Especially for

long delays ΔT, this task proves hard to solve. We therefore employ the heuristic technique of

“hints” previously introduced in [19]: in each training epoch, the teacher network is provided

with both a ramping up and decreasing input (dashed yellow line in Fig 7B, left) during the

two relevant delay periods. An E/I network of N = 1000 spiking neurons produces accurate

responses to random delays between 400 ms and 2 s (Fig 7B, right).

Discussion

We have introduced a fast alternative to RLS that is capable of training sign-constrained rate-

based and spiking network models and, in addition, has the promising features of good mem-

ory and computational requirements when dealing with E/I (and also sparse) models. We have

shown that this fast target-based learning scheme can be used to train balanced networks of

rate and spiking neurons for a wide variety of tasks. We described the conditions under which

dynamically balanced networks can be obtained with the training procedure. We found that,
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in the absence of proper initialization and regularization, learning dynamics is attracted to

regions of weight space with parametrically tuned connectivity, and we showed the impact of

specific weight regularizations on the weight structure of trained networks, as well as their

resilience to various external perturbations.

The regime in which we trained balanced networks to operate is an interesting one in

which the computations relevant for a particular task are performed by dynamical modes

orthogonal to the uniform modes that are constrained by the balance condition. We

motivated our interest in training networks in the dynamically balanced regime by arguing

that the order 1=
ffiffiffiffi
N
p

fine tuning required for parametrically balanced networks might be

hard for biological systems to maintain. We have looked for evidence of a higher sensitivity to

weight perturbation in the parametrically balanced networks we constructed by a variety of

methods. Unfortunately, trained recurrent networks of all types are sensitive to weight pertur-

bations and, for the N values we used, we could not detect a strong difference in the robustness

of these two network regimes. Thus, the motivation we introduced remains, at this point,

speculative.

Fig 6. Learning chaotic trajectories and complex transient activity. A: Output of a rate network (N = 1000, halftanh

activation function) trained to produce the time course of the first coordinate of a Lorenz attractor (σ = 10, ρ = 28, β = 2.67). B:

Input currents onto three representative neurons in a balanced spiking network trained to reproduce innate current

trajectories of duration 2 s after a brief stimulus (50 ms) at time 0.5 s. Network size N = 500, synaptic time constant τs = 50 ms.

C: Balanced E/I spiking network producing walking behavior in response to a strong input pulse of duration 100 ms. Top: a

pictorial representation of the network with 56 distinct readouts (network size N = 300; synaptic time constant τs = 50 ms).

Middle: activity of three random readout units over the course of� 6 s. Bottom: spike raster plot of 200 neurons in the

network.

https://doi.org/10.1371/journal.pone.0220547.g006
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Relation to other work

We have tackled the problem of training spiking neural networks to display prescribed stable

dynamics or to solve cognitively relevant input-output tasks. A number of top-down

approaches have been proposed to train functional models of spiking networks, e.g. the neural

engineering framework [30], spike-coding [31] and nonlinear optimal control [28, 32]. These

methods are elegantly formulated and effective. Interestingly, they solve a different task than

what our procedure solves. These methods train the network to reproduce a prescribed

dynamics, whereas our method trains a network to produce a particular trajectory generated

Fig 7. Input-output tasks. A: Example of output responses (red curves) of a balanced E/I spiking network trained on the

temporal XOR task to two sets of input pulses (Blue curves) respectively coding for False-False (left) and False-True (right)

Parameters: N = 1000, τs = 50 ms. B: Interval matching task. Left: sample output (red curves) vs desired output (dashed black

curves) from a spiking E/I network trained on the Interval Matching Task to two pairs of input pulses. Right: output delay vs

target delay ΔT to randomly interleaved test input pulses.

https://doi.org/10.1371/journal.pone.0220547.g007
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by those dynamics. The resulting two networks look identical as long as the prescribed trajec-

tory is being followed, but they generalize differently if the network deviates from this

trajectory.

Some variations of RLS-based training have been introduced previously to construct func-

tional models of E/I separated spiking networks. In [33], the authors employed a clipping pro-

cedure on top of a FORCE training method, which entails rank-1 updates to the original

randomly connected recurrent network, while in [18] the authors used an off-line two step

Full-FORCE procedure to train a large network performing an oscillation task. In a slightly dif-

ferent setting, the authors of [27] used Full-FORCE to train networks of quadratic integrate

and fire neurons to reproduce prescribed synaptic drive, as well as spiking rate patterns in

response to a brief strong stimulus. They provide an example of an E/I network with paramet-

rically tuned effective connectivity and no external currents that tracks its own innate trajecto-

ries, recorded over the course of spontaneous activity. Sign constraints were imposed by

eliminating updates of synapses that would pass out of the allowed ranges in a given epoch,

and those synapses were then deleted in subsequent epochs. Backpropagation has been used

successfully to train networks with separate excitatory and inhibitory units [34], and such net-

works have also been trained focusing on inhibitory plasticity [35].

Conclusions

Credit-assignment is a major problem in training spiking networks, where differentiability

issues limit the use of gradient-based optimization (but see [36–38]), which has proven very

powerful in deep feed-forward architectures. Whereas in some approaches the credit assign-

ment problem is tackled by relying on coding assumptions variably linked to optimality crite-

ria, target-based approaches, both in the context of feed-forward [20] and recurrent models,

provide a straightforward solution. As shown above as well as in a recent work [27], it is not

essential for the teacher network to be a rate model, as long as it effectively acts as a dynamic

reservoir that expands task dimensionality via its recurrency, therefore proving rich targets.

Materials and methods

Rate and spiking networks models

The weight matrix J is initialized by setting Jij ¼ JeffXY=
ffiffiffiffiffiffi
NY

p
þ Dij, where X and Y are the appro-

priate E and I labels corresponding to neurons i and j. Δij is a random matrix with entries that

are zero-mean Gaussian distributed with each column j having variance g2/NY (if any synapses

violate constraints they get clipped at the first training iteration, otherwise we do not enforce

any sparseness.). To construct a balanced teacher network, we use a non-negative activation

function and appropriately choose block averages and external constant currents i /
ffiffiffiffi
N
p

for

which the balance equation yields a solution with appreciable positive rates. In those cases

where we seek to train spiking networks displaying irregular spontaneous activity with low

rates, we further adjusted the random part Δij so that ∑j Δij = 0 for each row i. By reducing

quenched fluctuations in time-averaged activities for each neuron, this method ensures that

spiking neurons trained on the teacher currents do not have abnormally low or large average

activity.

Integration of ODEs is performed by the forward Euler method using an integration time-

step not larger than Δt = τ/20 for rate models and Δt = 0.5 ms for spiking networks. We further

scale down the integration time-step in all those case where large JeffXY and strong external cur-

rents are employed.
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Learning algorithm

Bounded coordinate descent. When training a rate or a spiking network, we seek to

match the incoming currents in the driven teacher hT
i ðtÞ ¼

P
j J

T
ij�ðx

T
j ðtÞÞ þ

P
k w

out
ik Fout

k ðtÞ þ
Ii with those in the student: hi(t) = ∑j Jij ϕ(xj(t)) + Ii (for a rate student) or hi(t) = ∑j Jij sj(t) + Ii
(for a spiking student). In training spiking networks, performance is virtually unchanged if

one were to choose to match the activity xT(t) in the teacher rate network with the synaptic

currents h(t) = Js(t) + I in the spiking network. We sometimes allow for an additional scaling

and/or offset of the currents provided by the teacher network, so that the actual target currents

are defined as ohhT
i ðtÞ þ bh.

The teacher and spiking network are initialized with xi(0) or vi(0) i.i.d normal random vari-

ables. For input-output tasks, the two networks are initialized randomly at the beginning of

each trial. For periodic tasks, we use a single trial encompassing multiple periods of the target

signal.

Each neuron is trained independently and in parallel every Δtl (usually 1 ms), after a tran-

sient Td = 20 τ to wash out the initial condition (we found this washout to facilitate learning

especially for periodic tasks). We optimize the loss-function with an online strategy by means

of Bounded Coordinate Descent (BCD). In our case, the method consists in updating, in paral-

lel for each postsynaptic neuron i, each synapse Jij one at a time by computing the optimal

solution to the one-dimensional optimization problem where all other synapses Jik for k 6¼ j
are kept fixed:

Jij !
JijCii þ atWij þ Dij

Cii þ at
ð10Þ

where α is the regularization parameter in Eq 8, and C is proportional to the sample-covari-

ance matrix of the activities CijðtÞ ¼
Pt

t¼0
siðtÞsjðtÞ, which gets updated at each time-step by

Cij! Cij + sisj (these equations are for the spiking case; for rate models si is replaced by ϕ(xi)).
The residual matrix Dij is defined as DijðtÞ ¼

Pt
t¼0

sjðtÞðhT
i ðtÞ � hiðtÞÞ. After each update with

change ΔJij, the ith row Di: of the residual matrix D gets updated according to

Di: ! Di: � DJijCj: ð11Þ

where Cj: stands for the jth row of C. Setting Wij ¼ J0
ij , where J0 is the initial weight matrix, we

implement the J0 regularizer. Alternatively, Wij = 0 corresponds to a simple L2 weight regular-

ization. The amount of regularization is controlled by the parameter α (see Eq (8)).

The updating schedule of weight indexes j 2 {1, 2, . . .N} can be either fixed or random at

every step. For easier tasks, updating a random subset of incoming synapses at each time-step

is enough to obtain good training performance (Fig 8A and 8B) at the price of slower conver-

gence. We do not update the weights when this would violate the imposed sign constraints.

One of the benefits of BCD, compared to local optimization approaches (e.g. stochastic gra-

dient decent), is its ability to keep the neural trajectory close to the target during training and

prevent the network from shutting-down.

We note that coordinate descent proves a versatile method even beyond the sign-con-

strained case. For example, in updating incoming synapses to neuron i, it is easy to account for

specific network topologies of the J matrix by selecting a relevant subset of rows/columns of

the (symmetric) matrix C in the update Eq (10). Recursive Least Square with skipped updates

for synapses out of the feasible region (we call this strategy Clipped-RLS) has a performance

comparable to BCD (Fig 8A), but this strategy is memory-demanding for large network sizes,

especially when dealing with dense topologies (where in-degree is OðNÞ). Clipped-RLS entails
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using N independent covariance matrices Pi, one for each unit in the trained network, thus

amounting to storing N × (pN)2 floating-point numbers (FPs). For comparison, BCD requires

2N2. Although we did not carry out systematic comparisons between Clipped-RLS and BCD,

we found, for simple oscillatory tasks in balanced networks, that Clipped-RLS works best with

bigger values of the regularization parameter α (Fig 8C), which penalizes strong deviation

from the initial condition J0, and thus acts similarly to the J0 regularizer.

Regularization. In addition to the regularizations discussed in the text, we also experi-

mented with a regularization of the form

X

X2fE;Ig;j2X

Jij �
P

k2X Jik
NX

� �2

; ð12Þ

which controls the variance of the outgoing synaptic weights in each sub-population. For sim-

ple tasks, this typically produces inhibitory dominated networks with a non-singular Jeff.

Feedback stabilization. We experimented with a feedback mechanism that can yield sig-

nificant speed-up during training via a drastic reduction of the frequency of weight update 1/

Δtl. We found this method to be particularly effective in training periodic tasks. Specifically,

during training we drive the student network with a modified current ~hi ¼ hi þ kðtÞðhT
i � hiÞ.

We use κ(t) = |h − hT|/(|h| + |hT|), with |h| the Euclidian norm of the vector h (although good

training performance can be achieved with different metrics). The choice of an adaptive-gain

feedback procedure frees from hyper-parameter optimization of the time-course of κ(t), which

is usually taken to be a decreasing function of time. It is also instrumental in providing a mini-

mal supervisory signal, thus allowing the student network to progressively exploit its own fluc-

tuations over the course of training to build stability around the target trajectory.

When the feedback mechanism is in place, the minimization of the cost function Eq (8)

can be carried out by quadratic programming once every Δtl, using the matrices C and

~DijðtÞ ¼
Pt

t¼0
sjðtÞhT

i ðtÞ. In preliminary experiments with simple periodic tasks, we found the

Fig 8. Some comparisons with RLS. A: Test error during training as a function of testing epoch for balanced networks of N = 200 LIF units trained on the

oscillatory task in Fig 2A with BCD (α = 0.05). Each curve shows the results obtained when only a random subset of the incoming synapses onto each

neuron gets updated. Networks were trained with feedback stabilization. Recurrent synaptic weights were updated every 20 time steps. The network was

tested each 5 periods of the oscillations (1 sec). Each point is the median over 20 random initialization of both student and teacher networks. Bars represent

90% and 10% percentile. B: Test error as a function of training epoch for networks of N = 1000 Quadratic Integrate and Fire (QIF) neurons (for details see

[27]) trained to reproduce their innate currents (task in Fig 6B) using Recursive Least Square or BCD. For both algorithms, recurrent synaptic weights were

trained once each 25 time-steps (50 ms). Output weights were trained at each time-step via RLS. No feedback stabilization was employed in conjunction with

BCD. For comparison with RLS, we employed a large value of α in BCD and did not normalize the first term of Eq (8) by trun, both in panel B and C.

Parameters for QIF neurons: τm = 10 ms, τs = 100 ms, (similar to [27]), τref = 2 ms, dt = 2 ms. C: Test error during training as a function of testing epoch for

balanced networks of N = 200 LIF units trained on the oscillatory task in panel A, employing RLS with different values of the regularization parameter α.

Results for BCD are shown for reference. The network was tested each 5 periods of the oscillations (1 sec). Each point is the median over 20 random

initialization of both student and teacher networks. Bars represent 75% and 25% percentile.

https://doi.org/10.1371/journal.pone.0220547.g008
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interior-point method (quadprog.m in MATLAB) to work well. Results shown in the main

text were obtained with BCD, which tends to be faster.

Testing. Test error is computed over a testing period Ttest as

Etest ¼

PKout
k¼1

PTtest
t¼0
ðzkðtÞ � Fout

k ðtÞÞ
2

PKout
k¼1

PTtest
t¼0
ðFout

k ðtÞÞ
2

: ð13Þ

For input-output tasks, we randomly initialize the network state at the beginning of a test

trial. For periodic targets Fout(t), testing is interleaved with training, so that the spiking (rate)

network state s (x) is usually close to the target trajectory. In this case, a sufficiently low test

error usually implies the presence of a stable limit cycle, and the periodic output is reproduced,

up to a phase shift, starting from any initial condition.

For the XOR task, during testing we defined a correct response when the normalized dot

product of the readout z and Fout, with t in the window of non-zero target, satisfied
P

tzðtÞF
outðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tz2ðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

tðFoutðtÞÞ2
q > 0:5 : ð14Þ
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