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Abstract

Rhodococcus ruber Chol-4 is a potent steroid degrader that has a great potential as a bio-
technological tool. As proof of concept, this work presents testosterone production from 4-
androstene-3,17-dione by tailoring innate catabolic enzymes of the steroid catabolism inside
the strain. A R. ruber quadruple mutant was constructed in order to avoid the breakage of
the steroid nucleus. At the same time, an inducible expression vector for this strain was
developed. The 17-ketoreductase gene from the fungus Cochliobolus lunatus was cloned
and overexpressed in this vector. The engineered strain was able to produce testosterone
from 4-androstene-3,17-dione using glucose for cofactor regeneration with a molar conver-
sion of 61%. It is important to note that 91% of the testosterone was secreted outside the
cell after 3 days of cell biotransformation. The results support the idea that Rhodococcus
ruber Chol-4 can be metabolically engineered and can be used for the production of steroid
intermediates.

Introduction

Steroids are a family of terpenoid lipids widely distributed in nature that present a common
structure formed by four fused alicyclic rings called gonane (S1 Fig). They play important bio-
logical roles in eukaryotic cell membrane stabilization (e.g. structural steroids such as choles-
terol) and the regulation of cellular processes such as proliferation and differentiation (e.g.
steroid hormones such as progesterone or testosterone, TS).

Steroid-based drugs are widely used as anti-inflammatory, diuretic, anabolic, contraceptive,
anti-androgenic, progestational and anticancer agents and they are therefore a highly valuable
resource for the pharmaceutical industry with an annual global market of over $10 billon [1].
Steroids can be chemically produced in a variety of ways, but the most common initial sub-
strates for their production are cost-effective phytosterols, derived from plants [2]. However,
in the recent years, there has been an increasing effort to move from the multistep chemical
process to a single step microbial bioconversion process that could reduce costs and produc-
tion yield losses, and would also be more eco- friendly [1]. All this led to an increasing interest
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testosterone; KstD, Ksh3-ketosteroid-A'-
dehydrogenases; Ksh, 3-ketosteroid-9a-
hydroxylase; AD, 4-androstene-3,17-dione; ADD,
1,4-androstadiene-3,17-dione; 90H-AD, 9a-
hydroxy-4-androstene-3,17-dione; 90H-ADD, 9a-
hydroxy-1,4-androstadiene-3,17-dione; HAS, 3-
hydroxy-9,10-secoandrost-1,3,5(10)-triene-9,17-
dione; TLC, Thin-layer chromatography.

in the use of recombinant bacteria as cell biofactories. These compounds are synthesized and
found predominantly in eukaryotic cells while some bacteria, that rarely generate them, are
able to use these compounds as growth substrates [3].

Currently, this objective is much more achievable thanks to recent advances in our under-
standing of steroid bacterial catabolism, which led to the development of bacterial strains that
can convert precursors (e.g. phytosterols from cheap agricultural plant waste) into high-value
steroids [4, 5]. Therefore, in this work, we present Rhodococcus as a promising candidate for
steroid production.

The cholesterol-degrading R. ruber strain Chol-4, isolated from a sewage sludge sample,
was chosen [6] as a model organism in this work for the following reasons: i) R. ruber strain
Chol-4 is able to catabolize steroids; ii) many of its enzymes involved in the steroid catabo-
lism have been characterized in the past years and iii) an important mutant strain collection
listed in S1 Table is now available [7-10]. However, so far, there are only a few studies on
the use of engineered Rhodococcus as a cell system for pharmaceutical steroid production
[11-13].

The proposed catabolic oxidative pathway of cholesterol and phytosterols in many actino-
bacteria is formed by a complex set of enzymatic reactions that includes an upper pathway (the
oxidation to 4-cholesten-3-one and the carbon side chain cleavage at C17, similar to the -oxi-
dation of fatty acids) while attempting polycyclic ring opening [14-18]. Two key enzymes initi-
ate the opening of the steroid ring: the 3-ketosteroid-A'-dehydrogenase [4-ene-3-oxosteroid:
(acceptor)-1-ene-oxoreductase; EC 1.3.99.4], also known as KstD and the 3-ketosteroid 9o.-
hydroxylase [Androsta-1,4-diene-3,17-dione; EC 1.14.13.142], known as Ksh [19]. KstD is a
flavoenzyme involved in the A'-dehydrogenation of the steroid molecule leading to the initia-
tion of the breakdown of the steroid nucleus by introducing a double bond into the A-ring
(see S1 Fig) of 3-ketosteroids [20, 21]. This flavoprotein converts 4-ene-3-oxosteroids (e.g.
4-androstene-3,17-dione or AD) to 1,4-diene-3-oxosteroids (e.g. 1,4-androstadiene-
3,17-dione or ADD) by trans-axial elimination of the C-1(ct) and C-2(B) hydrogen atoms [22].
KshAB is an enzymatic complex responsible for C9o.-hydroxylation; it consists of a terminal
oxygenase (KshA subunit) which performs substrate hydroxylation and a ferredoxin reductase
(KshB subunit) which mediates the electron transfer [23].

AD is a substrate for both KstD and KshAB enzymes that yield ADD and 9o-hydroxy-
4-androstene-3,17-dione (9OH-AD), respectively. These products are further transformed
with the same combination of enzymes to finally yield the unstable compound 9a-hydroxy-
1,4-androstadiene-3,17-dione (9OH-ADD) that spontaneously breaks the B ring to generate
3-hydroxy-9,10-secoandrost-1,3,5(10)-triene-9,17-dione (3-HSA). Finally, the lower catabolic
pathway leads to formation of primary metabolites (Fig 1) [15]. When Ksh activity is inacti-
vated, ADD is accumulated as the result of KstD activity on the intermediates generated from
side chain degradation. Similarly, 9OH-AD is accumulated after inactivating the KstD activity
[15,24].

A mutant with impaired Ksh and KstD activities is not able to degrade AD, favoring its
modification into any molecule of interest with the appropriate enzymatic activity. Rhodococ-
cus, just like other actinobacteria, has many isoforms of these enzymes. Fortunately, all R.
ruber KshA isoforms (KshA1l, KshA2, KshA3) combine with only one KshB, therefore Ksh
activity is absent by knocking down the kshB gene [9]. R. ruber displays three KstD isoforms
(KstD1,2,3) and therefore it is necessary to knock down all of them to impair KstD activity [8,
10].

To study the biotechnological capabilities of a R. ruber system, a biotransformation of AD
to testosterone, a natural steroid hormone from the androgen group, was conducted using the
fungal enzyme 17-ketosteroid reductase. As the degradation pathway of AD is well
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Fig 1. Metabolic network for the production of TS from AD. Rhodococcus ruber catabolizes the AD through
different steps. The AkshB-kstD1,2,3 quadruple mutant strain (cross marks point out the mutations done) has the AD
catabolic enzymes blocked and therefore it could be used as chassis for the production of AD-derivatives. As a proof of
concept, the recombinant strain harboring the 178-HSD fungal enzyme yielded testosterone from AD. Abbreviations:
AD: 4-androstene-3,17-dione; ADD: 1,4-androstadiene-3,17-dione TS: testosterone; 9OH-AD: 9 alpha-
hydroxyandrosta- 1,4-ene-3,17-dione; 9OH-ADD: 9 alpha-hydroxyandrosta-1,4-diene-3,17-dione; 3-HSA: 3-hydroxy-
9,10-secoandrosta-1,3,5(10)-triene-9,17-dione; 3,4-DHSA: 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-
9,17-dione; 4,9-DHSA: 3-hydroxy-5,9,17-trioxo0-4,5:9,10-disecoandrosta-1(10),2-dien-4-oate; HIP: 9,17-dioxo-
1,2,3,4,10, 19-hexanorandrostan-5-oic acid. KstD: 3-ketosteroid Al-dehydrogenase; KshAB: 3-cetosteroide-9a:-
hidroxilasa; HsaAB: 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione monooxygenase; HsaC: extradiol
dioxygenase; HsaD: 9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oate hydrolase.

https://doi.org/10.1371/journal.pone.0220492.g001

characterized in Rhodococcus ruber, this substrate was chosen for the study. Assays were not
considered on other steroids such as cholesterol or phytosterols as initial substrates because R.
ruber displays more than one steroid pathway, whose major steps remain unknown and do
not consequently yield AD as intermediate in this strain [8, 9].

The enzyme 17-ketosteroid reductase (178-HSD; 178-hydroxysteroid:NADP 17-oxidore-
ductase, EC 1.1.1.64) chosen for this work was obtained from the filamentous fungus Cochlio-
bolus lunatus (17p-HSDcl) and its DNA sequence was previously codon optimized for the
actinobacteria Mycobacterium [5]. This enzyme has been subjected to extensive biochemical,
kinetic and quantitative structure-activity relationship studies [25-32]. It catalyzes a reversible
NAD(P)H/NAD(P)"-dependent reduction/oxidation reaction in the hydroxyl/keto groups at
the C-17 position of different steroids [33-35], although it is more active in reduction [27, 29—
31]. Therefore, 178-HSDcl was a strong candidate to be used in bacteria to obtain testosterone
from AD. Recently, a biological model system for industrial production of testosterone using
the enzyme 178-HSDcl in an engineered Mycobacterium smegmatis has been described [5]. A
scheme of the transformation process by this enzyme using the R. ruber mutant is shown in
Fig 1. It is important to note that the blocking of Ksh or KstD activities in this strain also
yielded a lack of growth on testosterone [9, 10].
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To sum up, this work presents R. ruber as a candidate for steroid biotransformation and, to test
the system, testosterone was produced. To achieve this aim, several steps were taken: first, a Chol-4
quadruple mutant AkshB-kstD1,2,3 strain had to be generated to have a convenient enzymatic cel-
lular background to completely block the AD catabolism (Fig 1); secondly, as no available plasmid
was functional on the R. ruber strain Chol-4, a specific expression vector had to be built for this
strain. Finally, it was necessary to obtain a recombinant strain overexpressing the 173-hsd gene.

Results and discussion

Construction of AkshB-kstD1,2,3 R. ruber strain Chol-4 mutant

AD is a substrate of both KstD and KshAB activities in R. ruber. The KstD1,2,3 R. ruber mutant
accumulates 9OH-ADD from AD while the KshB R. ruber mutant accumulates ADD [8, 9].
Therefore, the first step to obtain steroid derivatives from AD in R. ruber, is to block its AD
catabolic pathway by building a mutant strain in which the activity of these enzymes is
impaired (Fig 1). Besides avoiding the AD consumption, the quadruple mutant AkshB-
kstD1,2,3 has also blocked the testosterone catabolism.

In order to get the quadruple mutant, the AkstD1,2,3 strain [8] (S1 Table) was used for kshB
gene deletion, according to Material and methods section. The AkshB-kstD1,2,3 quadruple
mutant was checked by PCR. The growth experiments proved that it was not able to grow on 2
mM AD, ADD or testosterone while it kept growing on 24 mM sodium acetate (S2 Fig). The
slight growth seen on cholesterol is due to the consumption of the side chain of this substrate
[9]. Therefore, the quadruple mutant was suitable to be used as a host for the 178-hsd overex-
pression for AD biotransformation.

Construction of an expression vector for R. ruber Chol-4 and 17f-hsd gene
cloning

Attempts to transform R. ruber Chol-4 with expression vectors (pTIP-QCI, pNIT-QCl,
PTNR-KA, pTNR-TA, etc.) were unsuccessful. The biotechnological potential use of R. ruber
was restricted by the need for an appropriate expression vector.

To create an inducible expression vector for R. ruber, we combined the pNV119 vector,
which was able to replicate in this strain, and an artificial regulon (GenBank: FjI73069) [36]
that contains a gene encoding a regulatory protein (NitR) under the control of the inducible
promoter PnitA and a separate cistron with a second PnitA promoter followed by a multiple
cloning site (MCS). The native ribosome binding site of the nitR gene was preserved in the
MCS. This arrangement of regulatory elements creates a positive-feedback loop in which the
expression of both the regulatory protein and the target gene are simultaneously induced (Fig
2A). The inductor is the nitrile derivative e-caprolactam [36]. This cassette, called NIT-1, was
synthesized for this work by Invitrogen. The pNV119 derived vector containing this cassette
was called pNVNIT (Fig 2A). R. ruber was successfully transformed with this vector, providing
a way to check its potential as a functional expression vector for this strain.

Similarly to M. smegmatis mc2155 [5], we were not able to identify any 178-HSD homolo-
gous enzyme in R. ruber Chol-4 by blasting the protein sequence against its genome (Gen-
Bank:NZ_ANGC00000000.2). Therefore, a synthetic variant of the fungal enzyme 173-HSD
codon-optimized for actinobacteria and efficient in the actinobacteria Mycobacterium [5] was
chosen to be cloned and overexpressed in R. ruber.

Finally, the synthetic C. lunatus 17-hsd gene was obtained from the pUC57-17HSD plas-
mid [5] and cloned into the pNVNIT vector (Fig 2B and 2C), giving rise to the pNVNIT-
17BHSD plasmid.
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Fig 2. Construction of pNVNIT-17BHSD vector. (A) Scheme of the NIT-1 cassette adapted from Pandey et al. 2009
[37]. PnitA: promoter of the nitR gene; NitR: regulatory protein; MCS: multiple cloning site. Trrn and Tfd stand for
two strong terminator sequences, one derived from the E. coli rrnAB operon and the other one from the bacteriophage
fd respectively The NIT-1 cassette was cloned in the KpnlI-Sphl sites of the pNV119 vector to generate the pNVNIT
vector. (B) Scheme of the pNVNIT vector. (C) The C. lunatus 17B-hsd gen was cloned in the Ndel-Dral sites of the
PNVNIT vector yielding to pNVNIT-17BHSD.

https://doi.org/10.1371/journal.pone.0220492.9002

Expression of 17p-HSD recombinant protein and AD biotransformation

The wild-type (WT) and the knockout mutant strain (AkshB-kstD1,2,3) were transformed with
two plasmids: pNVNIT (as control, Fig 2B) and pNVNIT-17BHSD expression vector (Fig 2C).
Recombinants harboring the plasmids were used for a growing-cell biotransformation study.
As a first approach to detect testosterone, a culture of each strain (wild-type and mutant strain
transformed with both plasmids) were grown on LB. After 16-24 hours (0.8-1.0 DOgponm), the
e-caprolactam inductor was added and 24 hours later, 1 mg/mL of AD was added in powder
form. Samples were taken at different times for analysis by Thin-layer chromatography (TLC).
As it is shown in Fig 3A, line 1, the wild-type strain, harboring the pNVNIT plasmid, progres-
sively converted the AD into ADD, as its metabolic machinery is kept intact. The quadruple R.
ruber mutant, also containing the pNVNIT plasmid, but with the steroid catabolic pathway
impaired, was unable to metabolize AD (Fig 3B, line 1).

In the case of the quadruple mutant harboring the pNVNIT-17B8HSD vector, the biotrans-
formation of AD to TS can only be seen 6 hours after the addition of AD.

The wild-type strain expressing 17BHSD does not produce any TS detectable by TLC (Fig
3). The WT strain can deploy its complete catabolic system to consume the AD entering into
the cell. Therefore, it could be expected that the metabolic flow goes toward AD degradation
rather than testosterone production. Moreover, if testosterone was produced, it could soon be
degraded by the intact cell machinery and by no means detected by TLC or HPLC.

The TLC analysis of the quadruple mutant also showed two spots: one with the same RF
than the ADD standard and another an unknown product.The presence of the last one in the
TLC might be a LB medium metabolite since the spot disappears when the biotransformation
takes place in minimal media. The product that was expected to be ADD by TLC (Fig 3B) was
not found by HPLC, and therefore it is not ADD. The presense of this product could be
explained due to the action of other enzymes different to KstD1,2,3 that might function as a
ketosteroid dehydrogenase in R. ruber and that could alternatively yield an additional product.
Minimum medium instead of LB medium was used for the rest of the experiments in order to
avoid contamination with undesired metabolites.

These results suggest that the pPNVNIT can be an excellent expression vector for R. ruber, a
vector that can broaden the use of this bacteria for biotransformation processes.

The ability to produce TS from AD was verified by HPLC in the recombinant R. ruber
cells supplemented with 1 mM AD (Fig 4). TS production observed was 410 uM 24 hours after
the e-caprolactam induction of the culture with a molar conversion rate of AD to TS of
48.2 +3.9%.

On the other hand, the activity of the enzyme 17B-HSD involves a nicotinamide cofactor
[26, 37, 38]. The ratio between the oxidized and the reduced form of this type of cofactors
plays a crucial role in microbial redox reactions and energy metabolism. The regeneration of
this ratio is an important step to be taken into account in biocatalysis [39]. Moreover, in vivo,
this kind of enzymes displayed a directional preference that depends on the relative affinity for
nicotinamide cofactors [NAD(P)(H)] and existing cofactor gradients. For instance, ketosteroid
reduction could be favored by keeping the NADPH/NADP" ratio high [37, 38]. Therefore, the
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Fig 3. Analysis of Testosterone production from AD by TLC. The strains were grown in LB at 30°C and 250 rpm until a
0.8 ODgponm Was reached and induced with 28 mM e-caprolactam for 24 hours. The biotransformation assay started by
adding 1 mg/mL of AD and samples were taken at different times. (A) TLC of wild-type (WT) strain harboring the

PLOS ONE | https://doi.org/10.1371/journal.pone.0220492  July 26, 2019

7/16


https://doi.org/10.1371/journal.pone.0220492

@ PLOS|ONE

Rhodococcus ruberfor steroid production

pNVNIT-17BHSD (line 3 to 6). (B) TLC of the AkshB-kstD1,2,3 mutant harboring the pNVNIT-17BHSD plasmid (line 3 to
6). The control (line 1) in Figs A) and B) belongs to the strains WT or AkshB-kstD1,2,3 harboring the empty plasmid
pNVNIT at 48 hours after the AD addition. M (line 2): markers AD, ADD, TS (testosterone) and 9OH-AD (1 pg/uL).

https://doi.org/10.1371/journal.pone.0220492.9003

cellular ratios of NAD":NADH or NADP":NADPH would encourage the production of TS
from steroids rather than the steroid concentration itself [37].

To restore the metabolic cofactor ratio, a supplemental carbon source must be added dur-
ing the biotransformation studies [38]. Usually, cofactor regeneration is performed using glu-
cose as a co-substrate because of its easy availability and low cost [40] and therefore, the effect
of glucose was tested in the recombinant strain of this study.

The time course of TS production from AD was analyzed with and without glucose in the
medium (Fig 5). By adding glucose 48h after the inoculation, cell density increased from 2.5 + 0.3
to 8.6 + 0.5. This fact raises the molar conversion rate of AD to TS after 24 hours of bioconversion
from 48.2 + 3.9% to 61.5 + 3.0%. The cell culture grown with glucose in the medium, kept AD
conversion constant over time in comparison with the culture grown without glucose (Fig 5).

This result is consistent with the effects of the supplemented carbon source detected in TS
production in other strains [41-43]. However, the increase in the molar converstion rate at 24
hours was not as high as the one reported in Mycobacterium resting-cells (from around 35% in
the absence of glucose to 90% molar conversion rate in a medium supplemented with glucose) [5]
reinforcing the idea that this reaction could depend on the specific metabolic context of the cell.

The maximum conversion rate of 61% obtained for the recombinant R. ruber is consistent
with the conversion range from AD to TS described in growing cells which vary from 27%
(Saccharomyces cerevisiae [44]) to 93% (Zygowilliopsis sp. WY7905 [43]). TS productivities in
other bacterial cell-factories are shown on S2 Table. Optimization of this process in the recom-
binant R. ruber to obtain a better yield will need a more detailed study.

Lastly, we looked where the testosterone produced by this biotransformation process
remained in the cell. After the biotransformation experiment, recombinant R. ruber cells were
centrifuged and pellet and supernatant were separately prepared and analyzed by TLC and
HPLC (Fig 6). After 3 days of biotransformation, 91% of the testosterone appeared outside the
cell, indicating that the recombinant strain whose testosterone catabolic pathway is blocked
due to the lack of KstD and Ksh activities, could get rid of the compound to avoid its intracel-
lular accumulation. After 5 days of biotransformation, this percentage decreases to 75%. The
reduction of the testosterone found extracellularly from 91% to 75% is not easy to explain and
requires further studies. It could be possible that providing enough time, a putative induction
of testosterone-transporter gene expression and an increased re-uptake of testosterone could
occur in the cell and in this way favor the entry of TS from the extracellular medium.

The fact that most of the product stayed in the supernatant within the first three days of the
assay shows that there is an easy way to recover the TS after a biotransformation process. Some
further improvements that need to be optimized may include the rational design of the enzyme
itself to obtain a better testosterone yield. Some attempts to modify the fungal enzyme have
been made [25] but they have not been tested so far in a biofactory system. Further enzymatic
engineering of this activity together with an in-depth study via system biology to optimize the
metabolic state of the cell would help to improve the whole production process.

Conclusions

There is a great interest in the reduction of 17-oxosteroids to 178-hydroxysteroids as an
important way of preparing many steroidal drugs and valuable intermediates. In this study, R.
ruber has been metabolically engineered to effectively convert AD to testosterone as proof of
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Fig 4. HPLC chromatograms of Testosterone production using culture cells of R. ruber mutant strain AkshB-
kstD1,2,3. Cultures harboring the pNVNIT-17BHSD plasmid were incubated at 30°C and 250 rpm in MM until they
reached 0.8 ODggomy. Heterologous protein expression was induced with e-caprolactam (28 mM) for 24 h and then
AD (1 mM) was added in a Tyloxapol solution (10% v/v). Samples were taken at different times. (A) Standards
chromatogram of Phenol (2 mM), ADD, AD, TS and Progesterone (all at 25 uM). (B) Sample took at 0 hours after
adding AD and (C) Testosterone production after 24 hours of AD biotransformation. Progesterone was used as an
extraction control and phenol as an HPLC internal standard.

https://doi.org/10.1371/journal.pone.0220492.9004
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Fig 5. Time course of TS production from AD in the recombinant R. ruber cells. AkshB-kstD1,2,3 R. ruber harboring the
pNVNIT-17BHSD construction was grown in minimal medium with sodium acetate as carbon source, at 30°C and 250 rpm until
0.8 ODgonm Was reached. After 24 hours of the NIT-1 regulon induction (e-caprolactam at 28 mM) the biotransformation started
by adding AD at 1 mM with or without 1% w/v glucose. Samples were taken at different times, extracted by chloroform and
analyzed by HPLC. AkshB-kstD1,2,3 R. ruber harboring the pPNVNIT vector as control were also tested and no testosterone was
detected (not shown).Testosterone and AD concentration were determined as indicated in Material and methods. Average and
standard deviation of three biological replicates are shown.

https://doi.org/10.1371/journal.pone.0220492.9005

its potential as a cellular factory. Genes involved in steroid ring breakage were knocked out to
prevent AD and testosterone catabolism and the 173-HSD enzyme from Cochliobolus lunatus
was overexpressed using an expression vector specifically designed for R. ruber. The recombi-
nant strain produces a yield of 61% testosterone from AD after the biotransformation studies.
91% of the testosterone was recovered extracellularly, broadening the chances of this strain to
function as a steroid factory. The whole process still requires optimizing to achieve higher con-
version yields, but this work validates the promising use of R. ruber for the biotechnological
production of steroids such as testosterone.

Material and methods
Chemicals

AD was kindly given by Gadea Pharmaceutical Group. Chloroform, methanol and phenol of
HPLC quality, were supplied by Scharlab S.L. Progesterone, testosterone, sodium acetate,

(A) (B)

-
(=4
g

% Testotsterone recovery

2 4 2 d
P s P s M P s g 3 y &

Colony 1 Colony 2 Control K R 4 R

Fig 6. Testosterone distribution in the cell culture. The AkshB-kstD1,2,3 mutant harboring the pNVNIT-178HSD plasmid was
grown in minimal medium with sodium acetate 24 mM as carboun source at 30°C and 250 rpm. After 24 hours induction, the
biotransformation assay started by adding 1 mg/mL of AD. Samples were taken at different times, centrifuged and separated in
pellet (P) and supernatant (S), the steroids were extracted accoding to Materials and Methods. (A) TLC of two independent
colonies after 3 days of biotransformation. (B) Amount of testosterone detected in P and S at 3 and 5 days of biotransformation
measured by HPLC. Control: mutant strain harboring the empty pNVNIT vector. M: markers AD, ADD, TS (testosterone) and
90H-AD (1 pg/pL).

https://doi.org/10.1371/journal.pone.0220492.9006
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acetone, tyloxapol, antiobiotics, e-Caprolactam and glucose, were provided by Sigma-Aldrich.
Sulphuric acid was obtained from Panreac Quimica S.A.U.

Bacterial strains, culture conditions and DNA manipulation

The bacterial strains and plasmids used in this work are listed in Table 1. Escherichia coli cells
were grown in Luria Bertani (LB) broth in an orbital shaker, at 250 rpm [45] or on LB plates
containing the appropriate antibiotics at 37°C. R. ruber and the mutant strains were routinely
grown on LB or minimal medium (Medium 457 of the DSMZ, Braunschweig, Germany) con-
taining the desired carbon and energy source under aerobic conditions at 30°C in a rotary
shaker (250 rpm) for 1-3 days. When necessary, antibiotics were added to the medium at

15 pg/mL nalidixic acid and at 50 pg/mL or 200 ug/mL kanamycin for E. coli or R. ruber
respectively.

For the biotransformation experiments, an LB pre-grown cultures were washed twice with
minimal medium prior to inoculation to 10 mL of fresh minimal medium (initial 0.05
DOgoonm) supplemented with sodium acetate at 24 mM as the only energy and carbon source.

Competent and electrocompetent cells of E. coli were prepared and transformed as previ-
ously described [45]. Selection of transformed cells was carried out in LB agar plates supple-
mented with the appropriate antibiotics.

Electroporation of 200 pL of R. ruber cells was made with 1 ug DNA at 400 €2, 25 mA,

2.5 uF, 10-11 milliseconds; the resulting cells were suspended in 800 pL of LB and kept for 6
min at 46°C, and then for 5 hours at 30°C without shaking. They were finally plated on LB
Agar with 200 pg/mL kanamycin, 15 pg/mL nalidixic acid and kept at 30°C.

The verification of the plasmid transformation of the R. ruber strains was made in several
steps: first, plasmids were extracted from Rhodococcus; second, E. coli was transformed with
the plasmid preparation and lastly, E. coli transformation was checked by standard methods.

All DNA manipulations were performed according to standard molecular cloning proce-
dures [45] or following manufacturers’ instructions (NZYMiniprep and NZYGelpure from
NZYtech). DNA sequencing was performed with an ABI Prism 377 automated DNA
sequencer (Applied Biosystems Inc.) at Secugen S.L. (Madrid, Spain).

Table 1. Bacterial strains and plasmids used in this work.

Bacteria and plasmids Description Reference
Rhodococcus ruber Wild type phenotype, Nal® CECT?7469 [6]
strain Chol-4
R. ruber Chol-4 kstD1, kstD2 and kstD3 triple deletion mutant, Nal® [8]
AkstD1,2,3
R. ruber Chol-4 AkshB- kshB, kstD1, kstD2 and kstD3 quadruple deletion mutant, Nal® This work
kstD1,2,3
E. coli DH50. F endAl hsdR17 (ry my ") glnV44 thi-1 recAl gyrA(Nal") relA1 A Laboratory
(lacIZYA-argF) U169deoR ($80dlacA(lacZ)M15) collection
E. coli S17-1 recA pro hsdR RP4-2-Tc:Mu-Km::Tn7 [46]
pK18(kshBU+D) pK18mobsacB harbouring a EcoRI-PstI R. ruber strain Chol-4 genomic [10]
fragment containing a kshB truncated ORF
pMK_RQ Vector harbouring the synthetic cassette NIT-1 Invitrogene
pUC57-17BHSD pUC57 harbouring the synthetic gene encoding the 17p-hsd from C. [5]
lunatus
pNV119 KmR, Nocardia-E. coli replicative shuttle vector [47]
pNVNIT Rhodococcus-Escherichia coli, expression and shutlle vector, Km" This work
pNVNIT-17HSD Rhodococcus—Escherichia coli, expression and shutlle vector This work

harbouring the 178-hsd gene, Km"
https://doi.org/10.1371/journal.pone.0220492.t001
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Construction of the R. ruber AkshB-kstD1,2,3 mutant strain

The kshB gene was chromosomally deleted for this work using the R. ruber triple mutant
AkstD1,2,3 as host and following the unmarked gene deletion method previously described [8]
using the plasmid pK18(kshBU+D) [9] and the E. coli strain S17-1 (Table 1).

The construction of the deleted strain was verified by PCR using the primers CH564

(5" - CGCGTCTCTCCTGATGTGTCGG) and CH331 (5’- ACGTAGCCTGCCTCGAT
GTCC) , at Tm 55°C, 1.5 min and 30 cycles, and further DNA sequencing. In all cases, the
Expand High-Fidelity Taqg DNA Polymerase from Roche was used for PCR reactions in a Mas-
tercycler personal (Eppendorf). Restriction enzymes and DNA modifying enzymes were pur-
chased to Takara Bio Inc. and New England Biolabs (UK).

Construction of an expression plasmid for R. ruber and 17f-hsd gene
cloning

The Nocardial high-copy-number cloning vector pNV119 [48] was modified to be used as a R.
ruber expression vector. The NIT-1 cassette (GenBank: FJ173069), an artificial bacterial regu-
lon developed for mycobacteria [36], was synthesized (Invitrogen) and cloned into the Kpnl-
Sphl restriction sites of the pNV119 plasmid. This regulon can use an inexpensive and non-
toxic nitrile analog, e-caprolactam, as an inducer [36]. The resulting plasmid pNVNIT was
checked by restriction analysis and sequenced.

On the other hand, the 178-hsd gene of C. lunatus with an optimized codon usage for Mycbac-
terium expression was obtained from digestion of the plasmid pUC57-17HSD [5] with Ndel-Hin-
cII restriction enzymes and cloned into the pNVNIT expression plasmid previously digested with
NedlI-Dral yielding pNVNIT-17BHSD. This plasmid and a control vector without the 173-hsd
gene were used to electroporate both R. ruber wild-type and the AkshB-kstD1,2,3 mutant.

The primers employed to confirm the cloning of the pNIT-1 cassette and 17f3-hsd gene
were F24 (5’ -CGCCAGGGTTTTCCCAGTCACGAC) and R24 (5’ -AGCGGATAACAAT
TTCACACAGGA) , at Tm 58°C, 1 min, 30 cycles.

Monitoring of AD biotransformation into testosterone by analytical
methods

The AkshB-kstD1,2,3 strain and R. ruber wild type were electroporated with either the empty
plasmid pNVNIT as control or the plasmid harboring the 178-hsd gen of C. lunatus
(pPNVNIT-17BHSD). The recombinant strains were grown in 10 mL of LB medium or minimal
medium (MM) with sodium acetate (24 mM) as carbon and energy source with 200 ug/mL
kanamycin and 15 pg/mL nalidixic acid, at 30°C in a rotary shaker (250 rpm). Cells were
grown up to 0.8 ODgponms> then induced with 28 mM e- caprolactam for 24h; at this point the
cultures were in stationary phase with an ODggnm 2.5 + 0.3 (MM) or ODgponm 9.0 £ 1.0 (LB).
Afterwards, 1 mg/mL AD (LB cultures) or 1 mM AD with or without 1% (w/v) glucose (MM
cultures) was added. Due to the low solubility of this steroid, the 1 mM AD was prepared from
a 10 mM stock dissolved by sonication in 10% (w/v) tyloxapol. The stock solution was auto-
claved and kept at room temperature prior to its addition to the minimal medium. Aliquots of
500 uL of the cell culture were taken at fixed times up to 120 hours.

For the analytical studies, the lipid fraction of the samples was obtained by double extrac-
tion with 1 mL chloroform and left to dry at 65°C. Two analytical methods were used: the first
approach by TLC and a second one by HPLC.

The AD in the TLC experiment was added as powder because the presence of cyclodextrins
or tyloxapol damages the TLC plate.
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50 pL of chloroform were added to every dried sample and an aliquot of 5 pL was applied
onto aluminium TLC Silica gel 60 F254 sheets (Merck). Chromatography was performed
using chloroform:acetone (9:1 v/v) as solvent and spots were revealed by UV exposure
(A254nm)- Afterwards, the TLC plate was dunked into a sulphuric acid:methanol solution (1:9
v/v) followed by a drying step with warm air and heating 1 min at 100°C. 1 pg of standard con-
trol samples (testosterone, AD, ADD, and 9OH-AD) were also included in the analysis.

For the reverse-phase HPLC analysis, samples were resuspended in 600 pL chloroform and
filtered. Steroids were separated on a Teknokroma mediterranea’™ Sea, g column (15 cm x
0.46 cm; 5 M) and UV detected at 245 nm at room temperature. The mobile phase was com-
posed of methanol and water (70/30 v/v) at a flow rate of 1 mL/min. Progesterone was used as
an extraction control and phenol as an internal standard on HPLC. AD, ADD, progesterone,
and testosterone were used as steroid standards. The conversion rate of TS was calculated on
the basis of AD measured into the sample in the resting-cell biotransformations.

Supporting information

S1 Fig. The steroid chemical structure. A) Steroids are a group of natural compounds derived
from the hydrophobic and planar gonane nucleus. This carbon backbone core is composed of
four rings: three six-member cyclohexane rings (A, B and C) and one five-member cyclopen-
tane ring (D). Steroids vary from one another in the nature of the functional groups attached
to the D ring and in the oxidation state. B) One example of steroid is Cholesterol that contains
a polar hydroxyl group and a short hydrocarbon tail. The substituents in o configuration are
represented by broken lines; substituents in  configuration, with solid lines. Carbon atoms
are numbered.

(TTF)

S2 Fig. Steroids growth experiments of R. ruber wild-type and AkshB-kstD1,2,3 mutant
strains. Cultures in minimal media at 30°C and 250 rpm, containing 24 mM sodium acetate, 2
mM AD, 2 mM ADD, 1.8 mM cholesterol or 2 mM testosterone as the only carbon source
after 48 hours of growth.

(TIF)

S1 Table. List of R. ruber steroid mutants available.
(DOCX)

S2 Table. Microbial conversion of natural sterols to testosterone.
(DOCX)
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