
RESEARCH ARTICLE

A topological characterization of flooding

impacts on the Zurich road network

Ylenia CasaliID
1,2☯*, Hans R. Heinimann1,2☯

1 Future Resilient Systems at the Singapore-ETH Centre (SEC), ETH Zurich, Singapore, 2 Department of

Environmental Systems Science, ETH Zurich, Zurich, Switzerland

☯ These authors contributed equally to this work.

* ylenia.casali@frs.ethz.ch

Abstract

Infrastructure systems are the structural backbone of cities, facilitating the flow of essential

services. Because those systems can be disrupted by natural hazards, risk management

has been the prevailing approach for assessing the consequences and expected level of

damage. Although this may be a valuable metric, the practice of risk assessment does not

represent how hazards affect a network of assets on a larger scale. In contrast, network

topology metrics are useful because they evaluate the performance of network infrastruc-

tures by looking at the system as a whole. As described here, we began this study to

improve our understanding of how flooding events affect the topological properties of road

networks, in this case, the urban road infrastructure of Zurich, Switzerland. Using maps of

flooding risk, we developed a procedure to extract the damaged networks and analyze the

centrality metrics for peak water levels on the surface of the city. Our approach modelled

roads as edges and junctions between roads as nodes. The betweenness centrality metric

characterizes the importance of nodes or edges for any type of exchange within a network,

whereas the closeness centrality metric measures the accessibility of a specific node to all

the other nodes. This investigation produced three main findings. First, descriptive analyses

showed that the characteristics and patterns of nodes and edges changed under the flood-

ing events. Second, the distribution function of centrality metrics became heavier in the tails

as the flood magnitude increased. Third, the associated strain shifted critical nodes to areas

in which those nodes would not be important under normal conditions. These findings are

essential for identifying crucial locations and devising plans to address risks. Future projects

could expand our approach by including traffic flow to move the analysis closer to real-world

flows, and by studying the accessibility under emergency conditions at local levels.

Introduction

Along with clustering and the aggregation of assets in space, urbanization has been a driving

force of global change. Within those clusters, the values at risk are continually increasing

and–when exposed to patterns of natural hazards–have resulted in a tremendous rise in the

costs associated with expected damage. Risk assessment is a method used to analyze the
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consequences to single assets or small sets of assets that are exposed to the pattern of a specific

hazard. However, that approach does not take into account that assets are connected and that

a triggering hazardous event can cause such damage to spread in a cascading manner through

an entire network. Therefore, the question becomes how does one characterize the response of

that network of assets when subjected to natural hazards. Network science views real systems

as being formed by interacting parts that represent infrastructures. Information about their

geographical locations and the relationships among roads is used to detect the robustness of

roads. However, little is known about how natural hazards affect the topological properties of a

network. The scientific literature has presented three research streams for addressing the

response of real road networks to alterations in their topological structure. The first method

examines scalar changes in centrality metrics to determine patterns of variation. Such research

began during the second half of the 20th Century, within a social systems context. For example,

Bavelas [1] and Beauchamp [2] developed early studies in closeness centrality metrics to iden-

tify the group of nodes that enable efficient communication of information. Freeman [3] pro-

posed the betweenness centrality (BC) metric to measure the location at which information

flow is controlled within a network. Strano et al. [4] showed that the growth of the road net-

work in a suburban area north of Milan is governed by two processes that they measured

quantitatively by studying differences in the edge BC averages. They also quantified the impact

of single roads in the growth process. Pregnolato et al. [5] compared various strategies for

adapting to flooding events along the road network of Newcastle upon Tyne by evaluating

changes in the average and maximum values of node BC. A second stream of research has

focused primarily on centrality distributions of the whole set of nodes and edges for a network.

For example, Barrat et al. [6] have investigated the effect of spatial constraints on BC distribu-

tion and found that, when those constraints become important, then BC displays larger fluctu-

ations. Two factors influence such fluctuations: 1) the presence of locations that connect

geographically distant regions and 2) the relative position of the barycenter in the geographical

space. Since that report, the distributions of BC metrics have been characterized by researchers

such as Lämmer et al. [7], who analyzed the 20 largest German cities and determined that the

BC metrics follow power law distributions. Likewise, Crucitti et al. [8] studied the distributions

of centrality metrics for 18 cities worldwide and learned that BC follows an exponential distri-

bution in self-organized cities but a Gaussian distribution in planned cities. More recently,

Kirkley et al. [9] have examined a dataset of 97 cities across the world, and have observed that

BC is distributed as truncated power laws, with some invariant properties that make a network

robust to major alterations, including changes in its topology and edge weight structure. A

third stream of research has used spatial patterns of centrality metrics to identify the main

changes in a particular topology. Crucitti et al. [10] have discussed in detail the spatial distribu-

tion of centralities in a planned city versus a self-organized city. An investigation by Barthé-

lemy et al. [11] of modifications to the topology of the Paris road network over time has

revealed different periods in which important reorganizations of the spatial distribution of

centrality have corresponded to specific interventions. Kermanshah and Derrible [12] have

studied the robustness of road networks in response to extreme flooding events in New York

and Chicago. They have used BC metrics to measure changes in roads before and after those

events by looking at the maximum and average values and at the spatial locations of edge BC.

Applying that approach has enabled them to observe a shift in the concentration of roads in

parallel with higher edge betweenness centralities.

Despite all of these advances, a coherent means is still lacking for characterizing changes in

network properties under major disruptions. Taking up this challenge, we designed this pres-

ent study to obtain a logical methodology for comparing the pre- versus post-event conditions

of large-scale road networks. Our investigation included a descriptive analysis of centrality
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metrics and assessed the variability of those metrics as well as the spatial arrangement of criti-

cal network components. Out of necessity this project involved only a single geographical area,

i.e., the city of Zurich, and focused only on flooding events.

Methodology

2.1 Study area

Our study area was the city of Zurich, in northern Switzerland. This city represents an urban

region, as delimited by administrative boundaries set in 1934. Its 12 districts cover approxi-

mately 88 Km2, with a population of approximately 415,682 in 2016 [13]. The city is located at

the northern tip of Lake Zurich. Here, the Limmat River flows northeastward, dividing the

urban landscape into two parts. A second river, the Sihl, flows northward from the southern

border in the western part of Zurich until it joins the Limmat River in the central area.

Extreme floods have been recorded for several centuries. The most recent, caused by heavy

rain, occurred in summer 2005, prompting the installation of flood protection projects by Kan-

ton Zurich [14].

2.2 Data

We relied upon road data for Zurich from the Swiss Federal Office of Topography (Swisstopo),

as well as flood hazard maps and digital elevation models (DEMs). For the road information,

we used the swissTLM3D 1.1 data model for Year 2012 [15]. This dataset represents roads as

line features in a vector shapefile format, projected in the Swiss CH1903 coordinate system.

The flood hazard maps, provided by TK consult AG, were derived via a hydrological model

calibrated according to the historical flood of 2005. That model simulated the affected areas

corresponding to several flood events associated with different water discharges at the Lake

Zurich inlet, Sihl River, and Limmat River. It included the perimeter of buildings as a no-flow-

boundary condition, which meant that the flux of water throughout the perimeters was null.

For our evaluation, we used flood events that covered a 100-year return period and a 300-year

return period. From the available hazard maps [16], we selected those that displayed the spatial

distribution of flooded areas in Zurich. Those data were polygons featured in a vector shapefile

format. The DEMs were obtained from the Office for Spatial Development of Kanton Zurich.

For this, we used the digital terrain model (DTM) and the digital surface model (DSM). The

former represents the elevation of a ground surface without any objects while the latter repre-

sents the elevation of the earth’s surface, including the objects on it. Here the dot matrix was

50 cm and included accuracies of 20 cm in location and 10 cm in height.

2.3 Analytical framework

After pre-processing to convert geographical data into a network representation, we analyzed

the processed networks with centrality metrics. Distributions were examined with ArcMap

10.4 software on the ArcGIS environment for the geographical analyses, the Arcpy and Igraph

packages in Python for topological analysis, and R packages for the statistical analysis.

2.3.1 Data pre-processing. A network is defined as a set of points in a space connected by

a set of edges that are links between node pairs. Modelling of network representations is com-

monly used to study systems having different natures. Here, we designated edges as roads and

nodes as road junctions. As the primal representation, it is the opposite of a dual representa-

tion, where nodes would be roads, and road junctions, edges. The entity of a road can be exam-

ined from different perspectives [17–18]. Our study specified a road as the contiguous space

between two separated crossroads in the geographic space. In our dataset, a single road entity

Road network topology and flooding

PLOS ONE | https://doi.org/10.1371/journal.pone.0220338 July 31, 2019 3 / 15

https://doi.org/10.1371/journal.pone.0220338


was divided into multiple segments. This necessitated first pre-processing the data by using

the unsplit line tool in ArcGIS. For building the network, we needed to identify the node and

edge features from the geographical data. To do so, we used the network topology toolbox in

ArcGIS to create two layers corresponding to the node and edge features from the road vector

data. Within a layer, each node or edge was given a distinct ID number. For developing the

topological analysis, we created an edge list of the road network by developing a script that

read the ID number of every single node and then assigned the respective node-pair IDs to

each edge. In this way, we modelled a network comprising the entire set of roads for Zurich.

To generate a network representing roads not inundated by flood waters, we first selected the

edges that intersected those flooded areas and then erased them from the original network so

that only roads unobstructed by water were retained. In 2012, bridges and tunnels accounted

for no more than 2% of the total number of roads, which meant that the network was almost

on the same plane. However, because most of the flooded areas were in close proximity to riv-

ers, where the highest density of bridges were also located, we had to determine which of those

bridges were actually inundated. First, we calculated the height of each bridge by applying

both the DTM and DSM. Second, if the bridge was taller than the depth of the water, it was not

deleted from the original network. In risk analysis, a common approach is to look at the worst-

case scenario in order to account for the largest loss that may occur during an event. Here, we

selected the maximum peak scenario of the flood model to evaluate the flooded network dur-

ing the peak scenarios for the 100-year and 300-year return periods, and then extracted the

edge lists for these networks.

Planners classify road types according to their widths, which characterize their physical

form [17]. Traffic flows along lanes that are the part of a road cross section set aside for one-

way movement of vehicle streams. In Switzerland, lane widths typically range from 3.45 to

4.00 m for urban arterials and freeways and from 3.00 to 3.65 m for minor or local roads [19].

For studying the system accessible by vehicles only, we had to select roads that, structurally,

were meant to supply vehicle flow. The original Zurich road data provided information

about road classes and width ranges [15]. In the ArcGIS environment, we assigned to each

edge segment the relative minimum width of the associated road. We then selected roads at

least 3 m wide. That set of roads formed the network that would be easily accessible for traffic.

We extracted the networks covering the peak scenarios for 100-year and 300-year return

period events. When we analyzed the network with roads of that size (�3 m), their widths

were used as weights for estimating BC, a component that required an additional analytical

layer to distinguish among road types. The traffic flow volume is equal to the density times

speed, and density indicates the number of vehicles per unit length. By assuming that the

speed remains approximately constant within a city, the flow volume is observed to be a func-

tion of density, dependent on the number of lanes. Based on this logic, we considered the

road width as a proxy of flow density, which enhances the applicability of our analysis to real-

world flows.

2.3.2 Centrality metrics. For this project, we developed three types of centrality analysis.

In general, nodes and edges are the basic components of a network, and network topology is

defined by the relationships between the total number of nodes N and edges E. Centrality met-

rics characterize the importance of nodes or edges to a network. Here, we studied the node

BC, edge BC, and closeness centrality. Usually, many paths exist between two nodes. The

shortest path is the one between a certain pair of nodes such that the total sum of the edge

weights is minimal. In an unweighted network, each edge is treated the same. The BC metrics

adapted to a traffic-flow-oriented betweenness centrality metric by weighing the shortest paths

based on the road width. Centrality values depend on the size of networks and the numbers of

nodes and edges. Therefore, we used normalized centrality metrics to compare the centrality
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results from the baseline conditions and our two flooding scenarios. We employed the Igraph

package to evaluate those metrics on Python.

We defined normalized node betweenness centrality as (1):

NBC ið Þ ¼
1

ðN � 1ÞðN � 2Þ

X

s6¼i6¼t

sstðiÞ
sst

ð1Þ

where σst is the number of shortest paths going from a source node s to a target node t, σst(i) is

the number of shortest paths going from node s to node t that pass through node i, and N is

the total number of nodes. In an undirected network, the maximum number of node pairs

would be (N − 1)/2. Because node i cannot be an extreme of the shortest paths, NBC is normal-

ized by the maximum number of possible pairs of nodes that becomes (N − 1)(N − 2)/2 [3,10].

Based on this definition, nodes at the endpoints have centrality values equal to zero, which is

also the minimum because those values can never be negative. This metric characterizes the

importance of the node i in the organization of flows in the network [20].

Normalized edge betweenness centrality is defined as (2):

EBC eð Þ ¼
1

NðN � 1Þ

X

s6¼t

sstðeÞ
sst

ð2Þ

where σst(e) is the number of shortest paths going from node s to node t that pass through

edge e. Although EBC evaluates the same pattern as NBC, its reference is the edge feature

instead of the node features. This metric is normalized to its maximum number of node pairs

(N − 1), for a totally connected graph having N(N − 1)/2 edges.

We calculated the normalized closeness centrality per (3):

CC ið Þ ¼
N � 1
P

i6¼j lij
ð3Þ

where lij is the shortest-path length between node i and node j. As such, that variable is the

smallest distance that separates node i from all other nodes in the network. The metric is nor-

malized to the number of node pairs (N − 1) having node i as one extreme. It measures the

extent to which a particular node i is near all other nodes along those shortest paths [10].

2.3.3 Descriptive analysis. Our descriptive analysis characterized the changes in the num-

bers of nodes and edges and in the centrality values from baseline conditions to the two flood-

ing events. During those events, the closure of a certain set of roads may have altered the

centrality values at a single node/edge location. We identified four classes of changes: 1) node

or edge flooded and, therefore, closed in the system under a flood scenario; 2) increase in the

centrality value at a single node or edge from the baseline; 3) decrease in that value; or 4) no

impact from flooding, so that the centrality value did not change from the baseline level. We

calculated the differences between normalized centrality values under baseline conditions as

well as in the flooding scenario, examining the entire network system (total number of roads

in Zurich) because we wanted to investigate the overall trend among centrality values.

2.3.4 Parametric characterization of the BC distribution. The distribution functions are

used to systematically characterize the variability of the variable of interest, which, in this case,

is the betweenness centrality. If we are interested in the tail of the distribution, which has been

traditionally the case for risk management, we have to use specific models for accurately repre-

senting this tail. The extreme value distributions are used in a traditional risk management

approach, whereas the power law distributions are popular in the field of complexity science.

Power law distributions are defined as p(x) ~ x−α (4) when x> xmin. Although the power laws

cannot characterize the “left-hand” part of the distribution, they constitute a straightforward
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approach to characterize the upper tail using two parameters, the exponent alpha and the

lower bound xmin at which the power law distribution has to be cut off. The Kolmogorov–

Smirnov (KS) statistic is a goodness-of-fit measure used in power law analyses [21]. We used

the powerlaw package in Python for conducting the analyses.

2.3.5 Spatial presentation of results. The spatial analysis was conducted to visualize the

centrality results on maps. After importing the results from the centrality calculations of

Python on the ArcGIS environment, we joined those results with the node and edge layers so

that each node/edge was associated with its centrality value. This produced shapefiles relative

to each centrality value, which we could then display, as quantitative results, on maps or shape-

files that corresponded to actual geographical locations. For our purposes, high centrality val-

ues were critical because they referred to the most important nodes/edges. To identify their

particular locations, we selected the 0.99-quantiles from the centrality results and presented

only those on the map of Zurich.

Results

After obtaining a descriptive characterization of network properties, we analyzed the statistical

distributions of the centrality metrics to understand their variability in response to flooding

events. Finally, we investigated the spatial distributions of the centrality results.

3.1 Descriptive analysis

The descriptive analysis yielded node and edge characteristics, patterns for the two flooding

scenarios (100 and 300 years), and the three centrality metrics. Although flooding considerably

altered the topological properties of the network, a small percentage of nodes and edges could

not be characterized by those scenarios. The overall flow capacity by the network was repre-

sented by betweenness centrality metrics that, when compared with baseline conditions,

showed changes mostly at the nodes/edges. The baseline conditions included 6704 nodes and

9931 edges. The number of nodes decreased to 6676 (decline of 0.4%) for the 100-year flood

and to 6472 (–3%) for the 300-year event. Meanwhile, the number of edges decreased to 9796

(–1%) for the 100-year peak and to 9381 (–6%) when compared with the baseline level. These

results indicated that the flooded nodes and edges represented a small part of the network, and

that major disruptions emerged during the 300-year peak event. Centrality metrics character-

ize the importance of nodes and edges for overall flow capacity. The transition from ‘normal’

to ‘flooded’ conditions results in one of four responses by single nodes/edges. As shown in

Table 1, values increased for approximately 40% of the nodes but decreased for approximately

45% when NBC was considered. For EBC, values were increased for approximately 46% of the

edges but decreased for 50% of them. These results demonstrated that, overall, patterns were

altered for node betweenness and edge betweenness centralities. In contrast, an examination

of closeness centrality indicated that values were decreased for approximately 96% of the

nodes. Overall, the analyses of edge and node betweenness centralities revealed more heteroge-

neous changes than did the closeness centrality.

3.2 Analysis of centrality distribution function

The empirical distribution functions of the centrality metrics for our three scenarios differed

significantly in their tails. For the BC results, this demonstrated an increase in the heaviness of

the tail at higher flood magnitudes. A heavier tail meant that either the significance of critical

edges needed to maintain greater network performance was enhanced or the failure of some

particular roads had a larger impact on the network. When we considered systems composed

only of roads at least 3 m wide, we found that the 100-year flood distribution was greater than
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that of the 300-year flood. Our closeness centrality results also showed a decline in distribution

values.

From a baseline of 4795 nodes and 6470 edges, the scenario featuring a 100-year flood

event showed a decrease in node and edge numbers to 4773 (drop of 0.5%) and 6396 (drop of

1.1%), respectively, whereas the 300-year flood resulted in respective reductions in node and

edge numbers (4572, down by 5%; and 5999, drop of 7%) when compared with baseline condi-

tions. Here, we calculated NBC and EBC values by using the width capacities as network

weights. Basic statistical analyses of the normalized centralities values showed that, under base-

line conditions, the maximum values were 0.08 for the node betweenness centrality and 0.07

for the edge betweenness centrality. For both metrics, the maximum values were 0.12 for the

100-year scenario and 0.13 for the 300-year scenario. The standard deviation of NBC was

approximately 8.4�10−3 for the baseline, 9.7�10−3 for the 300-year flood, and 1.3�10−2 for the

100-year scenario. For EBC, the standard deviation was approximately 6.8�10−3 for the base-

line, 8.1�10−3 for the 300-year flood, and 1.1�10−2 for the 100-year scenario. For the node-BC,

the 0.5-quantiles were approximately 9.4�10−4 for the baseline and it decreased to 8�10−5 in

the 100-year flood, while in the 300-year flood to 4.4�10−5. For the edge-BC, the 0.5-quantiles

were approximately 6.8�10−4 under baseline conditions, but those decreased to approximately

6�10−4 for the 100-year flood and to 3.6�10−5 for the 300-year flood. While the 0.99-quantile of

node betweenness centrality was around 4.3�10−2 in the baseline, and it increased to 5.6�10−2

in the 300-year scenario and to 7.1�10−2 in the 100-year scenario. While, when we compared

the 0.99-quantiles of edge betweenness centrality, it was 3.4�10−2 in the baseline, 4.7�10−2 in the

300-year scenario and to 6.5�10−2 in the 100-year scenario. These results indicated that the val-

ues of the distributions increased in variability as flooding intensified, and that they became

more broadly distributed during the 100-year flood.

The results of the normalized closeness betweenness centrality showed that the maximum

values and the standard deviation decreased from the baseline condition to the 300-year flood,

respectively from around 74 to 6 for the maximum and the standard deviation from around 8

to 2. As in the previous analysis, the quantiles always decreased values from the baseline to the

300-year peak. Fig 1 illustrates the complementary distribution functions, with the exceedance

probability 1−P(x) being a function of normalized centrality values. For our BC results, we dis-

played only the tails of the distributions because those values were critical when trying to

understand the relative importance of nodes and edges closer to the upper extremes, all of

which had a high incidence of shortest paths. The tails of the betweenness centralities showed

Table 1. Changes in the number of nodes from the peak scenario for normalized node betweenness centrality and closeness centrality, and changes in the number

of edges for the normalized edges betweenness centrality.

Node-Edge Transition

Return Period Increase Decrease No change Flooded
Node Betweenness Centrality 100 2933 (44%) 2886 (43%) 857 (13%) 28 (0.4%)

300 2453 (37%) 3183 (48%) 836 (12%) 232 (3.0%)

Edge Betweenness Centrality 100 4704 (47%) 5091 (51%) 1 (0%) 135 (1%)

300 4496 (45%) 4885 (49%) 0 (0%) 550 (6%)

Closeness Centrality 100 75 (1%) 6601 (98%) 0 28 (0.4%)

300 75 (1%) 6397 (95%) 0 232 (3.0%)

Four causes of change in nodes/edges were possible: 1) increase in centrality values, 2) decrease in values, 3) values maintained at the same levels, or 4) exclusion from

the network because those nodes/edges were flooded. Changes were calculated as the differences between normalized values in a flood scenario and those under baseline

conditions. Percentages indicate the ratio of the number of nodes (edges) to the total number of nodes (edges) when compared with baseline conditions, i.e., 6704 nodes

and 9931 edges.

https://doi.org/10.1371/journal.pone.0220338.t001
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Fig 1. Complementary distribution functions for baseline conditions and 2 flooding scenarios, based on main

roads at least 3 m wide. Edge and node betweenness centralities were calculated using average road widths as network

weights.

https://doi.org/10.1371/journal.pone.0220338.g001

Road network topology and flooding

PLOS ONE | https://doi.org/10.1371/journal.pone.0220338 July 31, 2019 8 / 15

https://doi.org/10.1371/journal.pone.0220338.g001
https://doi.org/10.1371/journal.pone.0220338


that the baseline condition values had higher probabilities than the flooding scenario values

for up to approximately 10−2. Beyond that point, a switch occurred in the baseline and

100-year curves, with the latter showing higher probabilities than the former. A second switch

in the distributed values occurred at approximately 2�10−2, where the probabilities of the

300-year flood centrality values became higher than the probabilities of the baseline. The

100-year flood values had higher probabilities than the baseline or the 300-year flood scenar-

ios. These findings meant that, when considering the network created to support vehicle flows,

the critical locations associated with the 100-year scenario became more important than either

the baseline conditions or the 300-year flood scenario, even though the degree of disruption

was greater for the latter than for the 100-year flood.

The parametric characterization of the upper tail of the NBC distribution functions yielded

alpha values of 3, 6.4, and 1.9 for the baseline as well as the 100-year and 300-year flood scenar-

ios, respectively. The corresponding values for the EBC distributions were approximately 2.5,

2.2, and 1.9, which were higher than those observed in other German cities [7]. Here, NBC

and EBC denoted the lowest alpha value during the 300-year flood scenario. xmin ranged from

0.003 to 0.06 for NBC and from 0.01 to 0.02 for EBC. The KS statistic is the maximum distance

between the data distribution function and the power-law-fitted distribution. In case of NBC,

the KS statistic was 0.07 in the baseline and 0.06 in the two flooding scenarios, whereas it was

0.05 in the baseline and 0.04 in the two flooding scenarios for EBC. Because the lowest KS val-

ues were observed in the flooding scenarios, BCs became closer to a power law distribution

under the flood strain when compared with that in the baseline condition. We tested the

hypothesis that the empirical distribution function is equal to the theoretical power law distri-

bution function above the threshold value using the KS test. The critical distances indicated

that the p-values were lower than 0.01, indicating that we should reject the hypothesis that the

empirical distribution and corresponding power law distributions are obtained from the same

population. The test of other distributions, exponential and lognormal, and the empirical dis-

tribution were from the same population had to be rejected, too.

3.3 Spatial presentation of results

In the third part of our analysis, the spatial pattern of nodes/edges with high relevance to over-

all network performance shifted from the baseline scenario to the two flooding scenarios.

During hazardous periods, emergency managers must identify which sequence of roads is

critical for managing traffic flows inside a city. To test this, we first analyzed edge betweenness

centrality and the spatial distribution of the edges at the tails, which corresponded to edges

having normalized BC values equal to or higher than the 0.99-quantiles. We also examined

how the pattern of critical edges changed for roads wider than 3 m. As shown in Fig 2, under

baseline conditions, the critical edges were located mostly in the central area and then moved

away from the city center in four directions: northwestward, southwestward along the Sihl

River, southeastward, and northeastward along connections with the A1-east national freeway.

Most of those critical edges occurred on narrow paths, such as entrances to bridges and tun-

nels that crossed rivers and railway lines. Edges with high centrality developed toward the

accesses to the A1-east and A3/A4 national freeways, located in the northwestern and south-

western parts of Zurich. However, those spatial distributions were altered in the flooding sce-

narios. For the 100-year return period peak scenario (Fig 2B), some critical edges shifted

locations, especially in the northern and central areas. A new path direction also emerged

from the Limmat side toward the southwestern part of the city. For the 300-year scenario (Fig

2C), those critical edges differed from the 100-year scenario because they did not extend
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westward into the southern part of Zurich. Under the 300-year scenario, the network featured

a small density of roads in the southwestern area. Therefore, any closures of connections in

that direction would have reduced the number of shortest paths for travel to that area. This

also demonstrated that it was possible to identify critical edges in an infrastructure that could

still support a significant passage of shortest paths and, consequently, of flows.

As the second step in this test, we studied the spatial pattern of normalized NBC results,

selecting nodes with values equal to or above the 0.99-quantiles, which represented the critical

junctions between roads (Fig 3). Here, values were similar between NBC and EBC. Under

baseline conditions, critical nodes were mostly spread in four directions from the center of

Zurich. In contrast, flooding events were associated with critical nodes that were narrower on

the paths. In particular, the flooding scenarios generally produced two paths of critical nodes:

1) from the central area toward the Limmat River, with further development south of that

river, in the western part of Zurich; or 2) path development southwestwardly from the central

area. These patterns confirmed our findings for EBC and showed that, for the 100-year flood

scenario, high centrality values extended more to the southwest when compared with the more

westward movement detected under the 300-year scenario.

Finally, we considered the spatial distributions for CC (Fig 4). Under baseline conditions,

the selected high-value nodes were mostly clustered in the city center, near the central railway

station where the two rivers join. Other nodes were identified along the Limmat River and in

the northeastern area for infrastructure that connects Zurich with the A1-east national free-

way. Under the flooding scenarios, those nodes shifted to the northern areas close to the Lim-

mat River as well as toward the connections with the A1-east national freeway. This spread of

nodes toward those freeway connections was more extensive under the 300-year scenario

(Fig 4C).

Fig 2. Spatial distribution of edge betweenness centrality in Zurich network of roads at least 3 m wide, under the following scenarios: Baseline

conditions, peak flood within 100-year return period, or peak flood within 300-year period. For each network edge, EBC was evaluated by dividing

number of shortest paths through edge by total number of shortest paths within network. Values of edge betweenness were normalized with (N)(N-1),

where N was number of nodes under baseline conditions. Figure presents values equal to or larger than 0.99-quantiles. Reprinted from National Map

1:25000 on sheet 1091 under a CC BY license, with permission from the Federal Office of Topography Swisstopo (original copyright 2019).

https://doi.org/10.1371/journal.pone.0220338.g002
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Fig 3. Spatial distribution of node betweenness centrality for Zurich road network under baseline conditions (A) or peak flood scenarios (B, C).

Results were calculated for system of roads at least 3 m wide. Betweenness centrality was evaluated for each network node by dividing number of

shortest paths through nodes by total number of shortest paths within network. Values of betweenness were normalized with (N-1)(N-2), where N was

number of nodes under baseline conditions. Figure presents values equal to or larger than 0.99-quantiles. Reprinted from National Map 1:25000 on

sheet 1091 under a CC BY license, with permission from the Federal Office of Topography Swisstopo (original copyright 2019).

https://doi.org/10.1371/journal.pone.0220338.g003

Fig 4. Spatial distribution of normalized closeness centrality for network featuring roads at least 3 m wide. Values for CC were calculated for each

node, dividing by total sum of shortest-path lengths within network, and were normalized with (N-1), where N is number of nodes for given scenario.

Figure presents values equal to or larger than 0.99-quantiles. Reprinted from National Map 1:25000 on sheet 1091 under a CC BY license, with

permission from the Federal Office of Topography Swisstopo (original copyright 2019).

https://doi.org/10.1371/journal.pone.0220338.g004
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Discussion and conclusions

We used descriptive analysis, variability of the metrics, and spatial distributions on the entire

road system structure of Zurich to determine how centrality metrics might be altered by an

historic flooding event. Both the characteristics and patterns of nodes and edges changed in

response to 100- and 300-year events. Here, the betweenness centrality metric characterized

the importance of exchange within a network, whereas the closeness centrality measured the

accessibility. However, when compared with the total number of nodes and edges existing

under baseline (pre-flood) conditions, only a small percentage of them were affected due to

the unique geography associated with this city. Flooding was restricted to areas near water

bodies in the central and western areas—in particular, the alluvial fan of the Sihl River—

whereas the eastern and northern areas were at higher elevations. A survey of nodes and edges

indicated that changes were greater for the betweenness centrality metrics than for closeness

centrality, and values for the latter mainly showed decreases. This was a result of flood-related

road closures, which meant that the shortest-path lengths between node pairs could only

increase from baseline conditions, and therefore, they have less influence on closeness central-

ity than on betweenness centralities. Most research has tended to focus on the unique influence

BC can have when characterizing changes to road networks either during flooding events [12]

or simply as a result of the passage of time [4,11]. This is mainly because betweenness centrality

is a measure of the contribution of a link in the organization of network flows [20]. Moreover,

closeness centrality results are strongly dependent on the geographical position of nodes [22],

making that metric sensitive when defining the boundary of a network [10]. Our findings

complement previous analyses of topological changes in road networks because they demon-

strated how the trends changed for the three centrality metrics tested here.

Our analysis of BC and the empirical distribution function also showed that graphed tails

grew heavier as the flood magnitude increased. This response was reflected by the rises noted

for standard deviations and the 0.99-quantiles. Furthermore, the KS statistic in case of power

law distributions decreased in flooding scenarios, indicating that the tails were closer to the

power law under the flood strain when compared with that in the baseline condition. As such,

in the flooding scenarios, nodes or edges with high BC values were relatively more important

than those calculated for the baseline network. In particular, the 100-year flood showed the

heaviest distribution when we looked only at roads at least 3 m wide. Furthermore, closeness

centrality distributions decreased as the flood magnitude increased. The most critical BC val-

ues were those closest to the greatest extremes because they referred to the nodes and edges

with the highest frequency of shortest paths passing through, i.e., locations with the most

abundant city traffic. Our results were also supported by those previously reported from stud-

ies of BC distributions for datasets in other cities. For example, Lämmer et al. [7] determined

that NBC follows a power law distribution for the road networks of several German cities.

That research group concluded that low values for the distribution exponent could be inter-

preted as the shortest paths being highly concentrated at the most important intersections.

Another investigation using a large world dataset showed that BC metrics could be approxi-

mated by a truncated power law [9]. In contrast, in [8] NBC followed an exponential or

Gaussian distribution rather than a power law distribution. Because the KS test rejected the

hypothesis that the tail of BC distribution followed a power law in our data and no lognormal

or exponential distribution was revealed, we evaluated the BC basic statistics and determined

that the changes in curve variability provided an essential key for understanding the effects of

flooding on a real road system. Therefore, if we were going to be able to assess the response of

a specific city to a certain hazard, then it would be crucial that we look at whether patterns

have changed for the highest-value nodes or edges, because each of them refers to a unique
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position within an urban system. Our results also helped extend the discussion of Kirkley et al.

[9], who examined the distributions of an entire network and demonstrated the invariance of

BC distributions and, therefore, the robustness of the metric for measuring major alterations

in that network.

For our third point, we conducted a spatial analysis of centrality metrics to show that the

spatial pattern of centralities with values equal to or larger than the 0.99-quantiles shifted loca-

tions in the three scenarios. This meant that sites with a high impact on system performance

changed their geographical positions during our test scenarios. The betweenness centrality

results also proved that those sites were located on the main paths of Zurich under baseline

conditions. This result confirmed those of [10], who observed that NBC captured the continu-

ity of prominent urban routes across numerous intersections, as well as through changes in

direction and focal urban spots. In particular, we noted here that narrow paths, e.g., bridges or

tunnels, which crossed rivers or railway lines, tended to have higher betweenness centrality

values. This was because those paths united different sections of the city that would otherwise

be divided by gaps. Our results also supported observations by [10], who detected the emer-

gence of NBC corresponding to important bridges. Those main paths changed locations dur-

ing flooding events. In our flooding scenarios, a new path emerged in the western area,

connecting with the Limmat River side toward the southern part of Zurich. This behavior

might be explained by the closure of most roads in the west-central portion of the city but a

simultaneous maintenance of links with the central Limmat River and the southern part of

Zurich, so that the shortest paths passed on the western roads. Distribution of critical edges

and nodes was more extensive to the south during the 100-year flood than during the 300-year

flood because, under the latter scenario, fewer main roads were accessible in the west-central

area. Therefore, the closures of some main roads were so devastating that some important con-

nections collapsed. Furthermore, access became too difficult within the southern part of the

city because there was not a sufficient number of shortest connecting paths. Whether one con-

sidered the network as a whole or looked only at roads meeting a certain minimum width, our

closeness centrality results indicated highly clustered distributions of critical nodes in the cen-

tral part of Zurich. We expected this outcome because closeness centrality generally clusters

within the central part of a geographical space [22]. Crucitti et al. [10] have also uncovered a

strong tendency for closeness centrality to group higher values at the center of an image.

When we examined our flooded scenarios, we noted a northward shift in higher values of

closeness centrality because the particular geography of Zurich makes its central roads more

vulnerable. Therefore, because the city center is limited in expansion southward by the lake,

that central portion can only move northward.

Our findings have implications for planners, policy-makers, and scientists. Maps of flood

risk provide information about tangible losses from a hazard event, with costs commonly

being quantified according to the level of economic damage or the number of people affected.

Our use of topological properties is another quantitative tool that can evaluate the impacts of a

hazard on the capacity for traffic to move within a road network. Here, we relied upon changes

in centrality to account for how the road system as a whole was altered. Planners can use those

results to rank the relative importance of individual roads or, more generally, determine which

areas will be most affected. From that, policy-makers can utilize the information to derive pre-

ventative actions for minimizing the impact of future flood hazards. For scientists, our study

demonstrated that centrality metrics contribute to realizing the influence a distributed hazard

has on a road network. Here, the analysis of BC distribution functions over time revealed that

the effect of the two flooding events on the tails was similar to that seen as a road system ages.

Therefore, topological metrics alone can help us detect any shift in properties as such a system

changes.
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This research project had some limits–first, because we used only Zurich as our case study.

Because topological properties depend upon the particular geography of a city, different results

might be obtained when centrality metrics are evaluated elsewhere. Furthermore, we did

not use any traffic data but instead employed only data relative to the road structure. This

approach meant that we omitted any information about congestion or the most common com-

muter routes within Zurich.

Future work might compare the effects of flooding on the topology of road systems charac-

terized by different urban plans or geographical constraints. Incorporating traffic information

would also aid in producing a more realistic view of conditions.

Finally, follow-up investigations could be used to characterize the spatial variability of cen-

tralities, especially the closeness centrality, in limited areas of the network. This approach can

be applied by setting a radius from a selected node to study the centrality values in a circular

area or by setting the topological radius. This would help us to investigate the manner in

which the metrics would change at the local levels. From an emergency perspective, this

approach can evaluate the performances of this approach in areas around places of interest

such as hospitals or public facilities.
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6. Barrat A, Barthélemy M, Vespignani A. The effects of spatial constraints on the evolution of weighted

complex networks. Journal of Statistical Mechanics: Theory and Experiment. 2005;P05003.

Road network topology and flooding

PLOS ONE | https://doi.org/10.1371/journal.pone.0220338 July 31, 2019 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220338.s001
https://doi.org/10.1038/srep00296
http://www.ncbi.nlm.nih.gov/pubmed/22389765
https://doi.org/10.1098/rsos.160023
http://www.ncbi.nlm.nih.gov/pubmed/27293781
https://doi.org/10.1371/journal.pone.0220338


7. Lämmer S, Gehlsen B, Helbing D. Scaling laws in the spatial structure of urban road networks. Physica

A. 2006; 363:89–95.

8. Crucitti P, Latora V, Porta S. Centrality measures in spatial networks of urban streets. Physical Review

E. 2006; 73:036125.
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