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Abstract

Although the literature on the Maillard reaction in infant formulas is extensive, most studies

have focused on model systems, and in only a few cases on real food systems. Therefore,

the objective of the present study was to determine the status of the Maillard reaction, both

the early and advanced phases, in a variety of commercial infant formulas available on the

Swedish market. Ten powder and liquid milk-based infant formulas from three manufactur-

ers were selected to determine available lysine and CML contents, the two established indi-

cators of the reaction. The products were also characterized with respect to protein content,

carbohydrates composition, water content and water activity. In order to be able to compare

the impact of different processing steps applied on powder and liquid formulas, the solid for-

mulas contained similar ingredients as their corresponding liquid ones. Our findings showed

that powder and liquid formulas contained similar available lysine concentrations regardless

of the manufacturer, showing 27.14–36.57% decrease in the available lysine, compared to

the reference skim milk powder in this study. The CML concentrations were in a broad range

of 68.77–507.99 mg / kg protein. In the case of one manufacturer, liquid infant formulas had

significantly higher CML content, compared to the powder products (p < 0.05). The results

from this study are a step taken towards better understanding of the extent of the Maillard

reaction in real complex systems of infant formulas.

Introduction

Infant formulas (IF) developed as substitutes for human milk are usually based on cow’s milk

and cow’s milk-derived ingredients. They are mainly composed of milk proteins (casein and

whey proteins), lactose, vegetable oils, starch, and cereal proteins such as wheat, oat, maize as

well as minerals and vitamins to meet the nutritional requirements of infants. The difference

between cows’ and humans’ milk is in the higher lactose content of the latter (7.1%), compared

to the corresponding value for cow’s milk (4.6%). Furthermore, the composition of human

milk protein is 40% casein and 60% whey proteins, compared to cow’s milk protein which con-

tains 80% casein and 20% whey proteins [1]. These differences are the main criteria taken into

consideration for the formulation of IFs.
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To ensure bacteriological safety of the IFs, these products are exposed to a wide variety of

heat treatments including pasteurization, in bottle sterilization (110˚C, 10 min), sterilization

through ultra-high temperature processing (UHT) (130–140˚C, 3–6 s), spray-drying (inlet tem-

perature of 170–200˚C) [2], and any combination there of. Therefore, due to their composition

and exposure to the rigorous thermal processing, these products are more prone to the chemical

reactions, among which non-enzymatic browning or the Maillard reaction has captured consid-

erable attention [3]. This reaction involves reducing sugars and amino acids in a complex net-

work of reaction pathways which leads to the formation of dietary advanced glycation end

products (AGEs) [4]. AGEs are a group of molecules that when binding with the receptor for

advanced glycation end products (RAGE), the main receptor of AGEs in the body, potentially

activate a pro-inflammatory status, which in long term may lead to the development of the

chronic inflammatory diseases such as diabetes, renal disease, and coronary heart disease [5].

There are studies showing that processing of the IFs, especially the application of steriliza-

tion and drying induce the Maillard or the so called non-enzymatic glycosylation reaction in

these products [1]. To understand the occurrence and progression of these reactions, different

markers have been the focus of several studies. Lysine, the essential amino acid is one of the

main reactants which become unavailable or blocked in the beginning of the reaction via inter-

action with lactose. Histidine with its imidazole group, and arginine with a guanidine group

are the other reactants [6]. Therefore available lysine, the established marker of early stage of

the Maillard reaction has been utilized in several studies [7–13].

There are also studies in the literature focusing on the advanced stage of the Maillard reac-

tion and formation of AGEs in IFs through analysis of the related indicators such as carboxy-

methyl-lysine (CML) and pyrraline [14–17]. However, research on both the early and

advanced stages of the Maillard reaction in real complex systems of infant formulas are scarce.

The objective of the present study was thus, to determine the status of the Maillard reaction,

both the early and advanced phases, in selected commercial infant formulas available on the

market. Thereby, ten powder and liquid milk-based infant formulas from three manufacturers

on the Swedish market were chosen and were analyzed using our previously validated proce-

dures [6, 18] to determine both the available lysine and CML contents. The aim was to com-

pare powder and liquid infant formulas, and to improve our understanding of the impact of

different processing steps applied on powder and liquid IFs on the decrease of available lysine

and formation of CML as a well-characterized AGE molecule.

Materials and methods

Samples

The study was carried out using four powder and six liquid infant formulas from three manu-

facturers A, B and C (Table 1). Powder samples 1–4 contained similar ingredients as liquid

samples 5–8 respectively which made it possible to compare the impact of processing on the

progression of the Maillard reaction in these products. The common ingredients were skim

milk powder, whey powder, vegetable oil, starch, maltodextrin, vitamins, minerals and either

oat or maize were the other protein source. All the products had been in the first third of their

best before time period at the time of purchase, and had significant time (6–9 months) until

the best before date written on the packages.

Methods

Determination of protein. Protein contents of the products were determined using a pro-

tein analyzer, Thermo Fisher Scientific Flash EA 1112 N series (Waltham, MA, USA), which

operated according to the combustion technique, also known as the modified Dumas method.

Maillard reaction in infant formulas
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The instrument determined the nitrogen concentration and the relative protein content. The

sample weight was 50 mg and the analysis was carried out in duplicate.

Determination of carbohydrates. Samples were analyzed for the determination of glu-

cose, fructose, lactose and maltose. The analysis was carried out in duplicate using AOAC

method 982.14.

Determination of water content. Water content (or the dry matter) of the samples were

determined using the standard method of the International Dairy Federation [19]. Briefly,

samples were dried in an oven (Termaks, Bergen, Norway) at 102˚C for 2 hours. Following

this, they were kept in a desiccator for one hour to reach the constant weight. 1 g of sample

was utilized for each replicate and this analysis was carried out with two replicates.

Measurement of water activity (aw). Water activity of the samples were measured using

Aqua-lab water activity meter Series 3TE (Decagon Devices Inc., Washington, USA). 1 g of

sample was used for each measurement and the analysis was performed with two replicates.

Determination of available lysine. The dye-binding method with Acid-orange 12 was

employed for the determinations of available lysine is fully described and validated in our pre-

vious work [6] and is based on the work presented by Hurrell, Lerman & Carpenter, with slight

modifications [20]. The method was successfully applied on a variety of skim milk powders in

our previous work [21] and verified to be suitable for quantification of available lysine.

Briefly, 300 mg of sample were mixed with 2 ml sodium acetate solution for 20 min on an

orbital lab shaker (type 3005, GFL, Gesellschaft für Labortechnik, Burgwedel, Germany).

Then, 0.2 ml propionic anhydride were added to half of the flasks and the mixing was contin-

ued for another 20 min. Subsequently, 40 ml of the dye solution (with concentration of 1.36

mg/ml) were added and mixed for 1h. The analysis continued with the centrifugation step

(5000 rpm, 10 min) by an Optima LE-80 k ultracentrifuge (Beckman Coulter, Bromma, Swe-

den) and the absorbance at 475 nm of the supernatants were measured using a Varian Cary

50 UV-Vis spectrophotometer (Agilent Technologies, CA, USA) and concentration of the

available lysine was calculated using the equation from the calibration curve y = 47.37 x + 0.01

(R2 = 0.9999). The analysis was carried out with three replicates.

Determination of CML. The samples were prepared by hydrolyzing 0.3 g sample for 24 h

at 110˚C using 2 ml 6M HCl, together with an isotope labelled d4-CML (Larodan Fine

Table 1. Protein, carbohydrate and fat composition of infant formulas according to the information provided by the manufacturer.

Powder formulasa g per 100 ml ready to eat product

Products Other sources of protein Recommended age from Protein Carbohydrate Fat

1 Manufacture A Oat 6 months 2.2 8.6 2.5

2 Manufacturer A Maize 6 months 1.7 9.4 2.4

3 Manufacturer B Oat 6 months 1.8 8.5 3

4 Manufacturer B Oat 1 year 2.2 8 2.5

Liquid formulasb g per 100 ml liquid

5 Manufacturer A Oat 6 months 1.9 9 2.8

6 Manufacturer A Maize 6 months 2.3 12 2.6

7 Manufacturer B Oat 6 months 0.3 7.7 2.9

8 Manufacturer B Oat 1 year 2.3 8.2 2.4

9 Manufacturer C Oat 6 months 1.9 8.8 2.9

10 Manufacturer C Oat 1 year 2.4 8.2 2.6

a Powder infant formulas were vacuum packed after purchasing and placed into freezer -20˚C until analysis.
bLiquid formulas were freeze-dried (Labconco, Missouri, USA), vacuum packed and put into freezer -20˚C before further analysis.

https://doi.org/10.1371/journal.pone.0220138.t001
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Chemicals AB, Malmö Sweden) as the internal standard. To protect samples from oxidation

during hydrolysis, the test tubes with samples in HCl were flushed with nitrogen (bubbling

nitrogen gas through the sample) and sealed before incubation. Following hydrolysis, extrac-

tion of CML was performed using solid phase extraction (TelosneoPCX, Teknolab Sorbent

AB, Västra Frölunda, Sweden). The SPE extracts were then evaporated to dryness, reconsti-

tuted in 200 μl 5mM NFPA in H2O and analyzed using LC-MS/MS [18].

The quantification of CML was performed using high-pressure liquid chromatography

mass spectrometry (HPLC-MS/MS). Instruments used were Accela UHPLC pump with auto-

injector coupled to LTQ VelosPro Orbitrap massspectrometer (Thermo Scientific, Waltham,

USA). For data quantification and evaluation XcaliburTM 2.2 software (Thermo Scientific)

was used. The MS/MS was run in positive electrospray ionization ion trap mode, detecting two

Selected Reaction Monitoring (SRM) transitions for CML and two for the internal standard.

Solid phase extraction, chromatographic parameters, ion source parameter and the SRM tran-

sitions are the same as described by Tareke et al., 2013.

The calibration curve was prepared with 0, 1, 2.5, 10, 50, 100 and 500 μg/ml CML and fixed

amounts (100μl) of IS (d4-CML) with 100 μg/ml concentration (R2 = 0.9991). Samples con-

taining higher concentrations of CML than the highest concentration in the calibration curve

were diluted to ensure the analysis was carried out over the calibrated concentration range.

Statistical analysis

Analysis of available lysine were conducted with three replicates, the determination of CML

was performed using two replicates, and the results are reported as mean ± standard error. Stu-

dent’s t-test (two samples assuming unequal variances) at 95% significance level was used to

assess statistical significance of the data.

Results and discussion

Protein contents of infant formulas

Protein contents of the products measured using protein analyzer, are presented in Table 2.

Composition of carbohydrates

In Table 3, results of sugar analysis are presented.

Among the analyzed carbohydrates there is a large variation on the content of each sugar

among samples (glucose: <0.04–2.67 g/100g, lactose: 10.8–31.8 g/100g, maltose: < 0.04–14.0

g/100g), independent of being a powder or liquid formulation, but seemingly more related

Table 2. Protein content of the infant formulas determined using a protein analyzer. The Results are the Mean of

Two Replicates ± Standard Error.

Protein content % (n = 2) ± SE

1 10.78 ± 0.05

2 11.26 ± 0.05

3 12.09 ± 0.00

4 12.12 ± 0.18

5 12.52 ± 0.03

6 12.80 ± 0.16

7 12.40 ± 0.16

8 15.60 ± 0.07

9 13.07 ± 0.05

10 14.84 ± 0.43

https://doi.org/10.1371/journal.pone.0220138.t002
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with the manufacturer. Within the sugars analyzed it was not possible to find a relation with

the content of CML. However, it does not disregard the possibility that free galactose could

contribute to the formation of CML, but this was not possible to access with the method of

analysis used and remains to be investigated.

Water content and water activity

The infant formulas were also analyzed with respect to water content and water activity. These data

were utilized in the further calculations regarding available lysine and CML contents (Table 4).

Water is a crucial factor in the progression of the Maillard reaction with its impact on glass

transition temperature. Glass transition is the phase in which the lactose is transformed from a

glassy and stable state to a rubbery state, where the reaction has the highest rate [22]. Further-

more, water may be produced with the progression of the Maillard reaction, and this leads to

the increase in the water activity and water content of the product [23]. It was shown that the

reaction has the highest rate at intermediate aw 0.5–0.7 [24].

Indication of early stage of Maillard reaction in available lysine

To evaluate whether the reaction is initiated, available lysine may provide reliable information.

Traditionally, the Maillard reaction is divided into 3 steps. The interaction of lactose with

Table 3. Sugar content of the infant formulas. The Results are the Average of Two Replicates ± Standard Error.

Glucose g/100 g (n = 2) ±
25%

Fructose g/100 g (n = 2) ±
25%

Lactose g/100 g (n = 2) ±
15%

Maltose g/100 g (n = 2) ±
15%

1 2.67 < 0.04 10.8 2.89

2 0.17 < 0.04 15.0 0.54

3 < 0.04 < 0.04 31.8 <0.04

4 0.33 < 0.04 24.2 0.65

5 0.31 < 0.04 12.7 5.85

6 0.33 < 0.04 15.1 1.19

7 0.05 < 0.04 31.5 0.87

8 0.05 < 0.04 29.5 0.94

9 0.26 < 0.04 25.9 13.1

10 0.31 < 0.04 20.0 14.0

https://doi.org/10.1371/journal.pone.0220138.t003

Table 4. Results of water content and water activity regarding the infant formulas.

Powder formulas Water content % (n = 2) ± SE Water activity (aw) at 20 ºC
1 Manufacturer A 2.79 ± 0.07 0.308

2 Manufacturer A 3.14 ± 0.04 0.306

3 Manufacturer B 1.32 ± 0.03 0.232

4 Manufacturer B 2.12 ± 0.15 0.260

Liquid formulasa

5 Manufacturer A 0.07 ± 0.03 0.076

6 Manufacturer A 0.06 ± 0.00 0.078

7 Manufacturer B 0.22 ± 0.02 0.054

8 Manufacturer B 0.21 ± 0.08 0.045

9 Manufacturer C 1.71 ± 0.13 0.253

10 Manufacturer C 1.74 ± 0.01 0.251

a It must be noted that liquid formulas were freeze-dried before being analyzed.

https://doi.org/10.1371/journal.pone.0220138.t004
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lysine and the formation of the Amadori product is regarded as the early stage of the reaction.

Degradation of the Amadori product and the formation of molecules such as CML, hydroxy-

methyl furfural (HMF), β-pyranone, 3-furanone, reductones, α-dicarbonyls, cyclopentenone,

galactosylisomaltol and acetylpyrrole is considered as the advanced stage of the reaction and,

finally, the generation of Melanoidins is the final stage [23]. In this study available lysine served

as an indicator; to compare powder and liquid infant formulas and to assess the effect of differ-

ent processing (spray-drying in case of powder and sterilization for the liquid formulas) on the

commencement of the reaction. It has been reported that sterilization and spray-drying induce

the Maillard reaction during the processing of infant formulas [10, 13]. Table 5 provides the

results of available lysine, both presented based on dry matter and protein.

Since in our previously published works available lysine contents have been reported based

on dry matter [6, 21], we use this unit for further discussion. Nevertheless, available lysine con-

tents are also reported based on protein content to make it easy to compare with other studies.

The conclusions can be drawn from these results is that powder and liquid infant formulas

contain similar available lysine concentrations regardless of the manufacturer. Furthermore,

considering that the concentrations of available lysine in these products are in the range 0.95–

1.28% in dry matter, the infant formulas show 27.14–36.57% decrease in the available lysine,

compared to the reference skim milk powder sample. The reference sample in this study was

skim milk powder which was not exposed to any heat-treatment, the skim milk was collected

after the fat separation step and freeze-dried. This sample contained 3.54% ± 0.09 available

lysine based on dry matter.

Birlouez-Aragon et al. also showed that there was no significant difference between the liq-

uid and powder infant formulas with respect to available lysine. They reported a decrease of

20% in the available lysine compared to raw cow’s milk [2]. Our results are slightly higher than

the results reported by Contreras-Calderon. They showed that the average of available lysine

in the infant formulas was 4.03–6.43% based on protein [25]. This can be explained by differ-

ence in the composition and heat processing applied on the products as well as the method

that was employed for the determination of available lysine. In another study the available

lysine loss as a result of processing in infant cereals ranged between 14–29% [9]. Similarly,

Ferrer et al. reported a loss of 15.2–26.7% in the infant formulas, in comparison with the raw

cow’s milk [10]. What can be understood from the present and also the previous studies is that

infant formulas are more liable to the Maillard reaction and its consequences due to their com-

position, the presence of other provoking ingredients such as iron and vitamin C, and the

application of rigorous heat treatments such as sterilization. In other words in order to mimic

Table 5. Available lysine content of the infant formulas determined by a dye-binding method with three replicates.

Samples Powder formulas Available lysine % in dry matter (n = 3) ± SD Available lysine % in protein (n = 3) ± SD

1 Manufacturer A 0.95 ± 0.06 8.13 ± 0.05

2 Manufacturer A 1.13 ± 0.06 9.75 ± 0.49

3 Manufacturer B 0.96 ± 0.02 7.74 ± 0.18

4 Manufacturer B 1.02 ± 0.02 8.28 ± 0.16

Liquid formulas

5 Manufacturer A 0.95 ± 0.02 7.55 ± 0.16

6 Manufacturer A 0.99 ± 0.01 7.76 ± 0.07

7 Manufacturer B 1.10 ± 0.02 8.86 ± 0.12

8 Manufacturer B 1.28 ± 0.04 8.16 ± 0.28

9 Manufacturer C 1.06 ± 0.02 7.97 ± 0.19

10 Manufacturer C 1.25 ± 0.03 8.30 ± 0.21

https://doi.org/10.1371/journal.pone.0220138.t005
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the composition of human milk (7.1% lactose, 40:60 casein to whey protein ratio) lactose and

whey powder, both Maillard potential stimulants, are added to cow’s milk. Furthermore, to

guarantee the microbiological safety of the products aimed for this sensitive group of popula-

tion the heat applied in the form of in-bottle sterilization or spray-drying is more rigorous [1,

5]. The substantial effect of heat processing such as sterilization on the Maillard reaction has

been well discussed in the literature [1, 10, 26]. Addition of vitamin C (one of the proposed

pathways for formation of CML) and poly unsaturated fatty acids in the form of vegetable oils

may lead to further progression of the Maillard reaction [26].

Determination of CML

After studying the early phase of the reaction i.e., the study of the reaction precursors, it was

logical to try to understand how the reaction status was in the advanced stage. The importance

of this part of the study was not only to gain insight into the advanced phase of the Maillard

reaction, but also the role of CML as an identified AGE molecule, as AGEs have been associ-

ated with risk factors for diabetes complications and other autoimmune diseases [5, 27]. CML

was analyzed using the procedure established by Tareke et al. 2013 with two replicates. The

analytical performance was assessed by considering the accuracy of the LC-MS/MS measure-

ments using a standard sample with 10 μg/ml CML which was 115 ± 4%. The results of CML

concentration in the 10 infant formulas are presented in Fig 1.

Unlike analysis of available lysine in these products (section 3.3), where the available lysine

content of the infant formulas were quite similar, the CML concentration are in a broad range

of 68.77–507.99 mg / kg protein. In the case of manufacturer A, the liquid infant formulas had

Fig 1. Studying the advanced stage of the reaction in the infant formulas using the indicator CML. CML Concentration is Calculated in mg / kg Protein (n = 2). The

Error Bars Represent the Standard Errors. The Infant Formulas are from Three Manufacturers A, B and C. P Stands for Powder and L Means Liquid.

https://doi.org/10.1371/journal.pone.0220138.g001
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significantly higher CML content compared to the powder products (p< 0.05). This may be

explained by difference in handling/processing procedure applied on the products. This

should be further investigated in the future.

Our results are in agreement with the previous studies. Hartkopf et al. reported that CML

concentration was 50–200 mg/kg protein in the infant formulas [28]. In another study it was

shown that 16 powder infant formulas contained 50–700 mg CML in kg protein. It was also

concluded that CML concentration in the infant formulas were 28–389 times higher than the

fresh human milk [29]. In another study by Dittrich et al. CML contents of 8 infant formulas

available on the German market was reported to be 514–11372 ng / ml and 35 times higher

than the CML concentration in the human milk. [14]. Similarly, Troise et al. reported the

CML concentration of 80–140 mg /kg protein regarding commercial powder infant formulas

[30]. As it was explained before, infant formulas show higher sensitivity towards the Maillard

reaction, and this is mainly due to their composition which mimics the composition of human

milk as well as the application of rigorous heat treatments. AGE content of these products may

increase even more during storage, considering that these products mostly have prolonged

shelf-life. It was shown in our previous study with skim milk powder that concentration of

CML increased several times during storage at realistic storage conditions [31]. With respect

to the spray-dried skim milk powder stored at 52% RH, 30˚C after 30 days, the CML concen-

tration reached approximately 3000 mg/kg protein and 24500 mg/kg protein after 200 days.

This was, however, the accelerated storage condition. When the samples of skim milk powders

were stored at 33% RH, 30˚C, concentration of the CML after 30 and 200 days storage was

around 400 and 2500 mg/kg protein respectively, indicating the importance of controlling

every individual parameter such as temperature and RH throughout the storage. This is some-

thing that should be the priority of the future studies with respect to infant formulas.

Concluding remarks

In summary, status of the Maillard reaction both the early and advanced phases of the reaction,

were investigated in this study regarding commercial infant formulas available on the Swedish

market. Ten powder and liquid infant formulas were analyzed with respect to available lysine,

the indicator of early stage of the reaction, and CML as a well-characterized AGE molecule, a

marker of the advanced phase of the Maillard reaction. The powder and liquid formulas con-

tained similar available lysine contents in the range of 0.95–1.28% dry matter. Regarding

CML, the concentrations were in a wide range of 68.77–507.99 mg/kg protein. In other words

CML content of infant formulas available on the Swedish market can vary 7 fold, depending

on the physical form and the manufacturers. Due to the higher liability of infant formulas to

the Maillard reaction and sensitivity of the target group (infants), impact of the storage of

these products at realistic storage conditions should be the priority of future studies.
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