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Abstract

Background

It is well known that ruptured intracranial aneurysms are associated with substantial morbid-

ity and mortality, yet our understanding of the genetic mechanisms of rupture remains poor.

We hypothesize that applying novel techniques to the genetic analysis of aneurysmal tissue

will yield key rupture-associated mechanisms and novel drug candidates for the prevention

of rupture.

Methods

We applied weighted gene co-expression networks (WGCNA) and population-specific gene

expression analysis (PSEA) to transcriptomic data from 33 ruptured and unruptured aneu-

rysm domes. Mechanisms were annotated using Gene Ontology, and gene network/popula-

tion-specific expression levels correlated with rupture state. We then used computational

drug repurposing to identify plausible drug candidates for the prevention of aneurysm

rupture.

Results

Network analysis of bulk tissue identified multiple immune mechanisms to be associated

with aneurysm rupture. Targeting these processes with computational drug repurposing

revealed multiple candidates for preventing rupture including Btk inhibitors and modulators

of hypoxia inducible factor. In the macrophage-specific analysis, we identify rupture-associ-

ated mechanisms MHCII antigen processing, cholesterol efflux, and keratan sulfate catabo-

lism. These processes map well onto several of highly ranked drug candidates, providing

further validation.

Conclusions

Our results are the first to demonstrate population-specific expression levels and intracranial

aneurysm rupture, and propose novel drug candidates based on network-based

transcriptomics.
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Introduction

Saccular intracranial aneurysms are highly prevalent in the adult population (up to 5%) with

rupture rates from 0.5% to over 20% per year[1]. The mechanisms leading to formation and

rupture of intracranial aneurysms is not fully understood. The suggested process consists of

chronic vascular remodelling paralleled by an inflammatory process which ultimately result in

focal weakening and rupture of the arterial wall[2]. During this process, the extracellular

matrix as well as cellular units of the arterial wall, endothelia and smooth muscle cells, become

progressively disrupted paralleled by immune cells infiltration. The majority of this knowledge

stems from histological studies of aneurysmal tissue[2] but our knowledge of the molecular

processes occurring in each cellular unit remains incomplete.

Several medical strategies have been investigated to prevent formation of intracranial aneu-

rysms. Drug candidates were set to target inflammatory processes for example statins, inhibitors of

mast cell degranulation, TNF-α blockers, matrix metalloprotease inhibitors, free radical scavengers

and tetracyclines[3]. While some of these animal studies were encouraging, only a limited number

of drugs such as statins[4] (whose effect on aneurysm rupture are controversial[5,6]) and aspirin[7]

continue to hold moderate promise in prevention of aneurysm rupture, though studies are limited.

With the emerging analytics in gene expression we are able to establish patterns for tran-

scriptomics in bulk tissue[8–10] as well as on the level of cell population[11,12]. These tech-

nique yield relevant genetic signatures consisting of gene lists which can then be interpreted

by linking to a unified nomenclature for biological processes in Gene Ontology[13,14]. The

gene lists associated with a clinical phenotype can also be used to identify plausible drug candi-

dates through the method of computational drug repurposing[15,16]. This technique relies on

the assumption that if a drug which has opposing genetic signature to a disease, it may be a

potential candidate for “reversing” the phenotype. This approach has yielded multiple plausi-

ble drug candidates verified in experimental models for lung cancer[17], inflammatory bowel

disease[18], amyotrophic lateral sclerosis[19], and meningiomas[20].

We hypothesize that in the multifactorial mechanisms leading to aneurysm rupture there

exists a “driver process” on a cell population level which associates with aneurysm formation.

We further hypothesize that these gene signatures will yield plausible drug candidates which

map well to population level gene expression.

Methods

Data preparation

Data for this study was collected from the open genetic repository Gene Expression Omnibus

(GEO)[21]. We searched for studies using only the term “intracranial aneurysm”, specifying human

studies with expression profiles available. We then searched the matching datasets for those which

included microarray data on both ruptured and unruptured cerebral aneurysm domes, yielding two

datasets[22,23] with a cumulative sample size of 33 aneurysms. The first study (GSE13353), com-

pared whole genome expression profiles between ruptured and unruptured intracranial aneurysm

walls which were frozen subsequent to operative clipping. The second (GSE15629) used a similar

approach and also included samples of middle meningeal artery, though these were omitted from

our analysis. The mean age of our merged cohort is 56.5, and the relative proportion of males to

females is 36.4% to 63.6%, respectively. Further details of our study cohort can be found in Table 1.

Pre-processing of transcriptomics data

For each study, the microarray data was backgrounded corrected, quantile normalized, and

log-2 transformed using the Affy[24] R package. Keeping only genes common to both studies
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(n = 18028), the datasets were merged, scaled to a global mean and standard deviation of 0 and

1, respectively[25], and batch-corrected using ComBat, a well-established empirical Bayes

approach[26]. The resultant data matrix was used during all subsequent analysis.

Co-expression network analysis

We usedWeighted Gene Co-Expression Network Analysis (WGCNA) to identify biological

“modules” (groups of biologically related genes) which map to aneurysm rupture. First, abso-

lute Pearson coefficients were computed between each pair of genes, and the resultant matrix

soft-thresholded with a hyperparameter in order to approximate scale-free topology (a desir-

able configuration for such network analyses). This was ultimately transformed into a biologi-

cally-inspired “Topological Overlap Matrix” (TOM) by expressing pairwise gene similarity in

terms of their overlapping connectivity profiles, rather than direct expression correlations[27].

Highly similar genes were then grouped into an adaptive hierarchical clustering tree (dendro-

gram), yielding “modules” of co-expressed genes. The expression of each module is repre-

sented by a single meta-gene for each sample; using the first principal component is an

established method to compute this value. A detailed description of this well-established meth-

odology is described by Langfelder et al [8].

Module-based qualitative analysis

Gene modules were queried using the Database for Annotation, Visualization and Integrated

Discovery (DAVID version 6.8)[28], which assigns gene ontology terms to input gene lists.

Gene ontology terms were considered significant if they achieved a Bonferroni-corrected

p-values of<0.05.

Computational drug repurposing

The technique of computational drug repurposing is founded on the basis that each disease

state has a particular transcriptional “signature” of upregulated and downregulated genes.

Likewise, exogenous perturbations to a biological system (i.e. the introduction of a drug) is

associated with it’s own transcriptional signature. By cataloguing the signature of a variety of

drugs using cell lines, one can match drug and disease signatures to select a compound which

best acts to reverse a disease-specific signature of interest[16]. In this study, we used the state-

of-the-art L1000 interface for drug repurposing [15]. To maintain a module-based approach,

we first selected the modules which had significant positive correlation with aneurysms rup-

ture (p<0.05). The top 10 genes in these modules (ranked by their correlation with module

meta-gene expression), were input into the L1000 model as upregulated genes. This was

repeated for modules negatively correlated with aneurysm rupture.

Table 1. Summary of study population.

Series Patients (N) Ruptured

(N)

Mean TTS�

(SD)

Aneurysm Location (n)

MCA ICA AComm PComm PC

GSE13353 19 11 2.1 (3.4) 14 2 2 1 0

GSE15629 14 8 7.0 (10.5) 7 1 3 1 2

Total 33 19 4.3 (7.6) 21 3 5 2 2

�Time to surgery in days (ruptured aneurysms only). MCA = Middle Cerebral Artery, ICA = Internal Carotid Artery, AComm = Anterior Communicating Artery,

PComm = Posterior Communicating Artery, PC = pericallosal artery

https://doi.org/10.1371/journal.pone.0220121.t001
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Deconvolution of tumor bulk expression signal

We used Population Specific Expression Analysis (PSEA)[11], a well-established technique, to

deconvolve cell-specific gene expression profiles from bulk data. This function uses a regres-

sion model to examine the transcriptomic contributions of particular cell types based on previ-

ously established marker genes, thereby mimicking single-cell data. The biological annotations

of significant modules were used to select cell types of interest, and marker genes were selected

from the literature (Table 2). A gene was considered to be significantly associated with a partic-

ular marker gene/genes (cell type) if it satisfied the following conditions in the regression

model: a positive correlation with a p-value <0.05, an adjusted R2 >0.6, and a ratio of fitted

intercept over mean expression < 0.5[11]. Output gene lists were investigated with DAVID,

and gene ontology (GO) terms were compared between unruptured and ruptured aneurysms

using the GoSemSim (“GO semantic similarity”) R package[29]. This flexible interface com-

putes a similarity metric ranging from 0 to 1 between gene sets, GO terms, or sets of GO terms

based (in oversimplified terms) on their proximity within a hierarchical graph depicting

known biological associations and evolutionary relationships between genes or GO terms[29].

Mechanisms most specific to aneurysm rupture were of particular interest.

Computational platform

All analysis was done using the open-source platform for statistical computing R[30].

Results

Co-expression network and module analysis

Our approach yielded a total of 55 co-expression modules, ranging in size from 2 to 1381

genes (mean 322). The meta-gene expression of 12 modules differed significantly between rup-

tured and unruptured aneurysm cohorts (Mann Whitney p<0.05), indicating mechanisms

associated with rupture (S1 Fig). Seven of these significant modules mapped significantly to

various biological processes in DAVID (Bonferroni p<0.05), four of which were related to

immune function (Fig 1).

Computational drug repurposing

The L1000 software identified several compounds which may serve as potential drug candi-

dates for aneurysm rupture. Each compound in the query is assigned a score, ranging from

-100 to 100, which is a measure of how well it’s genetic signature matches the disease (a score

of 100 is a perfect match, while a score of -100 indicates an effect that is exactly opposite to

what is desired). In our analysis, 824 compounds were identified with positive scores, 164 of

which had a score greater than 90 and 25 of which had a score >99, indicating extremely good

match. The top 10 candidates are listed in Table 3.

Table 2. Gene markers for each cell type used in population specific expression analysis.

Reference cell Marker gene(s)

Smooth muscle[43] MCAM, DES

Endothelial cell[44–47] TJP1, SLC2A1, VCAM1, SELE, VWF

Macrophage[48–51] CD14, FCGR1A, CD68, TFRC, CCR5

Mast cell[52] KIT, ENPP3

T cell[53] CD3D, CD3E, CD3G, CD4, CD8A, CD8B, IL2RA, IL7R, CCR6

https://doi.org/10.1371/journal.pone.0220121.t002
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Population-specific gene expression

Cell-type specific expression for both ruptured and unruptured aneurysms was computed for

smooth muscle cells, endothelial cells, mast cells, macrophages, and T cells using literature-

derived marker genes (Table 2). For each of these 10 models, the genes which satisfied the cri-

teria described in theMethods section were input into DAVID to investigate associated biolog-

ical processes. Macrophage and T cell populations in both cohorts, as well as the smooth

muscle population in the unruptured cohort, yielded significant enrichment while the other

models did not (Fig 2). More specifically, “immune response” and “T cell activation” were the

most significantly enriched gene ontology germs in both studies for macrophage and T-cell

populations, respectively. In the macrophage population, the ruptured cohort had particular

enrichment in processes relating to antigen presentation via MHCII and the unruptured

cohort was enriched in innate immune processes including lipopolysaccharide response and

leukocyte migration. The T-cell population enrichment terms were similar. Finally, “platelet

Fig 1. Module-based analysis reveals differences between immune processes in ruptured vs unruptured aneurysms. A: Dendrogram demonstrating the

taxonomic relationship between genes with the y-axis representing gene dissimilarity based on the TOM metric. Colour bar representing genes grouped into

modules. Grey interspacing represents unclassified genes. B: Boxplots of module meta-gene expression for significant modules which annotate to immune

function. Both the blue and red modules (320 and 164 genes, respectively) annotate to inflammation/innate immunity. Similarly, the brown module (29 genes)

annotates mostly strongly to Il-1 and TNF, while the lavender module (4 genes) enriches in B cells and phagocytosis predominantly. The horizontal lines

represent median value, with the box representing interquartile range (first and third quartile represented by the bottom and top of the box, respectively).

Whiskers represent the data range, with a maximum extension of 1.5 times the interquartile range. Values falling outside this range are considered outliers and

represented by small circles.

https://doi.org/10.1371/journal.pone.0220121.g001

Table 3. Module-based drug repurposing output reveals several potential drug candidates for aneurysm rupture. Top 10 compounds by score (a metric of how well

the drug-disease signatures match) and their mechanisms are listed, with PKC activators, BTK inhibitor, and Nedd activating enzyme inhibitor being the highest ranked

mechanisms.

Compound Mechanism Score

Prostratin PKC activator 99.93

Terreic-acid BTK inhibitor 99.93

Phorbol-12-myristate-13-acetate PKC activator 99.93

Ingenol PKC activator 99.93

MLN-4924 Nedd activating enzyme inhibitor 99.93

16,16-dimethylprostaglandin-e2 Prostanoid receptor agonist 99.89

VU-0418947-2 HIF modulator 99.86

Lypressin Vasopressin receptor agonist 99.82

QW-BI-011 Histone lysine methyltransferase inhibitor 99.82

QS-11 ARFGAP inhibitor 99.82

https://doi.org/10.1371/journal.pone.0220121.t003
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activation” was the most significantly enrichment ontology term for the smooth muscle popu-

lation in the unruptured population.

To compare gene ontology outputs, the GoSemSim package was used to first assess the

degree of overall similarity between gene sets generated from each of the 10 PSEA models (5

cell types). Subsequently, for cell types with enrichment in both unruptured and ruptured

aneurysms (macrophages and T cells), the same package was used to compare significant indi-

vidual ontology terms between cohorts (Fig 3). In the macrophage population, multiple

Fig 2. PSEA genes map to expected biological processes in DAVID. Barplots of the top 5 biological processes from each reference cell type, ranked by Bonferroni p-

value. Endothelial and mast cell references did not yield any significant annotations in either cohort.

https://doi.org/10.1371/journal.pone.0220121.g002

Fig 3. GoSemSim reveals differences in biological mechanisms between ruptured and unruptured aneurysms. A and B:

Balloon plots of significant GO term similarity measure (S) for macrophage (A) and T cell (B) populations, with terms of

ruptured and unruptured aneurysms represented as columns and rows, respectively. Dot size is proportional to S, and green

dots represent high similarity (S> 0.8) while red dots represent low similarity (S<0.2). Red boxes highlight processes which

have low association with the GO terms of the opposite phenotype (i.e. Ci for which S(Ai,x)<0.2 for any x in D, where C and

D represent phenotype).

https://doi.org/10.1371/journal.pone.0220121.g003
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processes were found to be particularly specific to ruptured aneurysms including antigen

assembly with MHC2, keratan sulfate catabolism, and cholesterol efflux; positive regulation of

TNF was more specific to unruptured aneurysms.

Discussion

Our study is the first to apply system level genetic analysis to explore aneurysm microenviron-

ment through transcriptomics data. It is also one of the few that directly compares unruptured

and ruptured aneurysms[2], whereas many others compare to control vessel tissue (typically

superficial temporal or middle meningeal arteries, which may not be representative of the ves-

sels within the circle of Willis). We find multiple intuitive mechanisms enriched in the genetic

signal from ruptured bulk aneurysm tissue strongly related to innate immune functions (Fig

1). Based on the genetic signatures of bulk aneurysm, we also identified multiple plausible

drug candidates using computational drug repurposing, including Protein Kinase C (PKC)

activators, Btk inhibitors, and HIF modulators (Table 3). We found that the effects of these

drug candidates mapped well onto mechanisms related to antigen presentation, a process

which was specific to the macrophage population within ruptured aneurysm wall. Finally,

analysis of cell population-specific expression from macrophages and T cells using PSEA iden-

tified mechanisms specific to ruptured (antigen presentation, keratan catabolism, cholesterol

efflux) and unruptured (TNF production) aneurysms; which may further improve our under-

standing of the pathophysiology of aneurysm rupture (Fig 3).

Co-expression networks provide a novel perspective on aneurysm

pathophysiology

Several previous studies have investigated the genetic basis of intracerebral aneurysm rupture

using traditional differential gene expression, yielding hundreds to thousands of individual up-

and down-regulated genes[2,31]. However, this model of isolated genes does not necessarily

reflect biology, wherein genes have been found to better modeled in highly connected networks

[27,32,33]. We therefore used WGCNA, a technique built to model genes closer to the way they

exist in biological systems which separates them into domains (modules) of biological functions

[27]. This approach is more likely to capture subtle effects from a large group of co-expressed

genes which may be missed in single-gene analyses. We derived twelve modules whose meta-

gene expression level differed significantly between ruptured and unruptured aneurysms (S1

Fig), seven of which mapped significantly to gene ontology processes in DAVID (Bonferroni

p<0.05) with four relating to immune function (Fig 1). This is in keeping with previous work

using single-gene analysis, which repeatedly suggests that the immune system plays a key role in

aneurysm rupture[2,22,31,34]. In most of these studies, there appears to be an overall upregula-

tion of immune function in ruptured tissue, which is consistent with our module-based findings.

New drug candidates for aneurysm rupture from systems biology approach

Computational drug repurposing offers several benefits over the more traditional process of

drug development, particularly due to the comparatively low cost, high efficiency, and data-

driven nature. It has previously led to novel treatment candidates for diseases such as ALS[19],

IBD[18], and cancer[17]. We identified several new drug candidates for aneurysm rupture,

including Protein Kinase C (PKC) activators, Btk inhibitors, and HIF modulators, using repre-

sentative module genes. PKC plays a role in several signal transduction pathways and can exist

in various isoforms. It can play both a pro- and anti-inflammatory role in the immune system,

and inhibitors of some of its specific isoforms have been trialed for use in diabetic microvascu-

lar disease and myocardial infarction[35]. Therefore, the role of PKC activators in

Microenvironment of ruptured cerebral aneurysms

PLOS ONE | https://doi.org/10.1371/journal.pone.0220121 July 22, 2019 7 / 12

https://doi.org/10.1371/journal.pone.0220121


intracerebral aneurysms is not immediately clear from the literature. The role of Btk, however,

is better defined. Through interaction with Major Histocompatibility Complex (MHC) II, it

ultimately triggers the release of pro-inflammatory cytokines from cells including macro-

phages[36]. Given the overexpression of multiple immune/inflammatory gene modules in

aneurysm rupture, it is conceivable that blocking an important mediator of inflammation

would reduce the risk of rupture. Similarly, the hypoxia-inducible transcription factor (HIF) is

associated with macrophage activity and interferon gamma levels[37] and were previously

found to be enriched in ruptured aneurysm tissue[34]; HIF modulators therefore make sense

as a drug candidate as well based on its function.

Population-specific analysis yields mechanisms specific to rupture

Population-specific gene expression has become an established method for analysis gene

expression from histologically heterogeneous samples[11,12]. It relies on linear regression

models to assess the fit of each gene from a bulk sample against a set of “marker” genes which

represent a particular cell type. Genes whose expression pattern do not fulfill a set of criteria

indicating their association with marker genes are filtered out, and remaining genes can be

examined in terms of model coefficients[11]. This method has been used to demonstrate cell-

specific expression changes in Huntington’s disease[11] and within the normal human cere-

bellum[12]. In our analysis, we probe the population-specific signals from smooth muscle,

endothelium, mast cells, macrophages, and T cells to explore the GO mechanisms associated

with these cell-specific gene lists. Macrophage and T cell-specific analysis yielded genes from

both unruptured and ruptured phenotypes which enrich in several expected mechanisms

(“immune response” and “T cell activation” being the most significant GO terms in both

groups for each, respectively; Fig 2). Comparison of enriched mechanisms between both

cohorts revealed processes associated with aneurysm rupture which were highly dissimilar

with all processes of the unruptured cohort (S<0.2). In particular, keratan sulfate catabolism,

cholesterol efflux, and antigen assembly via MHC II fulfilled this criterion and were therefore

considered to be mechanisms specific to rupture in the macrophage-specific model, while

TNF production was specific to unruptured aneurysms. Conversely, none of the enriched GO

terms fulfilled this criterion in the T-cell-specific model (Fig 3).

The major histocompatibility complex (MHC) II plays a key role in immune function. It’s

upregulation has previously been shown to associate with aneurysm formation and rupture

[38], though we are the first to isolate this mechanism in a direct comparison of unruptured

vs. ruptured aneurysms using macrophage-specific expression. Further, MHCII and other

immune-related mechanisms are closely associated with Btk[36] and HIF[37] thus demon-

strating overlap between our computational drug repurposing results, and the enriched mech-

anisms derived from population-specific gene expression. Finally, the role of cholesterol efflux

less clear. It has previously been suggested that statins may prevent the formation and rupture

of aneurysms[4], but this finding has been refuted by other studies which find no effect[5,6].

Interestingly, statins can have the effect of either increasing or decreasing macrophage-medi-

ated cholesterol efflux, though with an overall preference for inhibiting this process[39]. This

would lend theoretical mechanistic credibility to the potential utility of statins as a rupture-

prevention therapy via the reduction of macrophage-associated cholesterol efflux (found to be

associated with rupture in our results). Keratan sulfate (KS) is a complex glycosaminoglycan

(GAG) with several structurally and functionally diverse proteoglycan forms including fibro-

modulin, which is associated with collagen production and inflammatory cytokines[40]. More

generally, it has been shown that that total amount of GAGs is lower in aortic aneurysms com-

pared to normal aortas[41]. It is therefore plausible that this represents another mechanism of
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aneurysm formation/rupture, thus corroborating our finding outlined above. Finally, tumour

necrosis factor (TNF), the only mechanism specific to unruptured aneurysms, has been shown

to associate with aneurysm pathogenesis and rupture [42]. We hypothesize that the lack of this

signal in ruptured aneurysm is largely due to the signal being clouded by a number of other

inflammatory mechanisms associated with the ruptured state, though this cannot be deter-

mined from our data.

Limitations and future directions

There are multiple limitations of our study which must be considered. Firstly, the sample size

is relatively small, which may affect the generalizability of results. Nevertheless, it is still larger

than the majority of similar previous studies. Further, we did not have control over data collec-

tion as we used open repositories and therefore the data quality is not certain. We were never-

theless able to identify robust biological signal even in such heterogenous sample. Another

inherent limitation is the inability to determine which effects occur subsequent to aneurysm

rupture (rather than effects which predate rupture and therefore may serve as targets for rup-

ture prevention). For example, immune activation may occur secondary to rupture.

Future work will be needed to confirm and expand upon our current results. Larger, pro-

spective studies would be valuable to achieve greater generalizability and study control. Confir-

matory testing of proposed mechanisms with immunohistochemistry would also be valuable.

Finally, testing proposed drug candidates by analysis of electronic health records and by treat-

ing cell lines directly would be the next step in developing an effective medical therapy for the

prevention of intracranial aneurysm rupture. Given the rarity of these medications, however,

it is likely that the former would be challenging.

Conclusion

This study is the first to use gene co-expression networks and population-specific transcrip-

tomics to investigate the pathophysiology of intracerebral aneurysm rupture. We identified

multiple mechanisms of rupture, which have logical footing based on previous literature, as

well as several new drug candidates for the potential prevention of aneurysm rupture.

Supporting information

S1 Fig. Twelve modules were found to have significantly different average expression levels

between unruptured and ruptured aneurysms (p<0.05). Seven of these map significantly to

GO processes in DAVID (labeled). 0 = unruptured, 1 = ruptured.

(TIF)
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