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Abstract

Knowledge on the trophic interactions among predators and their prey is important in order

to understand ecology and behaviour of animals. Traditionally studies on the diet composi-

tion of insectivorous bats have been based on the morphological identification of prey

remains, but the accuracy of the results has been hampered due to methodological limita-

tions. Lately, the DNA metabarcoding and High Throughput Sequencing (HTS) techniques

have changed the scene since they allows prey identification to the species level, ultimately

giving more precision to the results. Nevertheless, the use of one single primer set to amplify

faecal DNA produces biases in the assessed dietary composition. Three horseshoe bats

overlap extensively in their distribution range in Europe: Rhinolophus euryale, R. hipposi-

deros and R. ferrumequinum. In order to achieve the deepest insight on their prey list we

combined two different primers. Results showed that the used primers were complementary

at the order and species levels, only 22 out of 135 prey species being amplified by both. The

most frequent prey of R. hipposideros belonged to Diptera and Lepidoptera, to Lepidoptera

in R. euryale, and Lepidoptera, Diptera and Coleoptera in R. ferrumequinum. The three bats

show significant resource partitioning, since their trophic niche overlap is not higher than

34%. Our results confirm the importance of combining complementary primers to describe

the diet of generalist insectivorous bats with amplicon metabarcoding techniques. Overall,

each primer set showed a subset of the prey composition, with a small portion of the total

prey being identified by both of them. Therefore, each primer presented a different picture of

the niche overlap among the three horseshoe bats due to their taxonomic affinity.

Introduction

Traditionally, diets of free-ranging animals have been determined by direct observation of

feeding bouts or food remains, and by microhistological inspection of gut contents or faeces.

Even if these approaches have provided much of the currently available dietary information on

wildlife, they have some limitations: either cannot be applied to elusive animals [1], are limited
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by ethical reasons [2,3], or the results heavily depend upon the researchers’ skills [4–6] and the

remains left by preys (reviewed in [7]). In order to overcome these difficulties, researchers

have innovatively adopted a wide array of molecular approaches with varying success [1, 8–

12]. Nonetheless, they have not been capable of determining the diets’ components at the spe-

cies level.

Conversely, DNA based dietary studies allow the examination of the range and diversity of

prey taken by generalist predators/consumers [1, 13], the identification of bulk samples even

within highly degraded samples such as faeces, gut contents or regurgitates [13], the processing

of DNA from many different consumed species [14] and, using non-invasive procedures, also

the diet characterization of elusive species [15, 16]. Consequently, DNA metabarcoding and

High Throughput Sequencing (HTS) techniques have recently become common-use in dietary

studies (e.g. [16–25]), offering great detection ability and identification of consumed prey and

plants to the species level. However, achieved results may be biased due to the sequencing tech-

nology [26], the genetic marker choice, the performance of the primers’ and PCR amplifica-

tion, and laboratory workflows or bioinformatic analyses (e.g. [27–29]).

Cytochrome oxidase gene subunit I (COI) has become the most commonly used marker

region in DNA metabarcoding diet studies (e.g. [19,24]) because it has the most extensive

information in genomic databases (BOLD, GenBank). Besides, it includes very short fragments

of DNA–"mini-barcodes” (representative fragments of COI)–easily recoverable from degraded

samples (e.g. [24, 30–32]). Amplification of such fragments is currently carried out using dif-

ferent primer sets with varying success. Most studies on the trophic ecology of insectivorous

bats have relied on the primers proposed by Zeale [19] (e.g. [17, 33–40], but see [41, 42]). The

Zeale primers have proven to be highly successful to amplify DNA from Diptera and Lepidop-

tera [43, 44], and therefore have been widely used. Nevertheless, primer choice is a critical step

in metabarcoding studies as the resulting list of prey may be unwittingly biased [17] due to the

particular taxonomic affinity of the selected primers (e.g. [28, 29, 45]).

Alberdi et al. [45] highlighted that the use of multiple primers targeting the same taxonomic

group reduces the effect of each primer sets’ biases and increments the taxonomic coverage,

obtaining a more complete view of the diet of the predator. Accordingly, Esnaola et al. [46]

showed that five primer sets targeting sections of varying lengths within the COI region per-

formed differently when amplifying faecal DNA of the generalist insectivorous Pyrenean des-

man Galemys pyrenaicus. Even if most of the primers used were able to identify the most

common arthropod prey taxa consumed, the differences regarding less abundant prey groups

were considerable, and hence the diet composition depended on the chosen primer sets.

Esnaola et al. [46] found that the combination of two primer sets was the most successful,

namely the Zeale primers mentioned above [24] and a second primer set modified following

Gillet et al. [31], targeting a shorter 133 bp mini-COI sequence. These two primer sets have dif-

ferent length and degeneration levels, and allegedly best reveal the prey range of generalist

predators [46].

We aim to apply the aforementioned pair of primer sets to the molecular diet analysis of an

ensemble of horseshoe bats (family Rhinolophidae) composed by Rhinolophus hipposideros
(Bechstein, 1800), R. ferrumequinum (Schreber, 1774) and R. euryale Blasius, 1853. These three

species have the greatest distribution range and broadest overlap in Europe. So far, the diet of

R. hipposideros and R. ferrumequinum have been analysed using only Gillet primers by Galan

et al. [42], while that of R. euryale has been characterized either with Zeale primers [33,34] or

with Gillet primers [42]. Based on those studies we expect that R. euryale will mainly prey

upon Lepidoptera, R. ferrumequinum upon Lepidoptera, Diptera and Coleoptera and finally R.

hipposideros upon Lepidoptera, Diptera and Neuroptera. In accordance with previous research

[27,46], we expect that the results of each primer set will be different and complementary,
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coming with a more precise view of their diet, since the identification of prey species will be

primer-dependent. Secondly, we want to evaluate the combination of the aforementioned two

primers sets to characterize the diet overlap of the three horseshoe bat species, which show

varying preferences for moths. Andreas et al. [47] studied the niche partitioning of the afore-

mentioned horseshoe bats based on microscopic identification and showed that their trophic

niche overlap was considerably low. Thus, we aim to see how the results on the overlap of their

trophic niches reflect the choice of the primer set.

Materials and methods

Study area

The study was carried out in Karrantza and Lea-Artibai Valleys (Basque Country, Northern

Iberian Peninsula). Karrantza is a hilly valley with elevations of 200–855 m a.s.l. (30T 46968E,

478950N) where the prevailing landscape consists of a mosaic of small meadows and pastures,

dedicated to dairy cattle breeding, surrounded by an important hedgerow network consisting

mainly of shrubs and deciduous trees. Lea-Artibai Valley is also a hilly and steep valley with

elevations ranging ca 40–700 ma.s.l. (30T 53647E, 479442N), where prevailing plantations of

P. radiata–and less frequently E. globulus–are interspersed with small farming patches and

small deciduous and holm oak woodland patches. Limestone massifs that provide abundant

natural cavities surround both valleys, characterized by Atlantic temperate oceanic climate,

where rainfall occurs throughout the year (annual mean 1400mm) [33].

Sample collection

Sampling was carried out during the breeding season, in July 2012. Within each sampling area

(Karrantza and Lea-Artibai), each bat species was sampled in a different capture site. There

were three roosts in Karrantza–one for each species–and two roosts in Aulesti–one used by R.

euryale and R. ferrumequinum, and another one by R. hipposideros. Bats were captured with a

2 × 2 m harp trap [48] located in the entrance of the colony roosts from 00:30 a.m. onwards, as

bats returned to the caves after foraging. Each captured bat was held individually in a clean

cloth bag until it defecated (a maximum of 40–90 min). Each bag was used only once to avoid

cross-contamination of faecal samples. Faecal material collected from each individual bat was

frozen within 6 h since collection time. Bats were immediately released into the cave after han-

dling. Considering both capture sites altogether, 24 R. ferrumequinum, 31 R. hipposideros and

18 R. euryale individuals were sampled. Individual bats were considered as sample units [49].

Ethics statement

Capture and handling protocols followed published guidelines for treatment of animals in

research and teaching [50] and were approved by the Ethics Committee at the University of

the Basque Country (Ref. CEBA/219/2012/GARIN ATORRASAGASTI). Captures were per-

formed under license from the Department of the Environment of the Regional Council of Bis-

cay (Permit numbers G13 1061; G13 1064 and G13 1066).

DNA extraction, PCR amplification, library preparation and

sequencing

Individual faecal samples of 10–40 mg were used for DNA extraction with the DNeasy Power-

Soil Kit (Qiagen, Valencia, CA), following the manufacturer steps. Extracted DNA was PCR-

amplified twice using to different primer sets, targeting different mini-COI segments of the

mitochondrial DNA cytochrome c oxidase subunit I barcode region (COI): Zeale primers
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(ZBJ-ArtF1c and ZBJ-ArtR2c) [24] were used to amplify a 157 bp section, and Gillet primers

(modified LepF1 and EPT-long-univR, following [31] to amplify another 133bp section. Both

amplifications were performed using QIAGEN Multiplex PCR Kit (Qiagen Iberia, S.L.

Madrid) in 25 μl PCR reactions. Each reaction contained 2.5 μl Buffer 10X, 1.5 μl MgCl2

50mM, 0.5 μl nNTPs 25mM and 0.125 μl of taq polymerase. In the case of Zeale primers, 0.6 μl

of each primer (forward and reverse), 17.175 μl deionised water and 2 μl sample DNA were

added. With Gillet primers, 0.75 μl of each primer, 14.875 μl deionised water and 4 μl sample

DNA were added. Each primer set had its own PCR program, modified from the reference to

the used reactive. Thermocycler conditions for Zeale primers were: 95˚C– 15 min; 50 cycles of

94˚C– 30 sec, 52˚C– 30 sec, 72˚C– 30 sec; 72˚C– 6 min (modified from [51]). For Gillet prim-

ers we used: 95˚C– 15 min; 40 cycles of 94˚C– 30 sec, 45˚C– 45 sec, 72˚C– 30 sec; 72˚C– 10

min [31]. For the library preparation, each sample was tagged with a unique combination of

Multiplex Identifier primers (MID) [52]. PCR outputs were sequenced by Ion Torrent

sequencing platform, one run making above one million reads.

Bioinformatic analyses

Quality control, sequence pre-processing and collapsing of identical sequences into a single

sequence were performed using CUTADAPT [53] and USEARCH [54]. Clustering of

sequences into Operational Taxonomic Units (OTU) was carried out with the UPARSE-OTU

[55] algorithm in USEARCH, at a 97% similarity threshold using the–cluster_otus command.

OTUs were normalized in order to avoid disparities in sample reads and the ones with less

than 1% frequency were filtered with USEARCH’s–otutab_norm and–otutab_trim commands.

The taxonomic assignment of each OTU was performed by comparing the representative

sequence of each OTU against reference sequences in the Barcode of Life Database (BOLD;

www.boldsystems.org/) using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and GenBank

(http://www.ncbi.nlm.nih.gov), following the identification criteria of Clare et al. [25]. The dis-

tribution range of each species was checked in order to verify that it encompasses our study

area. Species level assignments were performed when query sequences matched reference

sequences above 98% similarity and 75% overlap [25]. When query sequences matched more

than one species in the database, the hit with the longest alignment length was selected.

Besides, as a rule, only hits with e-value below 1e-20 were accepted [56] to make sure that the

match did not occur by chance. Primer outputs were also tested to see whether any of the

OTUs built from them could also identify the predators themselves.

Data analysis

To study the effect of primers on the species composition observed in the diet, we performed a

permutational multivariate analysis of variance (PERMANOVA) using adonis with 999 ran-

dom permutations in vegan 2.5–1 package [57] for R version 3.3.2 [58]. First of all, we mea-

sured the difference among colonies/sampling sites and, as it was not significant, it was no

longer considered. Then we used primer set and bat species as predictor variables and the

number of occurrences of prey as response variable. Jaccard’s distance measure was used to

calculate dissimilarities between samples. We performed NMDS in vegan 2.5–1 package for R

to visualize dissimilarities in species composition among samples. The percentage of occur-

rence (POO) of a given prey taxon refers to the percentage obtained with the number of occur-

rences of each taxon when compared with the total number of occurrences of all taxa and the

frequency of occurrence (FOO) to the number of bat individuals where each taxon was found

compared with the sample size [59].
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Pianka’s [60] measure of niche overlap has been carried out to compare the interspecific

resource partitioning of the species. For the comparison of the diet of the three bats adonis
analyses were performed and for the pairwise analysis we used pairwise.perm.manova from

RVAideMemoire 0.9–72 package [61].

Results

Diet of horseshoe bats

We successfully extracted and amplified DNA from faeces of 24 R. ferrumequinum individuals,

18 R. euryale and 31 R. hipposideros, obtaining above one million sequence reads (Table 1).

309 OTUs were then built and 135 of them were assigned to potential prey species consumed

by bats.

We identified 62 prey species of R. ferrumequinum: 34 lepidopterans, 17 dipterans, 7 cole-

opterans, 2 neuropterans and 1 trichopteran. Lepidoptera and Diptera were the most fre-

quently consumed, followed by Coleoptera (Tables A, B and C in S1 Supporting Information

File). Among the most frequently consumed species Pharmacis fusconebulosa (Hepialidae;

FOO = 46%) prevailed among Lepidoptera and Rhipidia maculata (Limoniidae; FOO = 71%)

and Tipula maxima (Tipulidae; FOO = 29%) among Diptera. Within Coleoptera, the most

consumed were the elaterid Stenagostus rhombeus (FOO = 46%) and the cerambycids Arhopa-
lus rusticus and Prionus coriarius (FOO = 42% and 17% respectively), completed with scara-

beids Aphodius sp. and Serica brunnea (FOO = 29% and 17% respectively).

Out of the 81 prey species identified in faeces of R. euryale, 61 were lepidopterans, 10 dip-

terans, 5 neuropterans, 2 ephemeropterans, 1 trichopteran, 1 hemipteran and 1 hymenopteran.

Lepidoptera was the most frequently consumed order followed by Diptera (Tables A, B and C

in S1 Supporting Information File), although the FOO of most of them was less than 20%. The

exceptions were the noctuids Capsula sparganii, Cosmia trapezina and Lycophotia porphyrea
(FOO> 28%), the geometrid Idaea biselata (FOO = 56%) and the limonid Austrolimnophila
ochracea (FOO = 94%).

Finally, 73 prey species were identified for R. hipposideros, including 33 lepidopterans, 28

dipterans, 3 hemipterans, 3 neuropterans, 2 coleopterans, 1 hymenopteran, 1 trichopteran, 1

spider and 1 psocopteran. Among them, Diptera were the most frequently consumed, followed

in descending order by Lepidoptera, Ephemeroptera, Trichoptera and Neuroptera (Tables A,

Table 1. Results obtained in the different steps of bioinformatic analyses with each of the primer sets.

ZEALE GILLET TOTAL

Sequence reads 112191 1003689 1115880

Primary OTUs 179 130 309

Identified OTUs 122 (68%) 69 (53%) 191

Potential taxa 112 58 (61)� 147 (150)�

Identified species 101 54 (57)� 135(138)�

Occurrences of identified sp. 350 278 (294)� 628 (644)�

“Taxa” are the sum of OTUs identified up to species and genus level. (Sequence reads: Total of reads generated from

the sequencing; Primary OTUs: Total of built OTUs; Identified OTUs: Number of OTUs which have been identified

in the databases with the established similarity and overlap levels; Potential prey taxa: Total number of taxa identified

up to genus or species level; Potential prey species: Total number of identified species; Occurrences of potential prey:

Total number of occurrences of the identified OTUs.)

�: The number in brackets belongs to the total species number identified in Gillet’s samples, and the previous one to

the potential prey species (i.e., excluding those considered environmental pollution).

https://doi.org/10.1371/journal.pone.0220081.t001

Diet of horseshoe bats through molecular primer combination

PLOS ONE | https://doi.org/10.1371/journal.pone.0220081 July 24, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0220081.t001
https://doi.org/10.1371/journal.pone.0220081


B and C in S1 Supporting Information File). Among Diptera, lesser horseshoe bats mostly

preyed upon limonids Austrolimnophila ochracea (FOO = 100%), Rhipidia maculata
(FOO = 58%), Neolimonia dumetorum (FOO = 52%), Limonia nubeculosa (FOO = 29%) and

Dicranomyia modesta (FOO = 26%), and the tipulid Tipula helvola (FOO = 55%). They also

consistently preyed upon the neuropterans Hemerobious humulinus and Wesmaelius nervosus
(FOO> 19%). Noteworthy, the occurrence of most moth species was below 3 with a maxi-

mum of 8 occurrences of the autostichid Anania hortulata.

As a whole, 12 prey species have been identified in the faeces of the three predators: 6 were

lepidopterans (Acronicta rumicis, Cyclophora punctaria, Idaea degeneraria, Anaplectoides pra-
sina, Noctua sp. and Udea ferrugalis), 5 dipterans (Rhipidia maculata, Austrolimnophila ochra-
cea, Limonia nubeculosa, Neolimonia dumetorum and Tipula helvola) and one neuropteran

(Hemerobius humulinus).

Performance of primers

Gillet primers yielded the highest numbers of reads, whereas Zeale ones got the highest num-

bers of either primary OTUs, positively identified OTUs, occurrences of prey and prey species

identified (Table 1). Moreover, some of the OTUs built from Gillet primers were identified as

belonging to algae and mammal species (4.41% of the total taxa), and so they must be consid-

ered as environmental pollution instead of "potential prey" consumed by bats.

We first tested that there was not significant geographical effect of the two sampling sites

in the diet (F(1,68) = 1.031; R2 = 0.132; p = 0.37). Therefore, the location variable was not con-

sidered in further analyses. The difference between species diets is significant for the whole

data set (F(2,135) = 8.277; R2 = 0.092; p = 0.001), but also for the results obtained with each of

the primer sets by their own (Gillet:F(2,70) = 10.466; R2 = 0.230; p = 0.001; Zeale: F(2,65) =

4,772; R2 = 0.128; p = 0.001). The primer choice significantly affected the resulting diet com-

position (F(1,135) = 14.438; R2 = 0.082; p = 0.001; Fig 1). Consequently, the sum of the partial

results enlarged the entire prey species list. Of the total species identified as potential prey

40% have been identified with Gillet’s set and 74.8% with Zeale’s, i.e., only 21 out of the 135

(15.5%) potential prey species have been amplified by both primer sets. Anyway, we can see

that both primer and bat species affect the list of consumed prey, with a slightly higher expla-

nation of the variation in the case of the bat species. The interaction of primer and species

also shows a significant difference among the results, even if it explains less variation than

primers and species on their own (F(2,135) = 4.841; R2 = 0.055; p = 0.001). The complete lists

of potential prey species identified with each primer set is are included in Tables A, B and C;

sequences of all the OTUs built are available in Table D, all of them in S1 Supporting Infor-

mation File.

There were big qualitative and quantitative differences among primers at a broader taxo-

nomic level as well (F(1,135) = 61.157; R2 = 0.239; p = 0.001) (Fig 2, Tables 2 and 3, and Table A,

in S1 Supporting Information File). Thus, Zeale primers were able to identify five orders of

potential prey–namely Lepidoptera, Diptera, Neuroptera, Hemiptera and Psocoptera–whereas

OTUs yielded from Gillet primers were assigned to species of fifteen orders: namely Lepidop-

tera, Diptera, Coleoptera, Trichoptera, Neuroptera, Ephemeroptera, Hemiptera, Hymenoptera

and Araneae for prey species, as well as Mucorales, Artiodactyla, Primates and Chiroptera for

environmental DNA. Besides, Zeale primers yielded more occurrences than Gillet ones

(Table 1). The three predator species were identified with Gillet primers in all samples but in 2

R. ferrumequinum.

The interspecific overlap of the diet obtained with Zeale primer sets is not significantly

different than the expected by chance (Ojk = 0.18, P = 0.076). R. ferrumequinum and R.

Diet of horseshoe bats through molecular primer combination
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hipposideros show the highest overlap (Ojk = 0.34), followed by R. euryale and R. ferrumequi-
num (Ojk = 0.12), and R. euryale and R. hipposideros (Ojk = 0.08). On the contrary, the overlap

based on Gillet primers was significantly higher than expected by chance (Ojk = 0.50,

P = 0.002) with the least overlap between R. euryale and R. ferrumequinum (Ojk = 0.25) and

the highest overlap between the other two species pairs (R. euryale—R. hipposideros: Ojk =

0.74; R. ferrumequinum—R. hipposideros: Ojk = 0.52). In any case, the effect size is still gener-

ally large and the p-value generally small. Similarly, when results of both primer sets are com-

bined the overlap was higher than expected by chance (Ojk = 0.34, P = 0.001). Again, the least

overlap was showed by R. euryale and R. ferrumequinum (Ojk = 0.15), while the other two cou-

ples show a higher overlap (R. euryale—R. hipposideros: Ojk = 0.38; R. ferrumequinum—R. hip-
posideros: Ojk = 0.50).

Discussion

Our results confirm the relevance of combining complementary primers to describe the diet of

generalist insectivorous bats with amplicon metabarcoding techniques. In general, each pair of

primers revealed a subset of the prey composition, with a small fraction of the species being

detected by both of them. As a result, the interplay between the primer taxonomic affinity and

Fig 1. NMDS ordination of samples. Stress = 0.1997; k = 2; non-metric fit R2 = 0.96. Dots represent prey species and colours

different primer sets (Red: Zeale; Green: Gillet). More distant dots indicate more different prey composition of samples. Individual

bat samples are represented as grey triangles.

https://doi.org/10.1371/journal.pone.0220081.g001

Diet of horseshoe bats through molecular primer combination

PLOS ONE | https://doi.org/10.1371/journal.pone.0220081 July 24, 2019 7 / 15

https://doi.org/10.1371/journal.pone.0220081.g001
https://doi.org/10.1371/journal.pone.0220081


Fig 2. Results of the three bats’ diet obtained with each primer and combining both primers. Results are

represented as percentages of occurrences (POO) (2a: R. ferrumequinum, 2b: R. euryale, 2c: R. hipposideros). “Others”

comprise the orders with lesser frequencies: Araneae, hemiptera, hymenoptera, psocoptera and trichoptera. GIL:

Gillet; ZEA: Zeale; COMB: Combination of both primer sets.

https://doi.org/10.1371/journal.pone.0220081.g002
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dietary composition of the bat affected the niche overlap among the three horseshoe bats pic-

tured by each primer.

Due to their more generalist character [31], Gillet primers amplify and identify a higher

number of different orders, showing a more diverse diet composition. This generalist charac-

ter, though, doesn’t cover a full representation or important prey orders such as Lepidoptera.

Moreover, their high amplification success comes with the impossibility of identifying a sub-

stantial fraction of the amplified DNA (Table 1). On the contrary, the higher selectivity of the

Zeale primer set for Lepidoptera and some Diptera [43, 44] might elicit the underestimatima-

tion of other groups of consumed prey, such as Coleoptera, Ephemeroptera, Hymenoptera or

Orthoptera [44]. On the positive side, maybe due to their lesser degeneration level, a higher

proportion of the OTUs got with Zeale primers were assigned to know taxa (68%, Table 1),

providing a deep coverage of lepidopteran prey species.

As both primer sets used in our study amplify regions of the same well-represented COI

marker region, the final prey list did not depend of the availability of model species’ sequences

Table 2. Species identified in faeces and their occurrences with each primer set (Zeale’s and Gillet’s), and combining results, arranged by prey orders.

ORDER ZEALE GILLET COMBINED

Occur. a Sp. b Occur. a Sp. b Occur. a Sp. b

Araneae 0 0 2 1 2 1

Coleoptera 0 0 44 10 44 10

Diptera 68 19 165 37 269 55

Ephemeroptera 0 0 3 2 3 2

Hemiptera 1 1 5 3 6 4

Hymenoptera 0 0 3 2 3 2

Lepidoptera 256 119 43 17 281 128

Neuroptera 26 6 10 5 33 10

Psocoptera 1 1 0 0 1 1

Trichoptera 0 0 5 2 6 3

aNumber of occurrences
bSpecies amount

https://doi.org/10.1371/journal.pone.0220081.t002

Table 3. Main orders of prey consumed identified in faeces of the three species of horseshoe bats.

ORDER R. ferrumequinum R. euryale R. hipposideros
FOOa Sp.b FOOa Sp.b FOOa Sp.b

Araneae 0,00 0 0,00 0 6,45 1

Coleoptera 70,83 8 0,00 0 9,68 2

Diptera 95,83 17 94,44 10 100,00 28

Ephemeroptera 0,00 0 16,67 2 0,00 0

Hemiptera 4,17 0 11,11 1 12,90 3

Hymenoptera 0,00 0 5,56 1 6,45 1

Lepidoptera 79,17 34 100,00 61 70,97 33

Neuroptera 20,83 2 22,22 5 48,39 3

Psocoptera 0,00 0 0,00 0 3,23 1

Trichoptera 4,17 1 5,56 1 12,90 1

aFrequency of Ocurrence of each order
bSpecies amount

https://doi.org/10.1371/journal.pone.0220081.t003
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in the databases. Moreover, both primers target mini-COI segments of similar size, short

enough to be present in faecal samples after digestion [24,30–32]. In fact, the slightly higher

amount of primary OTUs yielded by Gillet primers is consistent with the fact that this primer

set amplifies moderately shorter fragments than Zeale ones (133 vs 157 bp, respectively). Nev-

ertheless, the more degenerated Gillet primers could have amplified more DNA fragments,

generating more OTUs but with a lower assignment to prey taxa whereas Zeale primers pro-

duced less OTUs but with a higher assignment to taxa, consistently with their lower degree of

degeneration.

The latest molecular study carried out by Galan et al. [31] described the diet of R. ferrume-
quinum as mainly consisting in Lepidoptera and Diptera, whereas morphological studies have

described Coleoptera and Lepidoptera as the most important prey orders [47,62–64]. In our

study Diptera occurs in 96% of the samples, closely followed by Lepidoptera (79%) and Cole-

optera (71%). Nevertheless, lepidopterans were the main prey order detected with Zeale prim-

ers, followed by dipterans, whereas with Gillet ones coleopterans and dipterans prevailed,

lepidopterans falling down to a modest third place. In fact, coleopterans were only amplified

by Gillet primers and some of the most important lepidopteran families (namely Geometridae,

Noctuidae and Totricidae) were disclosed by Zeale. We report the family Geometridae and fre-

quently occurring species such as Rhipidia maculata (Diptera, Limoniidae), Serica brunnea
(Scarabaeidae) and Pharmacis fusconebulosa (Lepidoptera, Hepialidae), for the first time

among prey of R. ferrumequinum.

R. euryale has been widely considered a moth specialist [62] and, according to Koselj [65]

and Dietz [66], lepidopterans make up 90% of its diet. In our study, separate molecular studies

performed with the two primers showed a narrow specialization level of R. euryale for lepidop-

terans, but seasonally complemented by ephemeropterans, hemipterans, hymenopterans and

trichopterans [33,42]. In fact, ephemeropterans had been previously reported as prey of R. eur-
yale in North Africa [67]. Noteworthy, lepidopterans are almost the only preyed order if using

Zeale, whereas Gillet gives similar importance to lepidopterans and dipterans. Four out of the

five most frequently occurring lepidopterans—namely Capsula sparganii (Noctuidae), Udea
ferrugalis (Crambidae), Lycopohotia porphyrea (Noctuidae), Scoparia sp. (Crambidae) where

solely amplified by Zeale. The two most preyed species Capsula sparganii and Austrolimno-
phila ochracea have not been described before in the diet of R. euryale.

R. hipposideros is known to prey mostly upon Diptera Nematocera, followed by Lepidoptera

and Neuroptera [68, 69]. In our study, the combined use of both primer sets overall confirms

the diet composition depicted in previous studies [42, 63, 67–70], even if the family choices

within dipterans and neuropterans differ. When only Gillet primers were used, though, preva-

lence of dipterans (mainly limonids) inflated, while that of lepidopterans and neuropterans

(hemerobids) deflated. For Zeale, instead, dipterans and lepidopterans appeared almost in the

same frequencies, closely followed by neuropterans. This results agree with Andreas et al. [47]

who reported a highly prevalence of Lepidoptera in the pellets. Some of the most important

families within Diptera reported by morphological studies [71], namely Tipulidae, Empididae,

Muscidae and Culicidae are also represented within the most frequent prey species in the cur-

rent study, Empididae only amplified by Gillet and Muscidae only by Zeale. Two of the most

frequent limonid prey species—namely Neolimonia dumetorum and Limonia nubeculosa—

had been previously reported by Galan et al. [42]. Conversely, some other frequent limonids

such as Austrolimnophila ochracea, Rhipidia maculata, Dicranomyia modesta or along with

other frequent prey species—Hemerobius humulinus (Neuroptera, Hemerobiidae), Wesmae-
lius nervosus (Neuroptera, Hemerobiidae), or Pseudatemelia josephinae (Lepidoptera)—had

not been reported before.
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Noteworthy, most of the molecular diet studies carried out on bats exclusively with Zeale

primers not surprisingly have concluded that moths or/and Diptera were their main prey: e. g.

Barbastella barbastellus, Plecotus macrobullaris, Chalinolobus gouldii, Vespadelus regulus, Nyc-
tophilus gouldi, Eptesicus nilssonii, Myotis brandtii, M. daubentonii, M. mystacinus and Plecotus
auritus [17, 24, 35, 39]. In some of the studies [35] previously known prey species–such as

Coleoptera, Hymenoptera, Isoptera and Trichoptera–were lacking. Notwithstanding the well-

settled importance of moths and dipterans as prey of insectivorous bats (e.g. [63,3]), the reli-

ability of trophic scenarios depicted so far only with Zeale primers is still to be ascertained.

Therefore, new studies using combination of primers are highly advisable in order to acquire

the fullest dietary view whether to confirm the results obtained with Zeale.

Furthermore, the strong primer bias reported herein cast doubts on the results of previous

studies comparing the trophic niche overlap between sibling bat species, carried out exclu-

sively with a single primer set (Zeale). For example, a study comparing the niches of R. eur-
yale–R. mehelyi [34] showed a high degree of diet overlap. Razgour et al. [51] obtained similar

results for Plecotus austriacus and P. auritus. Some other studies have also analysed the diets of

sympatric bat species [40] based on Zeale primers. Even though the diet overlaps these studies

reported cannot be denied, other primers may well unveil additional consumed prey and

higher levels of resource partitioning among the species pairs.

Last but not least, previous studies have shown that Gillet primers are useful to identify

predators’ DNA [42,46]. In this study we identified almost all the faecal samples for their pred-

ator, in except from two R. ferrumequinum samples. Galan et al. [42] argued that a mismatch

(T/C) at the 30-end of the reverse primer could be at the origin of their higher rates of amplifi-

cation failure for some bat species, including R. ferrumequinum. We also identified DNA

remains indicating unexpected interactions, including secondary predation events. Thus, we

found one R. euryale faecal sample containing Bos taurus sequences, likely traces of bovine ani-

mal excrements coming from the common housefly (Musca domestica). Lichtheimia ramosa
was identified in R. euryale and R. hipposideros. This is a fungus living in soil and vegetable

wastes that infects both animals and humans. These results must be considered with caution,

though, because field contamination cannot be fully discarded.

Conclusion

On the one hand, the present study shows that the combination of primer sets with different

degeneration degrees that amplify different sub-regions of a specific marker allows identifying

a broader and more complete prey spectrum for generalist predators like insectivorous bats.

The complementarity of the results yielded by both primer sets lie at the species level, since

very few prey species’ sequences were amplified by both primers. For instance, thanks to the

use of both primer sets we were able to reveal that R. euryale, though considered a moth spe-

cialist, complemented its diet with very diverse prey. On the other hand, our results stress the

constraints of the PCR-based metabarcoding diet studies, due to the biases of the many meth-

odological procedures and steps involved in them. Due to biases involving false positives, false

negatives and varying affinities to amplify different sequences, we must be extremely cautious

when drawing any conclusion from the results gathered, and even when comparing results of

different studies. This strong bias when amplifying prey sequences will yield erroneous or at

least partial pictures of the trophic requirements of the consumers and resource partitioning

among them. In this context, the use of complementary primers improves any assessment of

species trophic spectrum and resource partitioning. In this case, we have seen that among the

three studied horseshoe bats resource partitioning exists, mostly between R. euryale and R.

ferrumequinum.
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