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Abstract

Due to their ease of isolation, gene modification and tumor-homing properties, mesenchy-

mal stem cells (MSCs) are an attractive cellular vehicle for the delivery of toxic suicide

genes to a variety of cancers in pre-clinical models. In addition, the incorporation of suicide

genes in stem cell-derived cell replacement therapies improves their safety profile by permit-

ting graft destruction in the event of unexpected tumorigeneses or unwanted differentiation.

Due to the functional requirement of ATP for the Firefly luciferase gene Luc2 to produce

light, luciferase-based reporting of cytotoxicity can be engineered into potential cell thera-

pies. Consequently, we nucleofected mammalian expression plasmids containing both the

Luc2 and the yeast fusion cytosine deaminase uracil phosphoribosyltransferase (CDUPRT)

genes for expression in murine MSCs to assess luciferase as a reporter of suicide gene

cytotoxicity, and MSC as vehicles of suicide gene therapy. In vitro bioluminescence imaging

(BLI) showed that following the addition of the non-toxic prodrug fluorocytosine (5-FC),

CDUPRT-expressing MSCs displayed enhanced cytotoxicity in comparison to Luc2 reporter

MSC controls. This study demonstrates the utility of luciferase as a reporter of CDUPRT-

mediated cytotoxicity in murine MSC using BLI.

Introduction

MSCs were originally identified by Friedenstein et al, in 1976 as a fibroblast-like cell popula-

tion [1]. The definition of MSCs has evolved over time due to the changing understanding of

MSC biology. Currently, the International Society for Cellular Therapies (ISCT) has defined

MSCs as a heterogeneous stem cell population characterised by; (i) adherence to plastic under

standard culture conditions; (ii) a fibroblast-like morphology; (iii) the capacity to differentiate

into osteocytes, chondrocytes and adipocytes; (iv) lack of expression of haematopoietic mark-

ers CD11b, CD14, CD34, CD19 or CD79a, CD45, HLA-DR and the vascular marker CD31

[2–6]; (v) expression of CD13, CD44, CD54, CD73, CD90, CD105, CD146, CD166, CD200,
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SCA-1 and STRO-1 [2, 4–7]. Due to their ease of isolation and genetic modification, ex vivo
expanded MSCs have been assessed in the pre-clinical and clinical setting as vehicles for thera-

peutic gene delivery.

Suicide gene therapy is grounded on the concept of delivering a bacterial or viral gene to

mammalian cells, whose enzyme product is able to convert a non-toxic prodrug to its toxic

form resulting in cell death [8]. Consequently, this controllable system of cell death has been

assessed as an alternative therapy to traditional cancer treatments such as chemotherapy and

radiation therapy. Suicide gene therapy has been assessed in the treatment of leukaemia [9],

prostate cancer [10] and breast cancer [11] amongst many others. A number of systems exist

that function via enzymatic conversion of a prodrug to its lethal form. The most commonly

assessed systems are the herpes simplex virus thymidine kinase gene [12, 13] with ganciclovir

as the pro-drug, and the Escherichia coli cytosine deaminase gene (CD) [14, 15] with 5-FC as

the prodrug. Following conversion of the non-toxic prodrug 5-FC to its lethal form 5-fluoro-

uracil (5-FU), apoptosis is induced in targeted cells via interference of the mitochondrial path-

way [14]. The CD system has been further improved by fusion with the uracil

phosphoribosyltransferase (UPRT) gene (CDUPRT) which facilitates the conversion of the

toxic 5-FU to 5-FU monophosphate, further sensitizing 5-FU-resistant tumor cells to low con-

centrations of 5-FU [16].

Bioluminescence imaging (BLI) is a novel method of assessing cellular cytotoxicity by

exploiting the fact that dying cells stop producing bioluminescence, as luciferase activity is

ATP-dependent. As a result, BLI has been demonstrated to be superior to the traditional Chro-

mium-51 release cytotoxicity assay, due to its increased signal-to-noise ratio and faster kinetics

[17]. In this study, we developed an in vitro luciferase reporter system for monitoring the cyto-

toxicity of the CDUPRT gene, engineered to be expressed in murine MSCs. We confirmed the

cytotoxic function of CDUPRT in engineered MSCs and identified the minimum concentra-

tion at which 5-FC becomes detrimental to health of normal MSCs. The results from this study

demonstrate the utility of in vitro luciferase reporting of CDUPRT-mediated MSC cytotoxicity

and confirms the potential for MSC-derived suicide therapy.

Materials and methods

Sourcing of animals

NOD mice were sourced from the Animal Resources Centre (WA, Australia). All animal work

was approved by the UTS Animal Care and Ethics Committee (ACEC 2011-447A; ACEC

2009-244A), and complied with the Australian code for the care and use of animals for scien-

tific purposes [18].

MSC isolation and cell culture

Three MSC isolations were performed using a procedure adapted from published protocols

[19–22]. Briefly, bone marrow was flushed from the femurs of twenty female NOD mice (6–8

weeks old), and the cell pellet was resuspended in standard medium (α-MEM, 1% (v/v) 100x

Penicillin/Streptomycin/L-Glutamine (P/S/G) with 20% (v/v) Fetal Bovine Serum (FBS)) (all

sourced from Gibco, Thermofisher), and incubated at 37˚C/5% CO2. Plastic-adherent stromal

cells were sub-cultured for two passages (with epiphyses) prior to FACS.

Passage 2 plastic-adherent stromal cells (5x105 cells) were resuspended in sorting buffer (1x

HBSS, 5% (v/v) FBS) and stained with 0.2mg/ml rat anti-mouse CD45 monoclonal antibody

(mAb) conjugated to allophycocyanin (APC) (BD Pharmingen, USA) and 0.2mg/ml rat anti-

mouse Ly6 (Sca-1) mAb conjugated to phycoerythrin (PE) (BD Pharmingen, USA). Stained

stromal cells sorted via FACS at the Advanced Cytometry Facility (Centenary Institute,
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Sydney, Australia) on a BD FACSAria II flow cytometer and analysed using BD FACSDiva

software (Version 6.1.3). The stromal cells were sorted into CD45-/Ly6+ (MSCs) and CD45+/

Ly6+ (double positive) cell populations. Sorted cells were resuspended in standard MSC

medium and incubated at 37˚C/5% CO2. Following cell attachment, 10ng/ml basic fibroblast

growth factor (bFGF) was added to the medium.

MSC viability and clonogenicity

For cell viability, MSCs and double positive cells at early (P3-15) passage number were seeded

in 24-well plates (2.5x103 cells/well) (Falcon BD Biosciences, San Jose, USA) in triplicate, and

maintained in standard MSC medium for 15 days, with medium replenished weekly. Cell via-

bility was assessed by Trypan Blue (0.4% v/v; Gibco, Thermofisher) exclusion. Total cell and

viable cell numbers were determined and represented as mean ± standard deviation (SD) for

each time point (n = 3).

For clonogenicity assays, MSCs and double positive cells at early (P3-15) passage number

were seeded in 10cm2 tissue culture treated plates (5x102 cells/plate) (Falcon BD Biosciences),

and maintained in standard MSC medium for 10 days. Colonies were stained with 0.4% v/v

methylene blue in methanol and counted by microscopy. Data were represented as mean col-

ony count per 5000 cells ± SD (n = 3). Standard MSC medium was replenished weekly.

Differentiation assays

Adipogenesis. Early (P3-15) passage cells were seeded in standard MSC medium in

24-well plates (2.5x104 cells/well) in triplicate and grown to 80–90% confluence. The medium

was subsequently replenished with either adipogenic control or differentiation medium as pre-

viously described [23]. The cells were stained with 0.2% (w/v) Oil Red O in methanol (Fronine,

Sydney, Australia) and semi-quantitatively scored as previously described [23]. Values were

expressed as counts per cm2 and were represented as mean ± SD (n = 3).

Osteogenesis. Early (P3-15) passage cells were seeded in standard MSC medium in

24-well plates (1.25x104 cells/well) in triplicate and grown to 90–95% confluence. The medium

was subsequently replenished with either osteogenic control or differentiation medium as pre-

viously described [23]. The cells were stained with 2% (w/v) Alizarin Red S (pH 4.1) (Fronine)

and semi-quantitatively scored as previously described [23]. Values were expressed as counts

per cm2 and were represented as mean ± SD (n = 3).

Chondrogenesis. Early (P3-15) passage cells were seeded in standard MSC medium in

24-well plates (1.25x104 cells/well) and grown to 90% confluence. The medium was subse-

quently replenished with either control (MesenCult-ACF Chondrogenic Differentiation Basal

Medium (STEMCELL Technologies, Vancouver, Canada), 2mM L-glutamine) or differentia-

tion (MesenCult-ACF Chondrogenic Differentiation Basal Medium, 2mM L-glutamine,

MesenCult-ACF 20X Chondrogenic Differentiation Supplement) medium and incubated at

37˚C/5% CO2 for 18 days. On day 18, the cells were fixed in 10% neutral buffered formalin

and stained with Alcian blue solution (8x, pH2.5) (Sigma-Aldrich, Sydney, Australia). Chon-

drogenesis was visualised by Alcian blue staining of filamentous glycosaminoglycans.

Construction of mammalian expression plasmids

The manipulation of genetic material and the generation of genetically modified organisms

was approved by the UTS Biosafety Committee (2001-19-R-GC; 2009-02-R-GC). Briefly, the

luciferase reporter gene Luc2 (Photinus pyralis), encoded within the vector pGL4.20 (Luc2/

Puro) (Promega, USA), was digested with the restriction enzymes EcoRV-HF and BamHI-HF

(New England Biolabs, USA), and ligated into the mammalian dual expression plasmid
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pVITRO2-hygro-mcs (InvivoGen, USA), to generate the plasmid pVITRO2-Luc2. The

CDUPRT gene encoded by the plasmid pORF5-Fcy::Fur (InvivoGen, USA), was digested with

EcoRI-HF and NheI-HF (New England Biolabs, USA), and ligated into the pVITRO2-Luc2
plasmid, to generate the plasmid pVITRO2-Luc2/CDUPRT.

Nucleofection

Early passage MSCs (1x106 cells/reaction) were nucleofected with 5μg of either pVITRO2-

Luc2 or pVITRO2-Luc2/CDUPRT, and 2μg pmax-GFP (Lonza, USA) using the Nucleofector

II device (Lonza, USA) according to the manufacturer’s instructions. Following nucleofection,

the cells were returned to culture in standard MSC medium at 37˚C/5% CO2 for one week. Sta-

ble clones were then selected with 200μg/ml Hygromycin B (Thermofisher Scientific) over a

two-week period.

Morphological analysis

Images of four fields of view at 10x or 20x magnification were acquired at early passage num-

ber using a Leica DM microscope (Leica Microsystems, Weltzar, Germany), and processed

using the image processing software, Leica Application Suite (V4.4.0) (Leica Microsystems).

Scale bars on figures are equivalent to 100μm.

In vitro luciferase assay

A linear concentration of MSC-Luc2, MSC-Luc2/CDUPRT and MSC-Luc2/LacZ ID7 (positive

control) (1x104-6x105 cells/well) were seeded in 96-well ViewPlate microplates in triplicate

(n = 3). The cells were incubated at 37˚C/5% CO2 overnight, and imaged on the IVIS Lumina

II (PerkinElmer, USA) the following day following the addition of 150μg/ml D-Luciferin

(Gold Biotechnology, USA). BLI was performed at multiple time-points (t = 0, 15, 30, 60, 90,

120 and 180 min) to determine the stability of luciferase activity over a 3-hour period. For

quantification, a region of interest (ROI) was manually selected using the Living Image (Ver-

sion 3.1) software. BLI intensity values are represented as the mean average radiance ± SDs (p/

s/cm2/sr). The following in vitro BLI acquisition settings were used: Incubation time; 2 min,

Exposure time; 30 sec, F stop; 1, Field of view; D, Binning; Small.

5-FC and 5-FU in vitro cytotoxicity assay

Early passage MSC-Luc2 and MSC-Luc2/CDUPRT (5x102 cells/well) were transferred to half

of a 96-well ViewPlate microplate (PerkinElmer, USA) (n = 12 total) respectively and incu-

bated at 37˚C/5% CO2 for 24 hours. The following day, a 2-fold serial dilution of 0-2mg/ml

5-FC (Invivogen, USA) and a 10-fold serial dilution of 0–0.1mg/ml 5-FU (Invivogen, USA)

were prepared in standard MSC medium, and added to the 96-well ViewPlate microplates

(+/-5-FC; n = 3 and +/-5-FU; n = 3). The plates were subsequently incubated at 37˚C/5% CO2

for 5 days, after which the plates were imaged for luciferase expression on the IVIS Lumina II

using the in vitro BLI acquisition settings. BLI intensity values are represented as the mean

average radiance ± SDs (p/s/cm2/sr).

Statistical analysis

All statistical analysis was performed using GraphPad Prism 7 software. Values are represented

as means ± SDs or SEMs. One-way or two-way ANOVA with the appropriate post-hoc tests

were performed, with p< 0.05 indicating significance.
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Results

NOD MSCs conform with the ISCT classification criteria

MSCs identified by FACS correspond to the CD45-/Ly6+ cell population, which constituted

~80–90% of the parental stromal cell population (Fig 1A). These cells display plastic adherence

and a fibroblast-like morphology (Fig 1B), unlike CD45+/Ly6+ (double positive) cells, which

appear to possess an irregular cuboidal morphology. An inter-population analysis of cell pro-

liferation showed that MSCs possess enhanced proliferation by comparison to double positive

cells (Fig 1C). In addition, MSCs demonstrated enhanced clonogenicity by comparison to

double positive cells (Fig 1D). Following preliminary culture of the two sorted cell popula-

tions, tri-lineage differentiation assays were performed to confirm the functional identity of

the sorted CD45-/Ly6+ cells as MSCs. Oil Red O, Alizarin Red and Alcian Blue staining of adi-

pogenesis, osteogenesis and chondrogenesis respectively demonstrated that sorted MSCs pos-

sessed tri-lineage differentiation potential (Fig 1E). An inter-population analysis of adipogenic

(Fig 1F) and osteogenic (Fig 1G) differentiation showed that MSCs possess enhanced differen-

tiation potential by comparison to double positive cells. As a result, CD45-/Ly6+ enriched cells

correspond to MSCs as defined by the International Society for Cellular Therapy (ISCT) [4,

24].

MSCs nucleofected with pmax-GFP and analyzed by fluorescence microscopy showed that

~50% of MSCs were GFP+ at 6 hours post-nucleofection, which increased to ~70–75% GFP+

at 24 hours post-nucleofection (Fig 2A). Variations in GFP fluorescence intensity were also

observed amongst GFP+ MSCs. To generate bioluminescent/reporter MSCs (MSC-Luc2) and

suicide/therapeutic MSCs (MSC-Luc2/CDUPRT), early passage MSCs were nucleofected with

pVITRO2-Luc2 and pVITRO2-Luc2/CDUPRT (Fig 2B) respectively. The nucleofection effi-

ciency could not be quantified due to the absence of a co-expressed fluorescent reporter for

downstream analysis. An antibiotic sensitivity assay for Hygromycin B determined that the

concentration of antibiotic required to kill >90% of native MSCs within 7–10 days was 200μg/

ml (Fig 2C and S1 Table). Following nucleofection with pVITRO2-Luc2 and pVITRO2-Luc2/

CDUPRT, Hygromycin B selection yielded one and two stable clones respectively. Morpholog-

ical analysis showed that by comparison to parental MSCs, nucleofected MSCs retained a

fibroblast-like morphology despite a reduced cytoplasmic volume (Fig 2D).

Luciferase is a stable reporter of MSC viability in vitro
In vitro characterization of luciferase activity was assessed in bioluminescent MSCs, and sui-

cide MSCs clone 1 and clone 2 via BLI at multiple time-points following incubation with D-

luciferin (Fig 2E). An increase in luminescent signal is observed in all Luc2-expressing MSC

clones with increasing cell density. The decrease in luminescent signal emitted from the posi-

tive control MSC-Luc2/LacZ ID7 at equivalent cell numbers is likely attributable to clonal dif-

ferences in Luc2 expression. Analysis of luminescent signal represented as average radiance

(photons/sec/cm2/sr), demonstrated a linear correlation between cell concentration and units

of luminescence in each of the Luc2-expressing MSC cell lines. All Luc2-expressing MSC

clones demonstrated R2 values of>0.98 at each time point between t = 0 and t = 3 hours. The

linear correlation between cell concentration and luminescence confirmed the selection of

clonal populations of Luc2-expressing MSC (Fig 2F and S2 Table). In addition, the overlap-

ping luminescence curves at multiple time-points demonstrated stability in the luminescent

signal up to 3-hours following incubation with D-luciferin. No significant difference was

observed in the luminescent signal between bioluminescent MSCs and the two suicide MSC

clones. At 24 hours following addition of D-luciferin, luminescence from bioluminescent
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Fig 1. FACS enrichment and functional characterization of NOD MSCs. (a) FACS enrichment of NOD MSCs.

Following culture for two passages, NOD bone marrow stromal cells were stained with CD45 mAb conjugated to

fluorochrome APC (CD45-APC), Ly6 MAb conjugated to fluorochrome PE (Ly6-PE) and both mAbs (CD45-APC/

Ly6-PE). Unstained cells were used as a negative control. Fluorescence dot plots of CD45-APC (y-axis) and Ly6-PE (x-

axis) were used to identify the MSC (CD45-/Ly6+; blue) and double positive (CD45+/Ly6+; red) cell subpopulations ready

for cell sorting using the BD FACSAria II flow cytometer. Data are representative of two individual FACS sorting

experiments; (b) Plastic adherence, fibroblast-like morphology and self-renewal without differentiation into other cell

types. MSCs maintained fibroblast-like morphology as assessed using light microscopy (Leica DM microscope; 10x

magnification; scale bar = 100μM); (c) Improved cell proliferation with culture expansion. Data are presented as mean

viable cells ± SDs (n = 3). A two-way ANOVA with Tukey’s post tests were performed, �p<0.05; (d) Improved

fibroblastic colony formation following Methylene blue staining. Data are presented as mean number of colonies ± SEMs

(n = 3). A one-way ANOVA and Tukey’s post tests were performed, � p<0.05; (e) Tri-lineage differentiation assays. For

adipogenesis, mature and immature adipocytes are stained with Oil Red O, and indicated by white and yellow

arrowheads respectively. For osteogenesis, osteocytes are stained with Alizarin Red, and indicated by white arrowheads.

For chondrogenesis, filamentous glycosaminoglycans of chondrocytes are stained with Alcian blue, and are indicated by

white arrowheads. Images were acquired on a Nikon Eclipse TS2 microscope at 20x magnification, 100μm scale; (f)

Semi-quantitative analysis of adipogenic differentiation under defined conditions. Data are presented as mean cell count/

cm2 ± SEM (n = 3). A two-way ANOVA and Tukey’s post tests were performed, � p<0.05; (f) Semi-quantitative analysis

of osteogenic differentiation under defined conditions. Data are presented as mean cell count/cm2 SEM (n = 3). A two-

way ANOVA and Tukey’s post tests were performed, � p<0.05.

https://doi.org/10.1371/journal.pone.0220013.g001
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MSCs and the two suicide MSC clones fell below the baseline (background) luminescence.

Due to the improved stability of luminescence determined by tightly overlapping lumines-

cence curves of suicide MSC clone 1 in comparison to clone 2, clone 1 was utilized in the cyto-

toxicity assays.

CDUPRT-expressing MSCs demonstrate enhanced cytotoxicity in vitro
Functional CDUPRT cytotoxicity was assessed in suicide/therapeutic MSCs compared with

bioluminescent/reporter MSC following the addition of 5-FC (0–2000μg/ml) via BLI (Fig 3A).

General 5-FU cytotoxicity was assessed following the addition of 5-FU (0–1000μg/ml) via BLI.

Bioluminescence correlates to cell viability due to the functional requirement for ATP for

luciferase activity [17], and therefore a decrease in bioluminescence correlates with a decrease

in cell viability. Luminescence analysis showed a significant decrease in bioluminescence from

Fig 2. Morphological analysis of nucleofected MSCs. (a) Nucleofection with pmaxGFP. MSCs were nucleofected

with pmaxGFP and imaged at 6 and 24 hours post nucleofection. Brightfield and fluorescent images were obtained

using a Nikon Eclipse TS2 microscope at 20x magnification, 100μm scale. (b) Schematic representation of the

pVITRO2-Luc2 and pVITRO2-Luc2/CDUPRT mammalian expression plasmids. (c) Antibiotic sensitivity assay.

Native MSCs were grown in the presence of a 2-fold serial dilution of Hygromycin B (0–500μg/ml) for 14 days. (d)

Nucleofection with bioluminescent plasmids. MSCs were nucleofected with pVITRO2-Luc2 and pVITRO2-Luc2/
CDUPRT, and selected for with Hygromycin B for two weeks. Images were acquired on a Leica DM Microscope at 10x

magnification, 100μm scale. (e) BLI in MSC-Luc2, MSC-Luc2/CDUPRT #1 and MSC-Luc2/CDUPRT #2 over a linear

cell concentration range. The cells were incubated with 1:1 D-luciferin (300μg/ml) and imaged on the IVIS Lumina II

according to the in vitro BLI acquisition settings. The images are represented at t = 30min. Lane 1: D-PBS, Lane 2–10:

Nucleofected MSC vs control MSC. (f) Analysis of luciferase activity in MSC-Luc2, MSC-Luc2/CDUPRT #1 and MSC-

Luc2/CDUPRT #2. Luminescence was captured at multiple time-points following incubation with D-luciferin was

analyzed using GraphPad Prism 7. Data are represented as the mean average radiance ± SDs of triplicates.

https://doi.org/10.1371/journal.pone.0220013.g002
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suicide/therapeutic MSCs in comparison with reporter MSCs following the addition of 5-FC

ranging from 31.25–2000μg/ml (p<0.005), confirming functional CDUPRT activity in suicide/

therapeutic MSCs (Fig 3B). The concentrations at which there was a>90% reduction in biolu-

minescent signal following addition of 5-FC for bioluminescent/reporter MSCs and suicide/

therapeutic MSCs in comparison to their untreated controls were 500μg/ml and 31.25μg/ml

respectively, highlighting the enhanced cytotoxicity of suicide/therapeutic MSCs. A similar

trend in enhanced cytotoxicity of suicide/therapeutic MSC was observed following the addi-

tion of 5-FU, where there was a significant decrease in bioluminescence from suicide/thera-

peutic MSCs in comparison to reporter MSCs, ranging from 1–1000μg/ml (p<0.005). The

concentrations at which there was a >90% reduction in the bioluminescent signal following

the addition of 5-FU for bioluminescent/reporter MSCs and suicide/therapeutic MSCs in

comparison to their untreated controls were 1000μg/ml and 1μg/ml respectively. Thus, at

equivalent concentrations, 5-FU demonstrates higher toxicity than 5-FC in suicide/therapeutic

MSCs. Furthermore, it was demonstrated that >15.6μg/ml 5-FC was toxic to reporter MSCs

with a significant decrease (p<0.01) in bioluminescence observed when compared to

untreated control MSC.

Discussion

MSC isolation from a variety of tissue sources has been attempted using a number of method-

ologies including antibody-based cell sorting [25], low and high-density culture [26], positive

and negative selection [27], frequent media changes [28] and enzymatic digestion [29]. In this

study, we report the enrichment of NOD MSCs using CD45-/Ly6+ FACS sorting for

Fig 3. In vitro luciferase-based cytotoxicity assay. (A) In vitro BLI of CDUPRT activity. BLI was assessed following

the addition of 5-FC and 5-FU to MSC-Luc2 (A-D) and MSC-Luc2/CDUPRT #1 (E-H). For 5-FC BLI data: Lanes 1–12

contains 2-fold serial dilutions of 5-FC from 0–2000μg/ml. For 5-FU BLI data: Lanes 1–7 contains 10-fold serial

dilutions of 5-FU from 0–1000μg/ml. (B) Analysis of BLI data. Data are represented as the mean average

radiance ± SEMs (n = 3). Baseline luminescence is indicated by a dotted-line. A two-way ANOVA and Sidak’s post-

hoc were performed, p<0.05.

https://doi.org/10.1371/journal.pone.0220013.g003
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subsequent ex vivo expansion and gene modification. Using this FACS sorting technique, we

isolated a sub-population of NOD MSCs that displayed the characteristic fibroblast-like phe-

notype and tri-lineage differentiation potential of MSC as defined by the ISCT MSC [4, 24]. In

addition, the enriched MSCs constituted ~80–90% of the initial adherent bone marrow stro-

mal cell population, a significant improvement by comparison to similar studies [30–33].

In this study, nucleofection was utilized as a non-viral method of MSC gene modification

due to its reported success in modifying MSCs without affecting proliferation, phenotype or

differentiation potential [34, 35]. Nucleofection of MSCs with the pmaxGFP plasmid showed a

transfection efficiency of ~70% at 24 hours post-nucleofection which is similar to that reported

in the literature [34, 35]. In fact, nucleofection out performs other transfection methods such

as calcium phosphate precipitation, cationic polymer and standard electroporation with

respect to gene-modification of MSCs [34, 36]. For the purpose of short-term/transient ectopic

gene expression in difficult to transfect cells such as adult stem cells, nucleofection is a suitable

alternative to traditional physical, non-viral methods of gene-modification. However, despite

this success, variations in the transduction efficiency of MSCs have been observed across spe-

cies [37]. In addition, stable transfection as a consequence of successful genomic integration is

limited by the poor rate of integration (600 per million cells (0.06%)) with a ~5kb plasmid.

With increasing plasmid size, integration events decrease further [38]. As a result, due to

higher transduction efficiency and genomic integration events, viral-mediated transduction

remains the mainstay in generating gene-modified cells that stably express transgenes of inter-

est [39–41].

The in vitro characterization of luciferase expression from stably selected bioluminescent

MSCs and suicide MSCs was equivalent. Due to the ATP requirement of luciferase for light

emission, luciferase expression was utilized as a reporter for cell survival during the in vitro
characterization of CDUPRT function. The ability of CDUPRT to convert a non-toxic concen-

tration of 5-FC to the toxic metabolite 5-FU was assessed by exposing bioluminescent/reporter

MSCs and suicide/therapeutic MSCs to various concentrations of 5-FC in vitro. Suicide MSCs

demonstrated a significant decrease in cell survival when compared with bioluminescent

MSCs following the addition of>31.3ug/mL 5-FC, confirming the in vitro functional activity

of CDUPRT. In fact, at equivalent doses, 5-FU demonstrated significantly higher toxicity than

5-FC in cells expressing CDUPRT. This is due to the combined inhibition of DNA and RNA

synthesis in MSC-Luc2/CDUPRT as opposed to DNA inhibition alone in bioluminescent

MSCs following addition of 5-FU. Research conducted in rat prostate adenocarcinoma cells

that were transduced to express the CDUPRT gene showed similar results [42]. In addition, the

known metabolic pathway involved in the conversion of 5-FC to 5-FU and its toxic metabolites

supports the results of this study [43, 44]. Due to the intracellular requirement of CD to con-

vert 5-FC to 5-FU prior to the generation of 5-FU toxic metabolites, additional steps (both

mechanical and enzymatic) are required for 5-FC killing of CDUPRT-expressing cells in com-

parison to 5-FU. As a result, 5-FC toxicity is likely affected by its rate of cellular uptake, CD
conversion and degradation; resulting in the observed differences in toxicity of 5-FC and 5-FU

in CDUPRT-expressing cells. 5-FU on the other hand is membrane permeable and does not

require the rate limiting step of CD conversion to a toxic metabolite.

However, of particular interest was the effect of 5-FC on parental MSCs that do not express

the CD or CDUPRT genes, which are necessary for 5-FC conversion to 5-FU [45], and as such

would not be susceptible to 5-FC mediated toxicity. Most data on the effect of 5-FC on mam-

malian cells that are engineered to express CD or CDUPRT are expressed as a function of cyto-

toxicity, which as expected increases in comparison to cells that do not express CD or

CDUPRT [42, 43]. Following the addition of 5-FC to bioluminescent MSCs that do not express

CDUPRT, the observed decrease in bioluminescence in comparison to untreated
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bioluminescent MSCs suggested that 5-FC may be involved in the inhibition of MSC prolifera-

tion, or demonstrate cytotoxic effects at high doses, leading to a redefinition of the metabolic

pathway of 5-FC and 5-FU in mammalian cells (Fig 4). In a similar study by Harrell et al [46]

using primary vascular smooth muscle cells (VSMCs), treatment of parental VSMCs with

5-FC at a single concentration of 1mmol/L (equivalent to 129μg/ml) did not result in a signifi-

cant difference in cell numbers in comparison to untreated parental VSMCs, suggesting the

absence of a cytotoxic effect of 5-FC on VSMCs. This is surprising considering that we

observed a >50% reduction in the viability of control MSC in comparison to untreated MSCs.

In addition, the lack of a dose-response curve in the Harrell study failed to determine whether

a cytotoxic effect would be observed at higher concentrations of 5-FC. Thus, the results

reported in our study may be explained by improved experimental design and cell-type depen-

dent sensitivity to 5-FC. Ultimately, this study demonstrates that luciferase is a suitable

reporter of cell viability, and that MSCs have the potential to be utilized as vehicles of suicide

gene therapy.

Conclusions

This study showed luciferase reporter assays represent a novel method of quantitatively assess-

ing CDUPRT-mediated cytotoxicity in genetically modified MSC. In addition, their translation

to the in vivo setting facilitates pre-clinical cytotoxicity studies related to a variety of chronic

diseases including cancer, neurodegenerative disorders, and diabetes. The results of this study

demonstrated that CDUPRT-expressing MSCs become cytotoxic following administration of

the non-toxic prodrug 5-FC. Thus, due to their tumor-homing properties [47, 48], a systemic

infusion of CDUPRT-expressing MSCs as vehicles of suicide gene therapy may be useful for

the treatment of a variety of cancers. In addition, CDUPRT-mediated cytotoxicity has the

potential to be utilized as a clinical fail-safe switch to improve the safety of cell replacement

therapies.

Fig 4. Mechanism of action of 5-FC and 5-FU in MSCs. In cells expressing CDUPRT, 5-FC is transported into the

cell where it is converted into 5-FU by the CD component of CDUPRT. UPRT subsequently converts 5-FU into FUMP

which is further processed into FdUMP and FUTP which inhibit DNA synthesis and RNA function respectively,

leading to apoptosis. Endogenous DPD degrades 5-FU into non-toxic β-Alanine, which ultimately becomes the rate-

limiting step in the conversion of 5-FU to its toxic metabolites. In cells that do not express CDUPRT, 5-FU toxicity is

mediated by direct conversion to FdUMP via TK, leading to inhibition of DNA synthesis and apoptosis. In the absence

of CDUPRT, 5-FC cannot be converted to 5-FU and may result in the inhibition of cell proliferation or cytotoxicity

through an unknown mechanism. Thickness of arrows is reflective of the predominating pathway or effect.

Abbreviation: CDUPRT; cytosine deaminase::uracil phosphoribosyltransferase, CD; cytosine deaminase, FUMP;

5-fluorouridine monophosphate, FdUMP; 5-fluorodeoxyuridine monophosphate, FUTP; 5-fluorouridine

triphosphate, DPD; dihydropyrimidine dehydrogenase.

https://doi.org/10.1371/journal.pone.0220013.g004
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