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Grossa, Paraná, Brasil, 4 Centro de Pesquisa e Desenvolvimento, Embrapa Milho e Sorgo, Sete Lagoas,
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Abstract

Sugarcane (Saccharum spp.) has a complex genome with variable ploidy and frequent

aneuploidy, which hampers the understanding of phenotype and genotype relations.

Despite this complexity, genome-wide association studies (GWAS) may be used to identify

favorable alleles for target traits in core collections and then assist breeders in better manag-

ing crosses and selecting superior genotypes in breeding populations. Therefore, in the

present study, we used a diversity panel of sugarcane, called the Brazilian Panel of Sugar-

cane Genotypes (BPSG), with the following objectives: (i) estimate, through a mixed model,

the adjusted means and genetic parameters of the five yield traits evaluated over two har-

vest years; (ii) detect population structure, linkage disequilibrium (LD) and genetic diversity

using simple sequence repeat (SSR) markers; (iii) perform GWAS analysis to identify

marker-trait associations (MTAs); and iv) annotate the sequences giving rise to SSR mark-

ers that had fragments associated with target traits to search for putative candidate genes.

The phenotypic data analysis showed that the broad-sense heritability values were above

0.48 and 0.49 for the first and second harvests, respectively. The set of 100 SSR markers

produced 1,483 fragments, of which 99.5% were polymorphic. These SSR fragments were

useful to estimate the most likely number of subpopulations, found to be four, and the LD in

BPSG, which was stronger in the first 15 cM and present to a large extension (65 cM).

Genetic diversity analysis showed that, in general, the clustering of accessions within the

subpopulations was in accordance with the pedigree information. GWAS performed through

a multilocus mixed model revealed 23 MTAs, six, three, seven, four and three for soluble

solid content, stalk height, stalk number, stalk weight and cane yield traits, respectively.
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These MTAs may be validated in other populations to support sugarcane breeding pro-

grams with introgression of favorable alleles and marker-assisted selection.

Introduction

Sugarcane (Saccharum spp.) is an important industrial crop and a vital component for food

and energy security, providing sucrose, bioethanol and bioelectricity [1,2]. Sugarcane is culti-

vated in mainly tropical and subtropical areas and has a very high photosynthetic efficiency

and a complex genome due to its variable ploidy levels, frequent aneuploidy, and large genome

size of approximately 10 gigabases (Gb) [3–8]. Modern sugarcane cultivars have chromosome

numbers ranging from 100 to 130, are vegetatively propagated, and result from the selection of

populations derived from outcrossing heterozygous parents [8–10]. Brazil is the world’s largest

sugarcane producer, and its productivity increased 66% in tons of sugarcane per hectare from

1975 to 2010, partially due to the growing area expansion and improvements in agricultural

practices [2,10,11].

Sugarcane breeding programs concentrate efforts to release cultivars adapted to different

environments that have high yields in terms of biomass production and sucrose content as

well as resistance to diseases. However, the breeding process is expensive and requires approxi-

mately 15 years of experimentation and selection to obtain one or a few cultivars. Briefly, every

year, crosses between accessions generate hundreds of thousands of F1 progenies, and the indi-

viduals reaching the final stages of selection are commonly evaluated over several harvests in

multienvironment trials (METs) to identify those with the potential to become new cultivars

[10–13]. Even with the adoption of better agricultural practices and selection strategies in the

early stages of breeding programs, which attempt to measure and isolate the environmental

effects of genetic factors [13–16], the genetic gains to quantitative traits have declined in recent

years for sugarcane and other crops [17–19].

Clearly, there is a need to complement the classical breeding of sugarcane with other tools,

such as molecular approaches, which have been applied for other crops [20–22]. Quantitative

trait locus (QTL) mapping and genome-wide association studies (GWAS) are strategies to

understand the genetic architecture of complex traits and include a first step of marker-assis-

ted selection (MAS) [4,6,19,22]. To employ these strategies in outcrossing heterozygous spe-

cies, such as sugarcane, we need to consider that, for each segregating locus, different numbers

of segregating alleles may exist, and the single-dose markers currently available for mapping

studies show only some of the genetic information [8,23]. This limitation is more evident in

the traditional QTL mapping approach, which may identify genomic regions with low resolu-

tion, usually due to the smaller amount of available markers and also limited to the genetic

composition of the biparental population under study. Nevertheless, attempts to associate phe-

notype and genotype and the development of new data analysis strategies have been signifi-

cantly advanced [23–27].

On the other hand, GWAS has been widely used to identify marker-trait associations

(MTAs) in genetically diverse populations of plants [20,21,28–32]. GWAS is based on linkage

disequilibrium (LD) due to physical linkage, which is reportedly extensive in sugarcane [33–

36]. This LD value is assigned to a recent breeding history, characterized by a strong founda-

tion bottleneck followed by a small number of intercrossing cycles, which significantly reduces

the frequency of recombination events. The high extent of LD in sugarcane indicates that a

high density of markers may not be critical for performing GWAS [36–38] and that single-
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dose markers might be appropriate for this purpose; indeed, mapping models for loci with

high allelic dosages are under development [26]. Although high-throughput marker systems

are available, mainly for single nucleotide polymorphism (SNP) genotyping, the lack of appro-

priate methods for analyzing complex species such as sugarcane hinders the applicability of

new molecular breeding tools [23,26,27]. In this context, single-dose markers, such as simple

sequence repeats (SSRs) and target region amplification polymorphisms (TRAPs) could be

used to characterize genome variation, investigate population structure and genetic diversity

and thus enable GWAS [37,39–41]. In addition, despite the potential for using LD-based asso-

ciation studies to identify MTAs, a few studies on yield-related traits in sugarcane have been

published [18,35–42].

For the latter, several algorithms and software have been developed to improve statistical

power, increase computational efficiency, and reduce spurious associations in the GWAS

approach [43]. Among GWAS algorithms, FarmCPU [44], which uses a multilocus linear

mixed model (MLMM), is considered an efficient alternative to control for spurious associa-

tions [45–47]. Indeed, combinations of various methods for multilocus GWAS have also been

used to identify causal associations and control the false positive rate [43,47,48].

In the current assignment, our objectives were to (i) estimate, through a mixed model, the

adjusted means and genetic parameters of the five yield traits evaluated over two harvest years

in a diversity panel composed of ancestral and modern sugarcane accessions; (ii) detect popu-

lation structure, LD and genetic diversity using SSR markers; (iii) perform GWAS analysis to

identify MTAs; and iv) annotate the sequences giving rise SSR markers that had fragments

associated with target traits to search for putative candidate genes.

Materials and methods

Plant material and phenotypic traits

In this study, 134 accessions (S1 Table) of the Brazilian Panel of Sugarcane Genotypes (BPSG)

were used. BPSG is a mini core collection from the germplasm bank of RIDESA (Inter-Univer-

sity Network for the Development of Sugarcane Industry), and the accessions were chosen

according to the following criteria: i) relevant Brazilian cultivars, ii) main parents for Brazilian

breeding programs; iii) cultivars from countries that grow sugarcane; iv) cultivars used as

parents in mapping programs [25,49]; and v) representatives of the Saccharum species com-

plex. The BPSG accessions represent an important genetic background in Brazilians breeding

programs.

The 134 accessions of BPSG were planted in a field experiment performed in 2013 at the

Agricultural Science Center of the Federal University of São Carlos (UFSCar) in Araras City,

São Paulo State, Brazil. Araras is located at 22˚21’25”S, 47˚23’3”W at an altitude of 611 m; the

experimental area soil is Typic Eutroferric Red Latosol. The experimental design consisted of a

randomized complete block, which was fully replicated four times. The plots consisted of two

rows 3 m long and spaced 1.5 m apart. Each plot was composed of 12 presprouted seedlings at

the planting of the experiment in 2013. The experimental plants were harvested when they

were approximately 18 months of age during the plant cane and first ratoon. The BPSG was

evaluated for five yield components: soluble solid content (BRIX, in ˚Brix), stalk height (SH, in

m), stalk number (SN), stalk weight (SW, in kg), and cane yield (TCH, in t ha–1). Phenotypic

yield trait data were collected according to Balsalobre et al. [12]. Briefly, a 10-stalk sample per

plot was taken for analysis of the BRIX and SH. The weight of the 10 stalks was added to the

total weight of the plot (SW) to estimate the TCH, which was calculated as the product

between the SW of a linear meter and the amount of linear meters in one ha (6667 linear
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meters compose one ha with a spacing of 1.5 m). The SN was estimated by directly counting

the stalks in each plot.

Statistical analysis of phenotypic data

A multiharvest mixed model produced the joint adjusted means. The analysis was conducted

for each trait using GenStat 19th edition [50] based on restricted maximum likelihood

(REML) and the following linear mixed model:

yimkuv ¼ mþ hm þ bkm þ gimk þ rumk þ cvmk þ eimkuv

where yimkuv is the phenotype of the ith accession, evaluated in the mth harvest, located in the

uth row and the vth column inside the kth replication; μ is the overall mean; hm is the fixed effect

of the mth harvest (M = 1,. . .,M;M = 2); bkm is the fixed effect of the kth replication (k = 1,. . .,K;

K = 4) at the mth harvest; gimk is the random effect of the ith accession (i = 1,. . .,I,I = 134) at the

mth harvest evaluated in the kth replication; rumk and cvmk are the random effects of the uth row

and vth column, both evaluated at the mth harvest and kth replication; and eimkuv is the random

residual error. In addition, for the SN, SW, and TCH traits, the number of clumps per plot was

included in the mixed model as a fixed covariate. Aiming to model the accession effects, the

genetic variance–covariance (VCOV) matrix G = GM� IIg, i.e., g~N(0,G) was considered,

where M is the number of harvests, and� represents the Kronecker product of both the

genetic GM and identity IIg matrices with the respective dimensions of 2 x 2 and 1 x 134. For

the GM matrix, four structures (identity, ID; diagonal, DIAG; first order autoregressive

homogenous, AR1; and first order autoregressive heterogeneous, AR1(het)) were examined

and compared via Akaike [51] (AIC; [51]) and Bayesian (BIC; [52]) information criteria [53].

For the residue, a structure of variance heterogeneity was assumed for the different harvests.

For each trait, the fixed effects were tested using the Wald statistics test and were retained in

the model if statistically significant (P< 0.05). After the GM matrix structure selection, the

adjusted means for accessions and genetic parameters for each evaluated trait were obtained.

The phenotypic ðŝ2
PÞ and genotypic (ŝ2

g) variances were used for calculating heritability in the

broad sense on an individual-plant basis (Ĥ 2 ¼ ŝ2
g=ŝ

2
P). The ŝ2

P value was determined from

ŝ2
P ¼ ŝ

2
g þ ŝ

2
e þ ŝ

2
r þ ŝ

2
c , where ŝ2

e was the residual variance, ŝ2
r was the variance for row

effects and ŝ2
c was the variance for column effects [54].

DNA extraction, molecular markers and genotyping

Approximately 3.0 g of tissue from the leaf primordia of each accession was collected, and the

genomic DNA was extracted according to methods described by Aljanabi et al. [55]. The SSR

markers were amplified based on the procedures described by Oliveira et al. [56], and the

amplified fragments were visualized as described by Creste et al. [57]. A total of 100 SSR prim-

ers were used, of which 86 were from expressed sequences (EST-SSR) [58,59] and 14 were of

genomic origin [60]. These markers were selected because they met one or more of the follow-

ing criteria: i) high polymorphic information content (PIC); ii) high discrimination power

(DP); and iii) present in previously published sugarcane genetic maps.

Due to the polyploid and complex nature of sugarcane, the amplified SSR fragments, which

cannot depict ploidy levels and allele dosages, were evaluated as dominant markers [61,62],

i.e., the presence of fragments suggested that an allele for a given locus was present in at least

one of the chromosomes that comprised a homologous group, while the absence of fragments

suggested that this same allele was not present in any chromosome. Thus, the fragments were

classified as binary, i.e., (1) indicated a fragment was present, and (0) indicated a fragment was
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absent. When amplification failed, NA (nonamplified) was used to indicate missing data. The

polyacrylamide gels were manually evaluated with the support of a light box, and a binary

matrix formed by the combination of the detected fragments with the analyzed accessions was

constructed.

Population structure and genetic diversity

Population structure was analyzed by a discriminant analysis of principal components

(DAPC) [63] using SSR data in the adegenet package [64], which is available in R software

[65], as described by Jombart and Collins [66] and Deperi et al. [67]. Briefly, the find.clusters

function was used to detect the number of clusters in the BPSG. This function uses K-means

clustering, which decomposes the total variance of a variable into between-group and within-

group components. The best number of subpopulations has the lowest associated BIC. A cross

validation function (xval.Dapc) and optimal α-score function (optim.a.score) were used to

confirm the correct number of principal components (PCs) to be retained. The optimal num-

ber of PCs to retain is associated with the lowest root mean square error and with the highest

optimized α-score. The subpopulations indicated by DAPC were plotted in a scatterplot con-

sidering the first and second linear discriminants. Additionally, a genetic dissimilarity matrix

was calculated via a simple matching (SM) method using Darwin software [68] based on the

SSR information. Then, the resulting matrix was plotted as a phylogram using the neighbor-

joining (NJ) algorithm [69]. In addition, bootstrap analysis was performed as described by

Efron [70] and Efron and Tibshirani [71] to verify whether the number of fragments evaluated

was sufficient to distinguish the accessions. The coefficients of variation are graphically shown

as boxplots for each sampling with different numbers of fragments.

Kinship matrix

The kinship coefficient was calculated between pairs of accessions using the kinship2 package

[72] in R, considering the accessions of all generations and assigning the value 0 when the

parents were unknown. Based on the estimated kinship coefficients, a kinship matrix (K) was

generated.

Linkage disequilibrium analysis

Marker data were used to assess the level of LD in the BPSG as described by Raboin et al. [35].

Briefly, Fisher’s exact probability was used to test for associations between SSR fragments that

were common to both the association mapping population and the SP80-180 and SP80-4966

integrated genetic map [56]. For each pair of markers, a contingency table (presence versus

absence) was established, and the Fisher probability was computed using the exact2x2 package

in R software [73]. To control for error due to multiple testing, we used the false discovery rate

(FDR) procedure [74] with an initial threshold of 5%. A Bonferroni-corrected threshold was

also verified. The Fisher (−LogP) logarithmic probabilities of the associations between only

linked fragments were plotted with the respective genetic distances [75] in centimorgans (cM).

GWAS analysis

GWAS analysis was conducted using both the Genomic Association and Prediction Integrated

Tool (GAPIT, [76]) and FarmCPU [44] methods in R software. To carry out GWAS analyses

using the SSR data obtained in the BSPG, the fragments were reclassified, with (2) indicating

the presence of a fragment and (0) indicating the absence of a fragment. The retained PC

obtained in DAPC analysis was used as a covariate in the FarmCPU procedure, while the

GWAS of yield traits in sugarcane
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kinship matrix and retained PC were used in the GAPIT analysis. To control for type I errors

due to multiple testing, the adjusted p-value less than 1% following an FDR controlling proce-

dure [77] and Bonferroni-corrected threshold with 1% were used to declare significant MTAs

by GAPIT and FarmCPU, respectively. To determine which of the tested methods best fit the

data, we plotted the quantile-quantile (QQ) plot, i.e., the QQ negative log10-transformed

observed p-values obtained for each MTA, against their expected distribution under the null

hypothesis of no genetic association. For significant MTAs detected by FarmCPU, the pheno-

typic variance explained for each SSR fragment was estimated one at a time using a linear

model with the lm function in R software.

Sequence annotation

Functional annotation of the loci associated with traits was performed using the available

sequences that gave rise to the SSR marker. These sequences were annotated using i) the non-

redundant NCBI database with e-values� 1 × 10−3 through BLASTX and ii) the Phytozome

website [78], which was used to align the data against the Viridiplantae protein databases.

Results

Phenotypic data

The VCOV models selected for the GM matrix were based on AIC and BIC criteria. AR1(het)

had the lowest AIC and BIC values, which indicated that it was the best model for all evaluated

traits (BRIX, SH, SN, SW and TCH) (S2 Table). This result supports heterogeneous genetic

variances between harvests and correlations between successive harvests and provides a sys-

tematic explanation of the existing temporal dependence. The ranges, adjusted means and esti-

mates of the components of variance, coefficients of variation, and broad-sense heritability on

an individual-plant basis for the five traits evaluated for the BPSG over the two harvest years

(plant cane and first ratoon) are summarized in Table 1. The TCH trait had the highest varia-

tion, i.e., the accession RB925268 (295.60 t ha-1) was 7.6 times greater than the accession

POJ2878 (38.90 t ha-1). The SN trait also showed high variation, i.e., the accession IN84-58

(290.64 stalks) was 7.03 times greater than the accession POJ2878 (41.34 stalks). On the other

hand, the BRIX trait had a relatively low variation, i.e., the accession TUC71-7 (22.55˚Brix)

was 1.48 times greater than the accession IN84-58 (15.14˚Brix).

Estimates for Ĥ2 ranged from 0.48 (TCH) to 0.67 (SN) and from 0.49 (TCH) to 0.65 (SN)

in the first and second harvests, respectively. For genetic (ŝ2
G) and phenotypic (ŝ2

P) variances,

higher and lower values were observed for the TCH and SH traits, respectively. The lowest

coefficients of genetic (CVG) and phenotypic (CVP) variations were for the BRIX trait, while

the higher values for CVG and CVP were for SN, SW and TCH.

Pairwise genotypic correlations among the five evaluated traits, considering both harvests

(plant cane and first ratoon), are shown in Fig 1. In total, eight significant genotypic correla-

tions (P< 0.05) were observed between the evaluated traits in the BPSG. According to the

degree of correlation between traits, correlations were grouped into low (�0.35), moderate

(0.36–0.70) and strong (�0.71) categories [12]. Thus, four interactions were classified as low

(BRIX–SH, BRIX–SW, BRIX–TCH and SH–SN), four interactions were classified as moderate

(BRIX–SN, SN–SW, SN–TCH and SH–TCH), and two interactions were classified as strong

(SH–SW and SW–TCH). The correlation of BRIX–SN was negative.
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Polymorphisms of SSR markers

The use of 100 SSR markers generated 1483 fragments, 1476 of which were polymorphic

(99.5%), in the 134 accessions of the BPSG. Considering all polymorphic fragments, 484

(32.8%) were produced by SSR dinucleotides, 689 (46.7%) were produced by SSR trinucleo-

tides, and 303 (20.5%) were produced by SSR tetranucleotides. The number of fragments ran-

ged from four (ESTC52 and ESTC55) to 36 (ESTA31), with an average of 14.83 fragments per

SSR. Species-specific fragments were observed for the ancestral accessions Badila (S. offici-
narum) at ESTB45 and SMC319; Ganda Cheni (S. barberi) at ESTB45, ESTB118, ESTA51, and

ESTC17; and especially IN84-58 (S. spontaneum) at CIR23, ESTA26, ESTA61, CIR55, ESTB69,

ESTA33, ESTB94, ESTA63, CIR18, ESTB63, CIR36, ESTB45, ESTA16, ESTC55, ESTA48,

SMC222 and CIR25.

Population structure and genetic diversity

Four subpopulations were detected according to the lowest BIC value derived by the find.clus-

ters function (S1 Fig). DAPC analysis was performed using the detected number of subpopula-

tions (Fig 2). Seven first PCs (25.5% of variance conserved) from principal component analysis

(PCA) (S2 and S3 Figs) and three discriminant eigenvalues were retained. All accessions were

classified in each subpopulation with a membership coefficient equal to 1, suggesting that

there were no admixtures and that the BPSG was structured (S4 Fig). A total of 42 fragments

with the largest contribution to subpopulation identification were detected, with 24 fragments

assigned to linear discriminant 1 and 18 fragments assigned to linear discriminant 2 (S3 Table

and S5 Fig).

The phylogram using the SM genetic distance among accessions also suggested the presence

of four subpopulations. A total of 99.25% of the group assignments made by the DAPC analy-

sis were also made by the phylogram (Fig 3). Only accession SP70-1284 was assigned to differ-

ent groups by the NJ phylogram and DAPC methods. The genetic dissimilarity ranged from

0.06 (between accessions IAC68-12 and IAC64-257, in subpopulation 3) to 0.45 (between

accessions SP70-1005 and RB855589, in subpopulations 2 and 1, respectively), with an average

value of 0.31 (S6 Fig). Overall, the clusters inside subpopulations were in accordance with the

pedigree information. This result was verified by full-sib accessions within the subpopulations,

as was the case for the accessions RB845197, RB845210 and RB845257 in subpopulation 3,

which originated from the crossing between cultivars RB72454 and SP70-1143, and for the cul-

tivars SP80-1816, SP80-1842 and SP80-3280 in subpopulation 2, which originated from the

crossing between the cultivars SP71-1088 and H57-5028. In addition, the ancestral accessions

Maneria (Saccharum sinense) and Ganda Cheni (S. barberi) were placed in subpopulation 2,

the ancestral accessions Badila (S. officinarum) and IN84-58 (S. spontaneum) were positioned

Table 1. Ranges, adjusted means, estimates of components of genetic variance (σ̂ 2
G) and phenotypic variance (σ̂ 2

P), coefficients of genetic variation (CVG) and phe-

notypic variation (CVR), and broad-sense heritability on an individual-plant basis (Ĥ 2) for BRIX, SH, SN, SW and TCH for the BPSG over two harvest years (plant

cane (1) and first ratoon (2)).

Trait Range Adjusted means σ̂ 2
Gð1Þ σ̂ 2

Gð2Þ σ̂ 2
Pð1Þ σ̂ 2

Pð2Þ CVG(1) CVG(2) CVP(1) CVP(2) Ĥ 2
ð1Þ Ĥ 2

ð2Þ

BRIX (˚Brix) 15.14–22.55 18.65 1.45 0.96 1.09 0.72 0.06 0.05 0.05 0.04 0.57 0.57

SH (m) 1.51–3.08 2.64 0.08 0.08 0.06 0.06 0.11 0.11 0.09 0.09 0.57 0.57

SN 41.34–290.64 81.77 482.60 1197.00 232.10 645.40 0.27 0.42 0.18 0.31 0.67 0.65

SW (kg) 47.80–251.80 152.30 2182.00 1602.00 1576.00 1267.00 0.31 0.26 0.26 0.23 0.58 0.56

TCH (t ha-1) 38.90–295.60 181.40 2740.00 2127.00 2891.00 2192.00 0.29 0.25 0.30 0.26 0.48 0.49

https://doi.org/10.1371/journal.pone.0219843.t001
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in subpopulation 1, and the ancestral accession White Transparent (S. officinarum) was posi-

tioned in subpopulation 4.

Linkage disequilibrium analysis

Fisher’s (−LogP) logarithm probabilities were plotted against the distances, in centiMorgan

(cM), between linked marker fragments in the same cosegregation group of the SP80-

180 × SP80-4966 integrated genetic map (S7 Fig). This strategy corresponded to 60 of the 5151

associations between the 102 common SSR fragments being present in both the BPSG and the

integrated genetic map. Although few significant associations reported LD (5 of the 60

Fig 1. Genotypic correlation between yield traits evaluated in the BPSG. For each trait, the histograms of the adjusted means (diagonal),

scatterplots (below diagonal), and values of the genotypic correlation (above diagonal) between pairs of traits are shown. �Significant at the 5%

global level (P< 0.05).

https://doi.org/10.1371/journal.pone.0219843.g001

GWAS of yield traits in sugarcane

PLOS ONE | https://doi.org/10.1371/journal.pone.0219843 July 18, 2019 8 / 22

https://doi.org/10.1371/journal.pone.0219843.g001
https://doi.org/10.1371/journal.pone.0219843


associations), the population showed good evidence of LD decay in relation to genetic dis-

tance. The strongest LD appeared in the first 15 cM, mainly in the first 5 cM, and clear decay

occurred over distances. In addition, LD was noted between fragments at 65 cM in the same

cosegregation group, indicating preferential associations in larger extensions.

GWAS analysis

The QQ plots obtained with FarmCPU and GAPIT software for phenotypic traits are pre-

sented individually in Fig 4. The results show that FarmCPU compared to GAPIT better fit the

data by reducing false positives, mainly for the BRIX and SN traits. Therefore, we considered

the MTAs identified by FarmCPU to be more reliable than those identified by GAPIT and

thus present the results of the former. For the BRIX, SH, SN, SW and TCH traits, 6, 3, 7, 4 and

3 MTAs were detected, respectively, with a Bonferroni-corrected threshold of 1% (Table 2).

The SSR fragment ESTB61_15 was negatively and positively associated with BRIX and SN,

respectively. ESTB61_15 is a species-specific fragment for S. spontaneum (IN84-58). The three

SSR fragments associated with TCH were also associated with SW, and two of these fragments

Fig 2. DAPC for the BPSG. The axes represent the first two linear discriminants (LD). The dots represent accessions grouped in subpopulations, each with a

different color. The cumulative variance values, in percentages, of the PCs are shown in the lower left corner of the figure; the eigenvalues of the seven first PCs

retained by PCA are in black.

https://doi.org/10.1371/journal.pone.0219843.g002
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(CIR51_11 and SMC319_09) were in the group of marker fragments associated with SH.

Although not in the same fragment as TCH, SW and SN, the genomic SSR marker SMC319

was also present among the SH MTAs and was therefore associated with four yield-related

traits. Likewise, the genomic SSR marker CIR51 was associated with four yield-related traits,

namely, BRIX, SN, SW and TCH.

Sequence annotation

The available sequences of the SSR markers significantly associated with the BRIX, SH, SN,

SW and TCH traits were blasted against the nonredundant NCBI database using BLASTX and

against the Viridiplantae protein database using Phytozome (Table 3). Sequence similarity was

Fig 3. Neighbor-joining (NJ) tree for the BPSG using the SM method. Accessions indicated with the same color belong to the same subpopulation according

to DAPC.

https://doi.org/10.1371/journal.pone.0219843.g003
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Fig 4. QQ plots using GAPIT (graphs with blue dots) and FarmCPU (graphs with black dots) software. The dotted lines show the 95% confidence intervals for

the QQ plots under the null hypothesis of no association between the SSR fragment and the trait.

https://doi.org/10.1371/journal.pone.0219843.g004

Table 2. BRIX, SH, SN, SW and TCH MTAs, p-values, effect estimates and amounts of phenotypic variance explained (adjusted R-squared) when using the MLMM

implemented in FarmCPU.

Trait Code SSR fragment p-value Effect R2

BRIX m93 ESTA61_07 0.009004 -0.22 0.03

BRIX m101 ESTA61_15 4.29E-11 -2.79 0.20

BRIX m131 CIR55_06 0.001163 0.24 0.02

BRIX m139 CIR55_14 0.002446 -0.32 0.14

BRIX m515 CIR51_04 0.005713 0.26 0.01

BRIX m797 ESTB133_10 0.003254 0.27 0.01

SH m745 SMC319_16 0.004327 -0.42 0.07

SH m752 SMC248_08 0.001605 0.09 0.14

SH m839 ESTC19_12 0.009647 -0.08 0.07

SN m101 ESTA61_15 1.50E-06 104.29 0.43

SN m138 CIR55_13 0.003936 21.06 0.02

SN m522 CIR51_11 0.008232 5.37 0.04

SN m650 ESTB111_05 0.008690 -11.21 0.02

SN m664 ESTB111_19 0.002828 7.22 0.01

SN m738 SMC319_09 0.007744 -5.59 0.03

SN m921 ESTB130_16 0.004402 7.57 0.03

SW m522 CIR51_11 0.004541 12.01 0.02

SW m738 SMC319_09 0.002941 -12.98 0.03

SW m937 ESTB130_32 0.008385 10.92 0.05

SW m1070 SMC222_01 0.005182 -13.88 0.02

TCH m522 CIR51_11 0.000901 15.94 0.03

TCH m738 SMC319_09 0.001533 -15.78 0.03

TCH m1070 SMC222_01 0.004051 -16.33 0.02

https://doi.org/10.1371/journal.pone.0219843.t002
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found for seven out of the ten SSR markers significantly associated with homologies for Sor-
ghum bicolor (for the BRIX, SN and SW traits) and Zea mays (for the SH trait). A functional

description of the sequences showed possible candidate genes for all traits except for TCH.

Despite this result, the CIR51 marker, which was found near (approximately 5.3 kb) the cyto-
chrome P450 transcript region in S. bicolor, had fragments significantly associated with TCH

in addition to BRIX, SN and SW. Overall, the homologies found for significant SSR markers

associated with BRIX (ESTA61, ESTB133) suggest a role in the accumulation and trafficking of

lipids and sucrose, while the homologies for significant SSR markers associated with SH

(ESTC19), SN (ESTB111, ESTB130) and SW (ESTB130) were related to plant growth and

development.

Discussion

The complexity of the sugarcane genome and the quantitative nature of sugar- and yield-

related traits are challenging for geneticists and breeders searching for higher genetic gains for

this crop. Moreover, assessing genetic variables free of environmental effects and estimating

their real genotypic value are extremely important for breeding purposes. Here, the genetic

information obtained with SSR markers was able to efficiently distinguish ancestral and

improved accessions of the BSPG due the high polymorphism and presence of unique alleles

in some accessions, such as IN84-58 (S. spontaneum), Badila (S. officinarum) and Ganda Cheni

(S. barberi). The identification of new alleles controlling sugar and yield metabolism in alterna-

tive Saccharum species and the introduction of these alleles into core germplasms would be

one way to overcome obstacles in sugarcane breeding, increasing the productivity of commer-

cial cultivars [79]. Following this strategy, association mapping is a powerful tool to identify

genes and favorable alleles that could be used for the introgression process. In the present

study, using the GWAS approach, we were able to detect MTAs for all five evaluated traits

(BRIX, SH, SN, SW and TCH), mainly due to the presence of LD in the BSPG and by the anal-

ysis strategies employed.

The model selection approach used in this study for phenotypic data analysis can capture

the heterogeneity of variance and more complex covariance structures (AR1(het)) at the

genetic level, thereby improving the predictive accuracy directly related to heritability and

genetic gain [12,53,80,81]. In the AR1(het) model selected for all traits (S2 Table), the

Table 3. Functional descriptions of the sequences that Gave Rise to SSR markers associated with the BRIX, SH,

SN, SW and TCH traits as determined using BLASTX and phytozome (NA: No available sequence).

SSR

marker

Traits Description e-value

ESTA61 BRIX, SN Cortical cell-delineating protein [Sorghum bicolor] 6.3E-

166

ESTB111 SN Exonuclease DPD1, chloroplastic/mitochondrial [Sorghum
bicolor]

3.1E-

113

ESTB130 SN, SW Auxin response factor 5 [Sorghum bicolor] 7.0E-87

ESTB133 BRIX Vacuolar fusion protein MON1 [Sorghum bicolor] 4.9E-57

ESTC19 SH DVL family protein [Zea mays] 6.3E-77

CIR51 BRIX, SN, SW,

TCH

Near to Cytochrome P450 transcript region [Sorghum bicolor] 9.1E-57

CIR55 BRIX, SN Uncharacterized protein [Sorghum bicolor] 9.8E-60

SMC222 SW, TCH NA -

SMC248 SH NA -

SMC319 SH, SN, SW, TCH NA -

https://doi.org/10.1371/journal.pone.0219843.t003
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correlations between harvest decay with time and each harvest have their own genetic variance

[53]. Indeed, sugarcane production decreases with harvests; therefore, the differential expres-

sion of genes across harvests can be suggested. On the other hand, the use of more locations

and harvest years would probably permit the adjustment of other variance and covariance

structures [12].

The phenotypic range for each trait reflected the high genetic variability of the BSPG, and

the broad-sense heritability values showed that much of the observed phenotypic variation can

be attributed to differences at the genotypic level (Table 1). Therefore, the significant genotypic

correlations among traits could indicate biological processes that are of considerable evolu-

tionary interest and result from genetic or physiological features [82,83]. The SH, SN and SW

traits are involved in plant development and are therefore important parameters in breeding

programs that increase genetic gains in terms of cane yield. The MTAs discovered for any of

these three traits might potentiate plant development, mainly because the SW, SH and SN

traits were significantly associated with the five evaluated traits, and SW was part of the two

most strongly detected correlations (SH–SW and SW–TCH) (Fig 1). Similar genotypic corre-

lation results among these traits have been reported in previous studies [39,84].

In addition to genotypic correlations, genetic variability is essential to breeders for the gen-

eration of improved cultivars. In the present study, population structure and genetic diversity

were assessed in the BSPG through DAPC analysis and by a genetic dissimilarity matrix calcu-

lated with the SM distance and visualized as an NJ phylogram, both based on SSR markers.

DAPC analysis divided the BSPG into four subpopulations (Fig 2), and this result was con-

firmed by the NJ phylogram of the SM distance of the whole population (Fig 3). To obtain the

population structure, some studies have reported similar or better results for DAPC analysis

than for the Bayesian model-based method [63,85–87] implemented in STRUCTURE software

[88–90]. In addition, for complex genomes, several assumptions are not fulfilled with the use

of STRUCTURE; therefore, the applicability of this algorithm may be limited in sugarcane

[34,37,38,91]. The NJ phylogram showed that the subpopulations contained some clusters

formed by family relatedness. These results suggested that the BSPG could be affected by popu-

lation structure and relatedness, which is in agreement with the history of sugarcane breeding

[10,18,92].

LD is affected by genetic and nongenetic factors, such as recombination, genetic drift, pop-

ulation stratification, genetic relatedness, mutation, selection and linkage [93,94]. Therefore,

the population structure and family relatedness of the BSPG could be responsible for the

detected LD, which was stronger in the first 15 cM and present in a large extension, i.e., at 65

cM, similar to the results of Raboin et al. [35] and Wei et al. [38]. Recently, Yang et al. [36]

showed a large extent of LD, with lengths of 962.4 Kbp, 2739.2 Kbp and 3573.6 Kbp for S. spon-
taneum, S. officinarum and modern hybrids, respectively. The existence of a large LD extent

and, consequently, the presence of large gene clusters indicate that a high density of markers is

not required to detect MTAs by the GWAS approach in sugarcane. Thus, single-dose markers

could be useful for this purpose as an initial step. On the other hand, the LD caused by popula-

tion structure and familial relatedness can promote false positive detection in GWAS analysis

[95–97], and to avoid these spurious associations, the models consider covariates (population

structure matrix and/or kinship matrix) to adjust the association tests on markers. In addition,

confounding between these covariates and testing markers also produces false negatives

[44,96].

The QQ plots obtained with GAPIT software showed that the association tests were inflated

and resulted in false positives when compared with the QQ plots generated by FarmCPU soft-

ware, mainly for the BRIX and SN traits (Fig 4). The compressed mixed linear model

(CMLM), implemented in GAPIT, is a single-locus model that tests one marker at a time and
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maintains the kinship matrix constant for all markers [76]. On the other hand, FarmCPU, a

multilocus model, implements a fixed model that contains the testing markers and covariates

(multiple associated markers and PCs) and a random model that contains the kinship matrix.

This kinship matrix is adjusted based on the testing markers and covariates of the fixed model

[44]. Therefore, the differences in the analysis procedures could explain the occurrence of false

positives by GAPIT, which fails to match the true genetic model of complex traits that are con-

trolled by numerous loci simultaneously [48], such as those evaluated in the present study. In

GAPIT, other associated loci nearby or elsewhere in the genome will sometimes disrupt with

the tested marker and result in spurious associations, especially when the effects of the other

loci are large [98]. In addition, in GAPIT, covariate information could overlap (kinship matrix

and PCs), as previous studies have shown that the PCs from PCA also include part of the fam-

ily relatedness [99,100]; therefore, the seven PCs retained by the DAPC analysis, which

explained 25.5% of the variance, provided some information about relatedness and population

structure for GWAS analysis. Finally, the more reliable MTAs detected with the FarmCPU

approach could be attributed to the use of only retained PCs of DAPC as a covariate and the

MLMM, which was able to remove the confounding between the tested markers and covariates

[44].

The GWAS analysis with FarmCPU software revealed 23 MTAs associated with five traits

when the Bonferroni-corrected threshold was set to 1% (Table 2). All but four MTAs showed a

low percentage of explained phenotypic variation, with values ranging from 1% to 7%. These

low values may be due to the high ploidy level of sugarcane and the quantitative inheritance of

the evaluated traits [39]. In addition, the SSR fragments are treated as dominant in polyploid

species, such as sugarcane, and thus do not capture the allelic dosage information of homolo-

gous chromosomes [101]. Despite that Fickett et al. [42] obtained 6299 SNPs and 235 InDels

through a high-throughput genotyping system, only 27 markers were significantly associated

with six traits (stalk number, stalk height, stalk diameter, ˚Brix, pol and fiber) and explained

no more than 14.3% of the phenotypic variation. Therefore, genetic studies on polyploidy spe-

cies, like sugarcane, are obviously delayed when compared to those on crops with minor

genetic complexity. New methods of analysis are still in development to increase the under-

standing of complex genomes and enable mapping and association studies with further levels

of allelic information [24,26,102]. Despite this, four MTAs with the highest percentages of

explained phenotypic variation (43% for SN with ESTA61_15, 20% for BRIX with ESTA61_15,

14% for BRIX with CIR55_14 and 14% for SH with SMC248_08) indicate that the presence of

at least one copy of the allele could also be important for driving strategies in breeding pro-

grams. The SSR fragment ESTA61_15, a species-specific fragment present in S. spontaneum
accession IN84-58, was positively and negatively associated with the SN and BRIX traits,

respectively. ESTA61_15 may be a unique allele that causes important phenotypic variation.

Previous studies detected MTAs for the SW [37,39], SN [18,39,40,42], SH [18,39,40,42] and

BRIX [18,40–42] traits, and the percentages of phenotypic variation found in the present study

were similar for SW, SH and BRIX and higher for SN. Therefore, these MTAs may be validated

as an initial approach to support breeding programs with introgression or selection processes

[37,41,42].

To understand the plant metabolism functions of the SSR marker regions associated with

traits and search for candidate genes, we annotated the available sequences from which the

associated markers originated. Thus, the sequence that produced the ESTA61 marker showed

similarity with cortical cell-delineating protein, which is a member of the alpha-amylase inhibi-

tors, lipid transfer and seed storage (AAI-LTSS) protein family according to SMART annota-

tion in Phytozome [78]. This result suggests differential lipid transport and sucrose

accumulation performances between S. spontaneum and other BPSG accessions [103,104].
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The ESTB133 marker, also associated with BRIX, showed similarity with the vacuolar fusion
protein MON1, which is a member of the MON1/SAND protein family. In Arabidopsis, the

MON1 and CCZ1 proteins form a complex that is critical for vacuolar trafficking, vacuole bio-

genesis, and plant growth. The mon1 mutants show pleiotropic growth defects, fragmented

vacuoles, and altered vacuolar trafficking [105]. Therefore, the accumulation and vacuolar traf-

ficking of the sucrose in sugarcane could be affected by alteration of this marker region.

For the ESTB111 marker, which was associated with SN, similarity with exonuclease DPD1,

chloroplastic/mitochondrial could indicate that the nucleotides, i.e., purines and pyrimidines,

released during the leaf senescence process provide nitrogen, sugar and phosphate to maintain

or increase the plant tillering ability [106]. Likewise, the ESTB130 marker, which was associ-

ated with SN and SW, showed similarity to auxin response factor 5 (ARF5), which acts as a

transcriptional activator of auxin-responsive promoter elements. This homology suggests that

a modification in the ARF5 protein could affect plant growth and development and conse-

quently affect the weight and stalk production of sugarcane [107–109]. For the SH trait, the

significantly associated marker ESTC19 showed similarity to DVL family proteins. In Arabi-
dopsis, the overexpression of DVL1 was associated with plants with a shortened stature, smaller

and rounder rosette leaves, clustered inflorescences, shortened pedicles, and siliques with

pronged tips resembling horns [110]. Thus, this result suggests that the ESTC19 marker also

plays a role in sugarcane plant development.

The GWAS analysis with FarmCPU software, which used population structure information

derived from DAPC analysis as a covariate, was able to detect MTAs with efficient control of

spurious associations in sugarcane. In addition, the verification of possible candidate genes for

MTAs showed the importance of providing insights into gene networks that are related to the

expression of target traits. This approach has great potential for assisting breeding programs in

increasing the genetic gain rate of target traits. However, the development of statistical

approaches to enable mapping association with markers in multiple doses is important to

enhance the probability of finding higher numbers of significant associations and, conse-

quently, increase the use of molecular markers in breeding programs of outcrossing heterozy-

gous species, such as sugarcane.
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