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Abstract

Pathogens can impact host survival, fecundity, and population dynamics even when no
obvious disease is observed. Few baseline data on pathogen prevalence and diversity of
caribou are available, which hampers our ability to track changes over time and evaluate
impacts on caribou health. Archived blood samples collected from ten migratory caribou
herds in Canada and two in Greenland were used to test for exposure to pathogens that
have the potential to effect population productivity, are zoonotic or are emerging. Relation-
ships between seroprevalence and individual, population, and other health parameters
were also examined. For adult caribou, the highest overall seroprevalence was for alphaher-
pesvirus (49%, n = 722), pestivirus (49%, n = 572) and Neospora caninum (27%, n = 452).
Lower seroprevalence was found for parainfluenza virus type 3 (9%, n = 708), Brucella suis
(2%, n =758), and Toxoplasma gondii (2%, n = 706). No animal tested positive for antibod-
ies against West Nile virus (n = 418) or bovine respiratory syncytial virus (n = 417). This
extensive multi-pathogen survey of migratory caribou herds provides evidence that caribou
are exposed to pathogens that may have impacts on herd health and revealed potential
interactions between pathogens as well as geographical differences in pathogen exposure
that could be linked to the bio-geographical history of caribou. Caribou are a keystone spe-
cies and the socio-economic cornerstone of many indigenous cultures across the North.
The results from this study highlight the urgent need for a better understanding of pathogen
diversity and the impact of pathogens on caribou health.
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Introduction

The Arctic is currently experiencing unprecedented climate change and anthropogenic distur-
bance that can influence the occurrence and spread of pathogens [1, 2]. Climate change has
been linked to the emergence of diseases, escalating parasitic infection pressure, altered geo-
graphic distribution of pathogens and parasite invasions [3-5], whilst anthropogenic land-
scape modifications directly and indirectly impact the distribution and movement of host and
vector species [1, 6]. Changes in exposure risk, emergence and spread of pathogens and disease
in Arctic wildlife have already been observed [7-10]. Ecological perturbations arising from cli-
mate change have been linked to recent parasite range expansion, in, for example, muskoxen
(Ovibos moschatus) and caribou [7] and widespread mortality events, in muskoxen [9], Saiga
antelope (Saiga tatarica tatarica) [11] and reindeer [5].

Parasites and other pathogens can play key roles in ungulate population dynamics
through direct or indirect effects on reproduction and survival (for example; [12-16]). They
may also increase risk of predation [17, 18]. Establishing baselines of pathogen diversity is
imperative to be able to understand the role of pathogens in individual and population
health, and guide wildlife management and conservation [19-21]. From a One Health per-
spective this is particularly important at northern latitudes, where most people are depen-
dent on harvested country foods (such as fish, waterfowl, caribou, moose, muskoxen, seals),
and unhealthy animals can threaten human health, food security, and cultural well-being
[22, 23].

Caribou (Rangifer tarandus) are an iconic keystone species in the circumpolar Arctic.
They are important for ecosystem functioning and are the socio-economic cornerstone
of many Indigenous cultures [24, 25]. During the last two decades, Rangifer populations
have undergone substantial declines across their range, with climate change and environ-
mental disturbance identified as contributors [26-28]. In Canada, the Committee on the
Status of Endangered Wildlife in Canada (COSEWIC) has recommended that barren-
ground caribou be listed as threatened [29] and that the Dolphin and Union herd, as well as
the eastern migratory caribou in Quebec, be listed as Endangered [30, 31]. Pathogens and
disease were identified in these assessments as potential threats to caribou population viabil-
ity [29-31].

Serological surveys and other pathogen studies involving Rangifer began to enter the litera-
ture around the 1970s and reported prevalences of various pathogens that could affect herd
and human health (for example; [32-35]). However, many herds remain unsampled or under-
sampled and baselines are still incomplete. Establishing pathogen diversity and prevalence is a
critical first step for understanding trends and impacts of infectious disease in Rangifer and
humans.

Obtaining samples needed to monitor pathogen prevalence in wildlife is both logistically
and ethically challenging and subject to biases, as it often requires non-random capture, cull-
ing of the animal or locating carcasses, particularly in the case of elusive free-ranging wildlife
in remote regions, such as caribou. Here, we used a unique collection of new and archived
samples obtained in collaboration with government, scientists, local communities and harvest-
ers across the North with two objectives: i) to describe the exposure of 12 migratory caribou
herds/populations to eight pathogens that have the potential to impact herd health and pro-
ductivity, are zoonotic, and/or are emerging (pesti-, herpes- and paramyxoviruses, Neospora
caninum, Brucella suis, Toxoplasma gondii and West Nile Virus, Table 1), and; (ii) to examine
relationships between seroprevalence and individual (age, sex), population (herd) and health
(body condition, co-exposure) parameters.
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Table 1. Pathogen impacts. For the pathogens screened for in this survey, known effects in Rangifer are listed when available, if effects are unknown effects in domestic
animals are listed. The serological assays used were designed for bovine viruses and are likely cross-reacting with their cervid counterparts.

Agent Type Effects in Rangifer Effects in domestic animals Zoonotic impact
Pestivirus Virus Poorly studied. Loose bloody stools, laminitis | Immunosuppression, respiratory and gastrointestinal None
e b BN | discase, abortions, neonatal morbidity/mortality[115] |
Alphaherpes-virus Virus Oral lesions, infectious keratoconjunctivitis, None

(CVHV2) preumonia, abortion[49, 50, 96, 1161 L
Paramyxo-viruses Virus Unknown Contributes to Bovine respiratory disease complex[117] | None

I and BRSY ) L e e
Neospora caninum Protozoan | Unknown Abortions, mummified foetuses, weak calves[118] None

Brucella suis biovar 4 | Bacteria
Toxoplasma gondii

West Nile virus Virus

https://doi.org/10.1371/journal.pone.0219838.t001

Abortion, weak calves, joint disease, orchitis,
abscesses[40, 41]

Protozoan | Abortion, lethal enteritis[119, 120]

Neurological disease, death[53]

Multi-systemic
chronic disease[40]

Abortion, birth
defects[46]

Neurological, death
[121] "

Materials and methods
Sample collection

Samples were collected from the following migratory caribou herds and subspecies: Porcupine
(PCH) (R. t. granti), Bluenose-West (BNW), Bluenose-East (BNE), Dolphin and Union (DU),
Bathurst (BA), Beverly and Ahiak (BEAH), Quaminuriaq (QAM) (all R. t. groenlandicus), Riv-
iere-aux-Feuilles (R-F), Riviere-George (R-G) (both R. t. caribou) in Canada, and the Akia-
Maniitsoq (AK) and Kangerlussuaq-Sisimiut (KA) (R. t. groenlandicus) herds in Greenland
(Fig 1 and S1 Table). Note that Beverly and Ahiak are recognised as two separate herds, but
they could not be distinguished during the sampling and are, therefore, grouped together.
During the International Polar Year (IPY), 2007-2009, the CircumArctic Rangifer Monitoring
and Assessment network (CARMA), an international consortium of biologists, ecologists,
aboriginal leaders, resource managers, veterinarians, and social scientists [36], coordinated an
unprecedented collection of blood samples and health data from caribou herds across Canada
and Greenland [37]. The majority of samples used in this study were from these collections.
Additional samples were obtained in collaboration with local government agencies and subsis-
tence hunters during community hunts, collaring events, community-based monitoring pro-
grams [23] and licensed guided hunts, and span a broader period (2000-2016). Sampling of
herds was non-random and either directed by specific agency/research purposes, community
interests or the needs of subsistence hunters. In general, community and subsistence hunts tar-
geted presumably healthy animals, while the research collections were opportunistic and gen-
erally focused on adult females (and their calves for the R-F and R-G herds). Caribou of all
ages and both sexes were sampled, but were not equally sampled among the herds or seasons
(S1 Table). Samples came from a mixture of hunted and live-sampled animals that were cap-
tured during collaring projects.

Whole blood and/or filter-paper (FP) blood samples (Nobuto filter strips: Toyo Roshi
Kaisha, Ltd., Tokyo, Japan) were obtained from each animal. Whole blood and FP samples
were collected, stored and FP eluted as described in Curry, Elkin [38]. The exceptions were for
R-F, R-G and DU herds, where blood was obtained during capture and collaring activities. For
R-F and R-G samples, the blood was allowed to clot and separate, and the serum was drawn off
and maintained in cool conditions until it could be transferred to a -20°C freezer. For the DU
samples, freezing conditions in the field limited sample manipulation and blood was, in some

PLOS ONE | https://doi.org/10.1371/journal.pone.0219838 July 31,2019

3/22


https://doi.org/10.1371/journal.pone.0219838.t001
https://doi.org/10.1371/journal.pone.0219838

@ PLOS | O N E Serological survey of migratory caribou herds

Greenland

Fig 1. Ranges of the migratory caribou herds included in the serological survey. Porcupine (PCH), Bluenose-West (BNW),
Bluenose-East (BNE), Dolphin and Union (DU), Bathurst (BA), Beverly and Ahiak (BEAH), Quaminuriaq (QAM), Riviére-aux-
Feuilles (R-F), Riviere-George (R-G), Akia-Maniisoq (AK) and Kangerlussuaq-Sismiut (KA). Basemap sourced from Natural Earth
(www.naturalearthdata.com) and caribou herd ranges from CARMA.

https://doi.org/10.1371/journal.pone.0219838.9001

cases, collected directly into a syringe and kept frozen at -20°C until it was transported to a lab-
oratory where it was thawed, centrifuged and the serum drawn off.

Body condition data were collected according to methods outlined in CARMA level 1 and
level 2 Monitoring protocols [37, 39]. Age classes (Calf (CA) < 1 year old, Yearling (YE) =1
years old, Adult (AD) > 2 years old) were assigned according to tooth cementum age analysis,
(Matsons, Manhattan, MT, USA), where available, or based on classification determined in the
field if incisors were not available.

Pathogen selection rationale

Pathogens were selected based on previous knowledge of caribou exposure, relevance for herd
and human health, and the availability of suitable serological assays (Table 1). In brief, Brucella
suis biovar 4 is zoonotic and has been reported from all major barren-ground caribou herds
from Alaska to Baffin Island but recent information on its prevalence and distribution is miss-
ing [40, 41]. Neospora caninum and Toxoplasma gondii, has previously been reported in Rangi-
fer [42-45]. They can have reproductive impacts, which could lead to significant reductions in
productivity and may additively influence population declines [16, 42]. Toxoplasma gondii can
also cause disease in humans and seroprevalence in populations in Nunavik are up to three
times higher (50-65%) than the North American average [46]. Exposure to herpes-, pesti- and

PLOS ONE | https://doi.org/10.1371/journal.pone.0219838 July 31,2019 4/22


http://www.naturalearthdata.com
https://doi.org/10.1371/journal.pone.0219838.g001
https://doi.org/10.1371/journal.pone.0219838

@ PLOS|ONE

Serological survey of migratory caribou herds

paramyxo-viruses (detected through serological assays for Bovine herpes virus type 1 (BHV1,
herpes virus), parainfluenza virus type 3 (P13, paramyxovirus) and bovine viral diarrhoea virus
(BVDV, pestivirus) has been recorded in Rangifer, whilst exposure to bovine respiratory syn-
cytial virus (BRSV), or similar, has been recorded in other cervids [45, 47, 48]. In caribou,
assays for these viruses are likely cross-reacting with cervid specific viruses. Cervid Herpes
Virus 2 (CvHV?2) was identified as the primary agent in an outbreak of keratoconjunctivitis in
Norwegian reindeer [49] and experimental infections in reindeer have been linked to neonatal
death and abortion [50]. The impacts of the other viruses (or similar cervid-specific viruses)
are not well studied, although BVDV viremia in reindeer has been demonstrated by experi-
mental infection [51]. In cattle, these viruses contribute to the bovine respiratory disease com-
plex [52]. West Nile virus, a zoonotic pathogen that amplifies in avian hosts and is transmitted
by mosquitoes, causes fatal disease in captive reindeer [53]. Range shifts of vectors in response
to climate change could lead to the northward spread of this pathogen [54]

Pathogen screening/testing

Samples were screened for antibodies to eight different pathogens or pathogen groups; alpha-
herpesvirus (Herpes), pestivirus (Pesti), parainfluenza virus type 3 (PI3), Neospora caninum
(Neo), Brucella suis (Bru), Toxoplasma gondii (Toxo), West Nile virus (WNV) and bovine
respiratory syncytial virus (BRSV). The specific tests used are summarized in Table 2.

Pathogen testing was performed in two rounds. First, samples collected during IPY from
herds PCH, BA, R-F, R-G, AK and KA, and a subset of the BNW samples were tested between
2010 and 2011 [55]. Second, testing of additional samples obtained from archives or new col-
lections from BNW, BNE, DU, BEAH, and QAM occured from 2014 and 2016. Due to limited
sample volume, in some instances not all samples could be screened for all pathogens. In the
first round, pathogen tests were prioritized as follows: Bru, Neo, WNV, Toxo, Herpes, BRSV,
PI3, Pesti. Based on the results from the initial screening and the needs of collaborative proj-
ects, in the second round pathogen screening tests were not run for WNV or BRSV, and tests
were prioritized as follows: Bru, Toxo, Herpes, Pesti, Neo and PI3.

FP eluates are estimated to be a 1:10 dilution of serum (Nobuto specifications: Toyo Roshi
Kaisha, Ltd., Tokyo, Japan., Curry et al 2011). Thus, protocol steps were adjusted as needed to
ensure that serum and FP results were comparable. The use of FP eluates in the place of serum
was previously validated for the assays used in this study [38, 56]. As such, results from FP and
serum samples were combined. The exception was for the N. caninum test (Table 2) where
the kit uses undiluted serum. As such, no adjustments could be made to make the FP eluates,
which are 1:10 serum dilution, comparable to the undiluted serum. Therefore, only results
from N. caninum testing using serum samples are reported. Antibody tests were done at veteri-
nary diagnostic laboratories in Canada, the United States and Norway. To the extent it was
possible, we used assays that had been validated or tested in Rangifer (Table 2). Samples that
fell within the range of suspect/doubtful values were re-run as per the manufacturers’ specifica-
tions (Table 2).

Statistical analysis

For all analysis, samples that remained in the doubtful range after re-running (Table 3) were
excluded since they could not be classified as seropositive or seronegative according to the
threshold criteria. For N. caninum all analysis are based on results from serum samples, due to
difficulties with the screening methodology for N. caninum from filterpaper samples.

The observed sample seroprevalence of each pathogen was calculated for each herd for
adults, yearlings and calves and for males and females (where possible) based on the pathogen
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Table 2. Tests and laboratories used for pathogen screening. Published validation and use in Rangifer or other cervids is indicated by references.

Pathogen® Lab® Test* Kit Cut-off*
Pestivirus AUN bELISA SERELISA BVD p80 Ab Mono Blocking, Synbiotics Corp., France P: >40%; D: 20-40%]55]
CWHC | bELISA IDEXX BVDV p80 Ab Test, IDEXX Laboratories Inc, Main, United States P:<40%; D:40 <S/N <50%
Alphaherpes virus | PDS iELISA In-house test using protein G-enzyme conjugate[122] P: >14 EU
AUN bELISA LSIVetT Bovine IBR gB Serum ELISA (based on BoHV-1 gB antigen)[91] P: >35%
AUN bELISA SERELISA IBR/IPV gB Ab Mono Blocking, Synbiotics, Europe SAS, France[91] P: S/N <0.5
D: 0.55>S/N>0.5
PI3 PDS iELISA In-house test, adapted for cervids, protein G-enzyme conjugate[122], [56] Serum: P: >14 EU
FP: P: >10 EU[56]
Neospora caninum | AHC cELISA Neospora caninum Antibody Test Kit, cELISA; VMDR Inc., Pullman, WA, USA[56] | P: >30%
PDS cELISA Neospora caninum Antibody Test Kit, cELISA; VMDR Inc., Pullman, WA, USA[56] | P: >30%
Brucella BCE cELISA In-house testing based on antigen of Brucella abortus[38, 123], P: >30%[69]
AUN iELISA In-house testing based on a protein A/G iELISA[124] P: >1.13%
Toxoplasma gondii | USDA MAT[55, 125] P: MAT titre >1:25
CWHC | iELISA IDSCREENToxoplasmosis indirect multispecies; IDvet., Grables, France P: S/P% >50%;
D: 40%< S/P%<50%
West Nile virus PHA cELISA In-house testing using two monoclonal antibodies (mAb1l, mAb2) [56, 126] P: >30%
BRSV PDS iELISA In-house test, adapted for cervids, protein G-enzyme conjugate[56, 122] P: >14EU

 PI3 = Parainfluenza virus type 3; BRSV = bovine respiratory syncytial virus

PAUN = Research group of Arctic infection biology, Dept. of Arctic and Marine Biology, University of Tromso, the Arctic University of Norway; CWHC = Canadian
Wildlife Health Cooperative, Alberta Node, Canada; PDS = Prairie Diagnostic Services, Saskatoon, SK, Canada; AHC = Animal Health Centre, Abbotsford, BC, Canada;
BCE = Brucellosis Centre of Expertise, Ottawa, ON, Canada; USDA = United States Department of Agriculture, Parasite Biology and Epidemiology Laboratory,

Beltsville, MD, USA; PHA = Zoonotic Diseases and Special Pathogens section, Public Health Agency of Canada, Winnipeg, MB, Canada

“ bELISA = Blocking Enzyme-Linked immunosorbent assay (ELISA); iELISA = Indirect ELISA; cELISA = Competitive ELISA; MAT = Modified Agglutination Test
4P = Positive; D = Doubtful (suspect); % = % inhibition, calculated from OD (optical density) values, see Curry et al (2014); EU (ELISA Units) calculated from OD
values, see Curry et al. (2014); S/N = OD sample/OD negative; %P (percent positivity) = ([OD sample/OD positive control]*100, see dasNeves (2009; S/P% = (OD

sample-OD negative control/OD positive control-negative control)*100

https://doi.org/10.1371/journal.pone.0219838.t1002

screening results. 95% confidence-intervals were calculated using epitools epidemiological cal-
culators [57] employing the Clopper-Pearson exact method, as it produces conservative inter-

vals with reduced risk of over-estimating seroprevalence [58].

For Pesti, Herpes and Neo we examined factors influencing seropositivity and the relation-
ship between seropositivity and body condition. This analysis was not possible to perform for
other pathogens due to quasi complete separation of the data [59]. Data from the AK and KA
caribou populations were excluded from further statistical analyses because, with only two
exceptions (two samples from AK that tested positive for alphaherpesvirus) all samples were

seronegative for all pathogens.

To maximise sample size and avoid data separation [59] we used two approaches for analy-
sis, employing three subsets of data. First, we examined factors influencing seroprevalence of
Pesti, Herpes and Neo using generalized linear models (GLMs) with a binomial (logit) link.
Pesti and Herpes models were fitted to a subset of data containing results from samples that
had been tested for exposure to both pathogens (Pesti and Herpes) (n = 569). Neo models
were fitted using a subset of data containing results from serum samples that had been tested

for exposure to Pesti, Herpes and Neo and was restricted to the three herds for which Neo
seroprevalence was > 10% (DU, BA and BEAH). Explanatory variables of interest were: age
class (as determined by field observations), Sex, Co-exposure (Herpes and/or, esPesti serosta-

tus (positive, negative)), and Herd (PCH, BNW, BNE, DU, BA, BEAH, QAM, R-F, R-G). Sepa-
rate models were run for each pathogen. Due to an unbalanced dataset and limited sample size
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Table 3. Adult seroprevalence. Observed sample seroprevalence of screened pathogens in adult caribou presented for female (F) and male (M) caribou, and overall (O)
by herd. Pathogen abbreviations: Alphaherpesvirus (Herp), Pestivirus (Pesti), Parainfluenzavirus type 3 (PI3), Neospora caninum (Neo), Brucella suis biovar 4 (Bru), Toxo-
plama gondii (Toxo), West Nile Virus (WNV), Bovine respiratory syntical virus (BRSV). Caribou herd abbreviations: Porcupine (PCH), Bluenose West (BNW), Bluenose
East (BNE), Dolphin and Union (DU), Bathurst (BA), Beverly and Ahiak (BEAH), Quaminuriaq (QAM), Riviére-aux-Feuilles (R-F), Riviére-George (R-G), Akia-Maniit-
soq (AK) and Kangerlussuaq-Sisimiut (KA). Herds are listed west to east geographically left to right. Sample seroprevalence (%), number of positive samples (p), sample
size (n), 95% Clopper-Pearson Exact confidence intervals (CI) and number of doubtful samples (D) are presented.

PCH BNW BNE DU BA BEAH QAM R-F | R-G | AK | KA | ALL HERDS
M (0] F M (6] F M (6] F F M (6] F F M (6] F F F F F M (6]
Herp | % | O 48 | 47 | 67 | 63 | 63 | 56 | 46 | 52 | 85 | 38 | 50 | 42 87 58 | 86 | 69 | 22 28 5 0 47 | 58 | 49

CI| 0- | 30- | 29— | 35— | 48— | 50— | 40— | 26— | 40— | 71- | 28— | 34— | 33— | 79-92 | 39— | 65- | 55— | 13— | 18- | 1- | 0- | 43— | 50- | 46—
98 | 67 | 65| 9 | 76 | 75 | 71 67 | 65 | 94 | 50 | 66 | 52 75 | 97 | 81 33 40 17 | 10 | 51 65 | 53

pl| O 15 15 8 32 | 40 | 24 11 35 | 35 | 30 | 20 | 50 105 19 19 | 38 16 21 2 0 | 260 | 97 | 357
n 1 31 | 32 12 | 51 63 | 43 | 24 | 67 | 41 78 | 40 | 118 121 33 | 22 | 55 | 73 75 | 41 | 36 | 554 | 168 | 722
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Pesti | % | 100 | 54 | 56 | 50 | 55 | 54 | 35 | 33 | 34 | 15 | 78 | 78 | 78 60 45 | 48 | 46 | 53 73 0 0 48 | 57 | 49

CI| 3- | 33- | 35- | 12— | 36— | 37- | 17- | 4- | 19- | 5- | 66— | 56— | 68— | 51-69 | 27— | 26— | 32— | 40- | 60— | 0-9 | 0- | 43— | 47— | 45-
100 73 | 75 | 88 | 74 | 71 | 56 | 78 | 53 | 32 | 88 | 93 | 87 64 | 70 | 61 | 67 83 10 | 52 | 67 | 54

p 1 14 | 15 3 16 | 19 9 2 11 5 47 | 18 | 65 68 14 | 10 | 24 | 31 45 0 0 | 223 | 60 | 283
n 1 26 | 27 6 29 | 35 | 26 6 32 | 33 | 60 | 23 | 83 113 31 | 21 | 52 | 58 62 | 41 | 36 | 467 | 105 | 572
0 0 0 6 10 | 16 | 17 | 18 | 35 2 19 | 17 | 36 8 2 1 3 15 13 0 0 82 | 46 | 128

PI3 | % | 100 |« 45 | 47 0 12 10 | 31 13 | 25 0 5 0 3 5 10 0 6 12 5 0 0 8 14 9
CI| 3- |27-29-| 0- | 4- | 4 |18 | 3- |15-|/0-9| 1- | 0-9|1-8| 2-11 | 2- | O- | 1- | 6- 1- |0-9| 0- | 6- | 9- | 7-
100 | 64 | 65 | 26 | 24 | 20 | 47 | 32 | 36 13 26 15 16 | 22 13 10 | 10 | 20 | 11

p 1 14 | 15 0 6 6 14 3 17 0 4 0 4 6 3 0 3 9 4 0 0 41 | 23 | 64
n 1 31 | 32 | 12 | 51 | 63 | 45 | 24 | 69 | 37 | 78 | 40 | 118 | 118 31 | 22 | 53 | 73 75 | 41 | 36 | 547 | 168 | 715

Neo | % | O 0 0 0 0 0 - - - 22 1 3 2 68 81 | 81 | 81 0 0 0 0 29 | 19 | 27
CI| 0- | 0- | O- | O- | O- | O- - - - 10- | 0-7 | 0- | 0-6 | 59-76 | 63— | 58— | 67— | 0- 0- | 0-9| 0- | 24- | 12— | 23—

98 | 15 | 15 | 98 | 22 | 21 38 15 93 | 95 | 90 12 13 10 | 33 | 29 | 31

pl| O 0 0 0 0 0 - - - 8 1 1 2 80 25 17 | 42 0 0 0 0 | 113 | 18 | 131
n 1 22 | 23 1 15 | 16 - - - 37 | 75 | 36 | 111 118 31 | 21 | 52 | 28 28 | 41 | 36 | 396 | 94 | 490

Bru | % | 0 0 0 0 4 3 2 0 1 15 5 5 5 0 0 0 0 0 0 0 0 2 2 2

CI| 0- | 0- | 0- | O- 1- | 1-9| 0- | 0- | 0-8 | 6- 1- 1- | 2- 0-3 0- | 0- 06|05 0509|0-|1-4|1-6| 1-3
98 11 11 25 10 12 14 29 12 17 11 11 15 10

pl| O 0 0 0 3 3 1 0 1 6 4 2 6 0 0 0 0 0 0 0 0 11 5 16
n 1 31 | 32 | 13 | 84 | 97 | 43 | 24 | 67 | 41 | 80 | 40 | 120 | 121 33 | 22 | 55 | 73 75 | 41 | 36 | 557 | 201 | 758
Toxo | % | 0 0 0 0 0 0 0 14 6 5 5 3 4 0 6 0 4 1 0 0 0 1 3 2

crf o- | 0-|0-|0-|05/0-4|08|5 | 2-|0-| 1- | 0-| I- 0-3 0-|0-0-|0-7,05/09|0-|1-3|1-7]|1-3

98 | 11 | 100 | 71 30 | 14 | 26 | 13 13 10 29 | 31 19 10
pl| O 0 0 0 0 0 0 5 5 1 4 1 5 0 1 0 1 1 0 0 0 7 6 13
n 1 31 | 32 3 80 | 83 | 46 | 35 | 81 19 | 79 | 40 | 119 | 121 17 | 10 | 27 | 73 74 | 41 | 36 | 510 | 196 | 706
0 0 0 1 2 3 1 0 0 0 0 0 0 0 0 0 0 2 2
WNV | % | 0 0 0 0 0 0 = = = = 0 0 0 = = = = 0 0 0 0 0 0
CI| 0o- | 0- | 0-| 0- 09|08 - - - - 1 0-5/0-9|0-3 - - - - 0-5|0-5|0-9| 0- | 0-1 | 0-3 | 0-1
98 | 11 11 | 98 10
pl| O 0 0 0 0 0 - - - - 0 0 0 - - - - 0 0 0 0 0 0 0
n 1 31 | 32 1 41 | 42 - - - - 79 | 40 | 119 - - - - 73 76 | 41 | 36 | 306 | 112 | 418
BRSV | % | O 0 0 0 0 0 = = = = 0 0 0 = = = = 0 0 0 0 0 0 0
CI| o- | 0-|0-| 0- 09|08 - - - - 1 0-5/0-9|0-3 - - - - 0-5|0-5|0-9| 0- | 0-1 | 0-3 | 0-1
98 | 11 11 | 98 10
pl| O 0 0 0 0 0 - - - - 0 0 0 - - - - 0 0 0 0 0 0 0
n 1 31 | 32 1 41 | 42 - - - - 78 | 40 | 118 - - - - 73 76 | 41 | 36 | 306 | 112 | 417

https:/doi.org/10.1371/journal.pone.0219838.t003
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of certain subsets, the only interaction included was between Sex and Co-exposure for Herpes
and Pesti analysis. Models were fit using the glm function from the “stats” package in R [60].

Second, we tested whether seropositivity to Pesti and/or Herpes predicted caribou body
condition using linear models. Two different indices of body condition were used as the
response variable in separate models: Riney kidney fat index, calculated as the ratio of the
weight of the kidney fat to the weight of the kidney * 100 (KFI), and direct measures of back
fat in millimeters (mm)[39]. For KFI, we used a subset of samples comprising non-pregnant
adult females from R-F and R-G herds collected in summer (June-July) and fall (October-
November) for analysis (n = 119). For back fat, we used the same subset of data, but restricted
it to animals sampled in fall (n = 58), since back fat of animals sampled in summer measured 0
mm. Explanatory variables included Tage (as determined by cementum age analysis), Tage/2,
Year (2007, 2008, 2009), Pesti and Herp serostatus (positive, negative). No interactions were
fitted due to the limited sample size. Herd (R-F, R-G) was included in all models to account
for baseline differences in body condition between the herds. For models predicting KFI, Sea-
son (summer, fall) was also included in all models to account for seasonal variations in body
condition. Models were fit using the Im function from the “stats” package in R [60].

Candidate models were created including different combinations of biologically plausible
explanatory variables, and compared using Akaike’s Information Criterion with a second-
order correction for small sample sizes (AIC,) [61]. Among the top models with a AAIC. < 2,
the simplest model was selected as the best fit if the other top model(s) only differed by one
parameter from the model with the lowest AIC, and had a minimal reduction in log-likelihood
(i-e., they did not improve explanatory power), indicating that those additional parameters
were uninformative [62]. For the first approach examining seroprevalence, eighteen different
models were tested for Pesti and Herpes and 31 models for Neo. For the second approach
examining body condition 24 models were run for backfat and 24 for kidneyfat.

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guidelines of
the Canadian Council on Animal Care and the relevant Federal and Provincial legislation in
such a manner to minimise suffering. Protocols were approved by the University of Calgary
Animal Welfare Committee (protocol numbers BI-2006-52 BI 2007-52, BI2008-45, BIO8R-45,
AC13-0121). Samples were received from animals killed by hunters for food, biologist/wildlife
officers or researchers for other projects or from live captured animals. All sampling required
adherence to standardized and approved protocols for sampling or killing wildlife species,
aimed at reducing stress and suffering of the animals. All captured caribou were captured by
professional capture crews under the standard operating procedures of partnering agencies.

Results
Seroprevalence

Results for observed sample seroprevalence are presented in Table 3. The number of samples
tested varied by pathogen due to limited blood sample volume (see Methods). After re-testing,
128 samples screened for pestivirus were still classified as doubtful. Results discussed below are
from adults. Seroprevalence results for yearlings and calves can be viewed in S2 and S3 Tables.
Opverall seroprevalence for adults was, by far, the highest for alphaherpesvirus (49%, CI: 46—
53, range: 0-87%, n = 722) and pestivirus (49%, CI: 45-54, range 0-78%, n = 572). All herds
except for the two Greenland caribou herds (although see comment below and Discussion)
were seropositive for these two pathogens. Neospora caninum had the third highest seropreva-
lence (based on serum samples only; 27%, CI:23-31%, range:0-81%, n = 490) followed by PI3
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with a seropositivity of 9% (CI: 7-11, range: 0-47%, n = 715) (Table 3). Seropositivity for B.
suis was 2% (CI: 1-3, range: 0-5%, n = 758), with individuals from BNW, BNE, DU and BA
herds testing positive. Seropositivity for T. gondii was 2% (CI:1-3, range: 0-7%, n = 706), with
individuals from BNE, DU, BA and QAM testing positive. All samples were negative for WNV
(n =418) and BRSV (n = 417). The two Greenland caribou herds (KA and AK) were seronega-
tive for all pathogens, with the exception of two alphaherpesvirus-positive samples from the
AK herd.

Evidence for exposure to more than one pathogen was assessed in a subset of data where
each individual had been tested for exposure to all pathogens (excluding results from KS and
AK and pathogen testing for WNV and BRSV) and classified as either seropositive or seroneg-
ative (n = 474, doubtfuls removed). Two hundred and forty (46%) individuals had been
exposed to more than one of the tested pathogens, 84 (16%) individuals were seropositive for
three different pathogens, and three individuals (0.6%) from BEAH and one individual from
QAM (0.2%) were seropositive for four different pathogens.

Factors associated with exposure to pestivirus

Two models predicting Pesti seropositivity were within a AAIC <2, we based our inference on
Model 1p (see Methods and Table 4).

There was variation in seroprevalence for Pesti among herds, with R-G and BA having the
highest predicted seroprevalence and DU the lowest (Fig 2A). Adults were more likely to be
seropositive for pestivirus relative to calves (Odds ratio (OR) = 2.4, CI = 1.2-4.6) and yearlings
(OR =10.2, 95% CI = 3.4-44.3). Calves were more likely to be seropositive relative to yearlings
(OR =4.3,95% CI = 1.2-20.9). Animals that were seropositive for Herpes were more likely to
be seropositive for Pesti than herpes negative animals (OR = 2.6, 95% CI = 1.6-4.1).

Factors associated with exposure to alphaherpesvirus

There were three models within a AAIC.<2 predicting Herpes seropositivity, we based our
inference on model 3h (see Methods and Table 4).

There was variation in seroprevalence for Herpes among herds, but this differed from the
pattern for pestivirus. For alphaherpesvirus, DU and BEAH had the highest predicted sero-
prevalence and R-G and R-F had the lowest predicted seroprevalence, closely followed by PCH
and BA (Fig 2B). Similar to Pesti, adults were more likely to be seropositive for alphaherpes-
virus relative to calves (OR = 12.3, 95% CI = 3.6-77.8) and yearlings (OR = 4.5, 95% CI = 1.9-
11.4). When estimating the risk of seropositivity for calves relative to yearlings (OR = 0.4, 95%
CI = 0.05-1.7), the yearlings appeared at higher risk, but the 95% confidence intervals over-
lapped one suggesting the difference may be negligible.

Co-exposure predicted Herpes seropositivity. Compared to Pesti-negative animals, those
that were seropositive for Pesti were more likely to also be seropositive for Herpes (OR = 2.6
95% CI = 1.6-4.1).

Factors associated with exposure to N. caninum

There were three models within a AAIC <2 predicting Neo seropositivity, we based our infer-
ence on model 2n (see Methods and Table 4).

There was variation in seroprevalence for Neo among the three herds tested, where QAM
had the highest predicted seroprevalence followed by BEAH and DU (Fig 2C). In addition,
Pesti seropositivity predicted Neo seropositivity. Compared to Pesti-negative animals, those
that were seropositive for Pesti were more likely to also be seropositive for Neo (OR = 2.5, 95%
CI=1.3-5.0).
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Table 4. Models predicting seroprevalence. Summary of top 10 models models, based on AAICc, predicting alphaherpesvirus (Herp), pestivirus (Pesti) and Neospora
caninum (Neo) seroprevalence. K is the number of parameters, wi is the model Akaike weight and LL is the log likelihood. The model used for inference is highlighted in

grey.

Pathogen Models K AIC, AAIC, \ LL

Pesti 1p. Herd+Age+Herp 12 698.31 0.00 0.62 -336.88
2p. Herd+Age+Sex+Herp 13 699.93 1.62 0.27 -336.64
3p. Herd+Age+Sex+Herp+Sex:Herp 14 701.77 3.46 0.11 -336.51
4p. Herd+Age 11 713.56 15.25 0 -345.54
5p. Herd+Age+Sex 12 715.56 17.25 0 -345.50
6p. Herd+Herp 10 719.59 21.28 0 -349.60
7p. Herd+Sex+Herp 11 719.89 21.57 0 -348.71
8p Herd+Sex+Herp+Sex:Herp 12 721.96 23.65 0 -348.70
9p. Herd 9 747.48 49.17 0 -364.58
10p. Herd+Sex 10 748.53 50.21 0 -364.07

Herp 1h. Herd+Age+Se+Pesti 13 590.15 0.00 0.49 -281.75
2h. Herd+Age+Se+Pesti+Sex:Pesti 14 591.34 1.19 0.27 -281.29
3h. Herd+Age+Pesti 12 591.53 1.37 0.24 -283.48
4h. Herd+Age+Sex 12 605.29 15.14 0.00 -290.36
5h. Herd+Age 11 606.47 16.32 0.00 -292.00
6h. Herd+Pesti 10 618.32 28.17 0.00 -298.96
7h. Herd+Sex+Pesti 11 618.57 28.42 0.00 -298.05
8h. Herd+Sex+Pesti+Sex:Pesti 12 619.97 29.82 0.00 -297.70
9h. Herd 9 646.21 56.06 0.00 -313.94
10h. Herd+Sex 10 647.03 56.88 0.00 -313.32

Neo 1n. Herd+Herp+Pesti 5 230.53 0.00 0.31 -110.11
2n. Herd+Pesti 4 231.19 0.66 0.23 -111.49
3n. Herd+Sex+Herp+Pesti 6 232.46 1.94 0.12 -110.02
4n. Herd+Sex+Pesti 5 233.23 2.70 0.08 -111.46
5n. Herd+Age+Herpes+Pesti 7 233.37 2.85 0.08 -109.40
6n. Herd+Age+Pesti 6 233.56 3.03 0.07 -110.56
7n. Herd+Age+Sex+Herpes+Pesti 8 235.35 4.83 0.03 -109.31
8n. Herd+Age+Sex+Pesti 7 235.67 5.14 0.02 -110.55
9n. Herd 3 236.13 5.60 0.02 -115.00
10n. Herd+Herpes 4 237.47 6.94 0.01 -114.63

https://doi.org/10.1371/journal.pone.0219838.t1004

Body condition

Within a AAIC.<2 there was support for three models predicting kidneyfat and two predicting
backfat, we based our inference on Model 3k (explanatory variables: Herd, Tage and Season)
and Model 1b (explanatory variable: Herd) (S4 Table). Neither model included Pesti or Herpes

as predictors of bodycondition.

Discussion

This study represents an unprecedented geographic scope of sampling and pathogen testing of
northern caribou herds and improves our understanding of pathogen diversity and exposure
in caribou. It demonstrates that caribou are exposed to pathogens that are important for herd

health, some of which are zoonotic and can be detrimental to human health.
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Fig 2. Herd differences in seroprevalence for pestivirus (A) herpesvirus (B) and Neospora caninum (C). Herds are listed from
west to east; Porcupine (PCH), Bluenose-West (BNW), Bluenose-East (BNE), Dolphin and Union (DU), Bathurst (BA), Beverly and
Ahiak (BEAH), Quaminuriaq (QAM), Riviére-aux-Feuilles (R-F), Riviere-George (R-G) Figure shows predictions for adult caribou,
without co-infection, based on the selected model (Table 4).

https://doi.org/10.1371/journal.pone.0219838.9002

Herd differences in exposure

There was a notable absence of seropositivity to the tested pathogen groups in the samples
from the two Greenland herds (KA and AK) and, with the exception of Herpes and Pesti,
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seroprevalence was low overall in the Quebec and Labrador herds (R-F and R-G). Herd was
an important covariate for predicting both alphaherpesvirus and pestivirus seroprevalence,
although no distinct pattern could be discerned. Differences among herds and regions can
have arisen as a result of ecological, demographic, behavioural and evolutionary factors [32,
63, 64] but sampling regimes may also have influenced results.

Historical biogeography could explain some differences in observed seroprevalence among
herds. The sampled herds are descended from different lineages; the western Canadian bar-
ren-ground caribou originate from the Beringian-Eurasian lineage and the Quebec-Labrador
herds from the North American Lineage [65]. Greenland was colonized by one or several pop-
ulations of barren-ground caribou descending from the Beringian-Eurasian lineage [66, 67].
The loss of pathogens during these colonization events was hypothesized as the explanation
for the unexpectedly low diversity of gastrointestinal parasites found in KA and AK herds [63];
this founder effect may also explain the similarly low pathogen biodiversity detected with
serology in these herds. A serosurvey of alphaherpesvirus, pestivirus and PI3 in Svalbard rein-
deer, inhabitants of the similarly isolated archipelago Spitsbergen in Norway, were also all
seronegative [68].

With respect to pathogen diversity in the Quebec and Labrador herds, differences in the
parasitological fauna compared to barren-ground caribou have previously been described and
likely link back to their historical biogeography [32, 64]. Similar differences in pathogens
detected through serology are also expected. The serological assays used here are not specific
to Rangifer viruses, rather to bovine viruses and to a broader taxonomic level of viruses. This
means that while we observe seropositivity to, for example, alphaherpesvirus and pestivirus,
it does not mean that it is the same virus circulating in both the Quebec and Labrador herds
and the Beringian lineage herds. Rather, it is possible that distinct groups of pathogens have
remained circulating within and among the populations that descended from these distinct
lineages, and these pathogens may have divergent life-history and transmission dynamics that
are reflected by differences in the seroprevalence. However, since serological assays work by
detecting antibodies, that persist for variable lengths of time in the blood and provide evidence
of past exposure to a pathogen, it is difficult to conclusively derive information on the timing,
intensity and frequency of infection from serological data and link that information to envi-
ronmental or demographic changes [69]. To fully understand and confirm herd differences in
pathogen exposure, further studies within a shorter and more synchronised time-span with a
well stratified sampling regime are needed.

Reproductive limiting pathogens

The comparatively high seropositivity for three reproduction limiting pathogens, Toxoplasma
gondii (5%), Brucella suis (15%) and N. caninum (22%), in the Dolphin and Union caribou
herd is of particular note. The Dolphin and Union samples were collected in 2015 and 2016,
coinciding with an ongoing population decline [31]), A local knowledge study reported fewer
juveniles, more animals in poor body condition, and more frequent sightings of limping cari-
bou with swollen joints during this period [70]. Subsequently the herd status was recom-
mended to be changed from Special Concern to Endangered by COSEWIC [23].

Poor reproduction, bursitis and lameness are symptoms commonly associated with infec-
tion with B. suis biovar 4 in caribou [71] A previous study on caribou of Southampton Island
demonstrated a substantial population decline associated with increasing seroprevalence of B.
suis biovar 4 [72] Notably, with the exception of the high seroprevalence in the DU herd
(15%), seroprevalence in the remaining herds (0-5%) was lower than reported in historical
studies (ranging between 9-40%) [33, 73-75].

PLOS ONE | https://doi.org/10.1371/journal.pone.0219838 July 31,2019 12/22


https://doi.org/10.1371/journal.pone.0219838

@ PLOS|ONE

Serological survey of migratory caribou herds

Caribou seropositive to T. gondii and N. caninum have been reported across the Arctic and
Subarctic North America, with prevalence ranging from 0.7-62.5% and 1.4-15.7%, respec-
tively [76]. These apicomplexan parasites are transmitted both through predator-prey linkages
and vertically from mother to foetus [77]. Exposure risk is linked to the presence and density
of definitive hosts (canids for N. caninum and felids for T. gondii [78]). There are no definitive
hosts for these parasites on Greenland, thus, absence of seropositivity to both these parasites in
AK and KA caribou herds is not surprising.

In comparison to previous surveys of N. caninum, there was an unexpectedly high seroprev-
alence for QAM (81%), BEAH (68%) and DU (22%) caribou, whilst few or no seropositive
samples were detected in the other Canadian herds tested. The reason for these differences
remain unclear but could be linked to geographical differences and the presence and density of
definitive hosts [78]. Our analyses showed that animals seropositive for pestivirus were more
than twice as likely to also be seropositive for N. caninum. Associations between seropositivity
for N. caninum and bovine diarrhoea virus have been detected in cattle in some [79, 80] but
not all studies [81]. It has been suggested that concurrent N. caninum and pestivirus infections
aggravate disease and abortion risk in cattle, but studies have shown conflicting results [82,
83]. Neospora caninum was implicated as the cause of widespread fetal mummification and
loss in at least one captive reindeer herd [42]), however, the impacts of single or co-infections
in caribou populations is unknown. The high seroprevalence of this parasite in declining cari-
bou herds highlights the urgent need to better understand the consequences of this parasite in
caribou productivity, and the association with potentially shifting predator-prey interactions.

Alphaherpesvirus and pestivirus

The high seroprevalence for alphaherpesvirus and pestivirus in all herds (with the exception of
KA and AK) is in accord with most previous serological surveys for these viruses in Rangifer
worldwide [49, 68, 75, 84-90]. Although the assays used in this study detected antibodies react-
ing against antigens of bovine viral diarrhea virus (BVDV) and bovine herpesvirus type 1
(BHV-1), they also cross-react with antibodies to cervid-specific viruses [91, 92]. The lack of
direct contact between domestic ruminants and Rangifer further suggests an independent
infection process with cervid-specific viruses [93]. An alphaherpesvirus, designated cervid her-
pesvirus 2 (CvHV2), has been isolated from reindeer on multiple occasions [49, 50, 94-96]. It
is likely that it is this virus to which the caribou in our study are reacting. In contrast, pestivirus
has not been isolated from free-ranging Rangifer, but a distinct pestivirus was isolated from a
reindeer (R. t. tarandus) in a German Zoo [92].

We observed a strong effect of age on risk of exposure to both pestivirus and alphaherpes-
virus, with adult caribou the most likely to be exposed in both cases. This is consistent with
previous Rangifer studies [85, 87, 90, 97], and not unexpected since older animals have had a
longer period of potential exposure to the virus. In addition, alphaherpesvirus can establish
latency and may be re-activated under stressful conditions. Reactivation will boost production
of antibodies and increase the likelihood of a positive serological result [47]. For pestivirus
(but not alphaherpesvirus), calves were more likely to be exposed compared to yearlings,
however, antibodies detected in calves may have been maternal antibodies. It is currently
unknown how long pestivirus antibodies persist in Rangifer; in cattle, maternal antibodies can
be detected in calves for up to 6 months, after which they are at risk of infection [98]. The
majority (67%) of the caribou calves in our study were 4-5 months old. Cattle can experience
transplacental transmission of BVDV, and calves infected during the first trimester of preg-
nancy develop immunotolerance and are born persistently infected (PI), yet seronegative.
These PI animals serve as an ongoing source of infection for their herd mates and can result in
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a high seroprevalence and low herd productivity [99]. Whether this phenomonen of PI ani-
mals occurs in Rangifer is unknown and is a critical issue to be determined in order to under-
stand the epidemiology and impacts of this pathogen across the herds. Although sex was not
an informative parameter in predicting pestivirus or alphaherpesvirus seroprevalence, further
studies are needed to conclusively determine whether there are sex differences in exposure
risk. Previous Rangifer studies have reported conflicting results [85, 88, 97].

Caribou seropositive for alphaherpesvirus were more than twice as likely to also be seropos-
itive for pestivirus, and vice versa. Such an interaction was observed in a serological survey of
semi-domesticated reindeer in Sweden [87] and co-infections have been noted in reindeer in
Norway [100], but our findings are the first evidence of this interaction in wild caribou. BVDV
and BHV-1 infection in cattle are both associated with immunosuppression and may predis-
pose infected individuals to secondary infections [101, 102]. Furthermore, infection with
BVDV may lead to enhanced virulence and pathogenesis of secondary infections [103]. Exper-
iments in bovine calves have shown that animals previously infected with BVDYV are less effec-
tive at containing infection with BHV-1 and present with more severe clinical signs, and
presence of BHV-1 favours BVDV persistence [104-106]. If similar processes occur in Rangi-
fer, this could explain the observed pattern. Research in pathogen-host interactions has been
dominated by the study of “one-host-one-pathogen systems”, especially in wildlife [107]. How-
ever, in nature, most animals are infected with multiple pathogens, and evidence from field
studies and models show that interactions between pathogens can be critical for the dynamics
and virulence of infection, as well as for pathogen management [108-110].

Whereas BVDV and BHV-1 infection has been associated with reduced weight gains in cat-
tle [102, 111], we were unable to detect an association between exposure to alphaherpesvirus
or pestivirus and caribou body condition. However, the samples used for analysis were not col-
lected to explicitly test for associations between exposure and fitness; therefore, they had lim-
ited power to detect effects [112]. As such, our results should not be interpreted as evidence
that there is no effect; rather, they highlight the need for studies aimed at determining the
impact of these pathogens on Rangifer health.

Other seroprevalence findings

Although surveys for PI3 exposure in caribou have been limited, similar to our study, exposure
has been detected in some, but not all, Rangifer herds tested [33, 84, 89]. No samples tested
positive for WNV or BRSV. Exposure to BRSV, or similar, has been recorded in other cervids
[47, 48] but no cases are reported in the literature for Rangifer spp. This may reflect absence of
the pathogen, or more likely, that the Bovine RSV test is highly specific to the bovine strain
and doesn’t cross-react with a Rangifer specific RSV [113]. WNV has been reported to cause
fatal disease in captive reindeer [53] but has not been detected in free-ranging Rangifer to date.
Range shifts of vectors in response to climate change could lead to the northward spread of
WNV [54]. The samples tested in our study provide a baseline of exposure, and future moni-
toring can help determine whether they will become an emerging threat.

Serological surveys are fraught with challenges yet can still yield important results to inform
on pathogen diversity and disease ecology. We recognize several limitations of this study. Sam-
ples were not collected with the explicit purpose of disease surveillance and, in the case of
subsistence hunter-harvested animals, the sampling was biased towards healthy individuals.
Furthermore, the absence of species-specific assay validation and cross-reactivity of antibodies
can have implications for sensitivity, specificity and cut-off values of assays [69] and these
complicate data interpretation. To address these issues, where possible, we employed assays
that had been validated for use in Rangifer or other cervid species. We also aimed for
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consistency in the laboratories and assays used for testing. The time period from which sam-
ples were collected is also relatively large. Due to the unknown, but potential differences in
seroconversion over-time, a narrower window would be preferential to make more robust
comparisons, detect temporal patterns and make inferences of exposure among herds. Recog-
nizing these limitations, and the relatively small sample size per herd in relation to herd
population size, our analysis still revealed important patterns of exposure worthy of further
investigation. The sample and analysis limitations also mean that the detected seroprevalence
levels may underestimate the true population-level exposures.

Conclusions

Rangifer across their range have undergone severe and prolonged population declines, and
although natural population cycles, environmental and anthropogenic disturbance and habitat
alteration have been implicated as possible causes, the reasons for the declines remain enig-
matic [26-28]. Several of the pathogens to which antibodies were detected may have significant
impacts on reproduction and health. Unfortunately, our data did not allow us to test for associ-
ations between exposure, reproduction or recruitment, but our results clearly show that fur-
ther investigation of the disease ecology of the pathogens surveyed here, and other infectious
agents in caribou, is warranted. The vast geographic scope of this survey was only possible due
to the large-scale collaborations and diligently archived samples facilitated by the CARMA net-
work and by the historical and ongoing efforts of numerous Inuit and First Nations harvesters,
government biologists, and academics. These types of collaboration, where samples and exper-
tise are shared across disciplines, can provide invaluable knowledge and results for science and
management in fields where resources are scarce.

Our study demonstrates that several pathogens of concern are circulating in migratory cari-
bou populations. To better understand the role of these pathogens in caribou population
dynamics, there is need to isolate and identify the viruses circulating in Rangifer and to imple-
ment longitudinal studies and experiments designed to evaluate and anticipate impacts of
these pathogens on caribou population dynamics. Additionally and more generally this study
highlights the need for species-specific standardized diagnostic tests for wildlife pathogens.
Importantly, in this study we only tested for what we thought may exist-the unknown patho-
gens, of which we are certain there are many (e.g. Kutz et al 2015 [9]), were not investigated.
The rapid advancement of new molecular methodologies and genomic approaches will hope-
fully make extensive surveys for the unknowns possible in the near future [114].

Supporting information

S1 Table. Sample collection. Summary of seasons and years sample collection occurred for
each herd, including the type of collection. CARMA IPY refers to scientific collections con-
ducted during the International Polar Years by the CircumArctic Rangifer Monitoring Assess-
ment Network.

(PDF)

$2 Table. Seroprevalence for yearlings. Observed sample seroprevalence of screened patho-
gens for yearling female (F) and male (M) caribou, and overall (O) by herd. Pathogen abbrevi-
ations: Alphaherpesvirus (Herp), Pestivirus (Pesti), Parainfluenzavirus type 3 (PI3), Neospora
caninum (Neo), Brucella suis biovar 4 (Bru), Toxoplama gondii (Toxo), West Nile Virus
(WNV), Bovine respiratory syntical virus (BRSV). Caribou herd abbreviations: Porcupine
(PCH), Bluenose West (BNW), Bluenose East (BNE), Dolphin and Union (DU), Bathurst
(BA), Beverly and Ahiak (BEAH), Quaminuriaq (QAM), Riviere-aux-Feuilles (R-F), Riviére-
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George (R-G), Akia-Maniitsoq (AK) and Kangerlussuaq-Sisimiut (KA). Herds are listed west
to east geographically left to right. Sample seroprevalence (%), number of positive samples (p),
sample size (n), 95% Clopper-Pearson Exact confidence intervals (CI) and number of doubtful
samples (D) are presented.

(PDF)

S3 Table. Seroprevalence for calves. Observed sample seroprevalence of screened pathogens
for calf female (F) and male (M) caribou, and overall (O) by herd. Pathogen abbreviations:
Alphaherpesvirus (Herp), Pestivirus (Pesti), Parainfluenzavirus type 3 (PI3), Neospora cani-
num (Neo), Brucella suis biovar 4 (Bru), Toxoplama gondii (Toxo), West Nile Virus (WNV),
Bovine respiratory syntical virus (BRSV). Caribou herd abbreviations: Porcupine (PCH), Blue-
nose West (BNW), Bluenose East (BNE), Dolphin and Union (DU), Bathurst (BA), Beverly
and Ahiak (BEAH), Quaminuriaq (QAM), Rivi¢re-aux-Feuilles (R-F), Riviere-George (R-G),
Akia-Maniitsoq (AK) and Kangerlussuaq-Sisimiut (KA). Herds are listed west to east geo-
graphically left to right. Sample seroprevalence (%), number of positive samples (p), sample
size (n), 95% Clopper-Pearson Exact confidence intervals (CI) and number of doubtful sam-
ples (D) are presented.

(PDF)

S4 Table. Top 10 models predicting kidney fat index and backfat in caribou. Summary of
top 10 models, based on AAIC,, predicting kidney fat index and backfat in caribou, where K is
the number of parameters, w; is the model Akaike weight and LL is the log-likelihood. The
model used for inference is highlighted in grey. Explanatory variables included were: Herd,
Season (Summer, Fall), Tage (age as determined by cementum tooth age analysis), Sex, Co-
exposure (alphaherpesvirus (Herp) and/or, esPestivirus serostatus) (positive, negative)) and
sampling year.

(PDF)

S1 File. Data file. Minimal dataset.
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