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Abstract

Deprivation of maternal care via lack of somatosensory input causes offspring to experience

adverse consequences, especially in the central nervous system. However, little is known

about the developmental effect of maternal care on peripheral tissues such as the skin,

which includes cutaneous sensory neurons. In the present study, we examined the involve-

ment of maternal care in the development of the skin. We investigated offspring reared by

early-weaned mother mice who spontaneously showed lower frequency of licking/grooming

on nursing. Offspring of early-weaned mothers showed higher resistance against skin bar-

rier disruption than did offspring of normally-weaned mothers, and had normal skin barrier

function in the intact trunk skin. In the dorsal root ganglion of early-weaned mother offspring,

we also found up-regulation of mRNA levels of the Mas-related G-protein coupled receptor

B4 (MrgprB4), which is a marker of sensory neurons that detect gentle stroking. We further

found that levels of MrgprB4 mRNA were correlated with the enhancement of skin resis-

tance. The present findings suggest that maternal somatosensory inputs have a develop-

mental impact on the cutaneous sensory neurons of the skin in offspring. Interestingly, the

present results suggest that lower maternal care has a benefit on the skin resistance. This

provides important information for understanding the development of peripheral tissues in

offspring reared under severe conditions such as lower maternal care in the wild.

Introduction

Maternal care is essential for appropriate development in the early stages of life. Adverse child-

hood experiences including neglect and abuse have been found to reduce cognitive perfor-

mance, impair social development, and increase prevalence of personality disorder [1, 2]. In

support of these clinical findings, animal studies have shown that daily maternal separation

throughout the pre-weaning period induces dysfunction of the central nervous system (CNS)

[3–9]. Additionally, deprivation of maternal care induces multiple behavioral changes in off-

spring [10–15]. Early-weaned female mice show lower frequency of licking/grooming (LG)

when nursing their pups than did normally-weaned female mice, although time spent attend-

ing to pups and mother-off pup times are not changed [10]. Thus, the deprivation of maternal

care has been shown to induce significant negative consequences on development.
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Mothers provide infants with various social cues through the somatosensory, gustatory,

olfactory, auditory, and visual systems. In particular, somatosensory inputs are an important

component of maternal care for development [16, 17]. For example, maternal touch in chil-

dren supports neurodevelopmental outcomes [18]. In rodents, maternal LG-like stimulation

completely or partially restores the CNS dysfunction caused by maternal separation [3, 19–21].

It has been shown that gentle touch like LG stimulation is mainly perceived by low-threshold

mechanoreceptors of the cutaneous sensory neurons expressing MAS-related G-protein cou-

pled receptor B4 (MrgprB4) or tyrosine hydroxylase (TH) in the dorsal root ganglions (DRGs)

in mice [22, 23]. It has also been reported that DRG neurons projecting to the skin significantly

influence skin homeostasis [24–27]. However, little is known about the developmental effects

of somatosensory inputs in the pre-weaning period on peripheral tissues, such as the skin tis-

sue which includes cutaneous sensory neurons.

In this study, to examine the involvement of maternal care in the development of the

peripheral tissue of offspring, we utilized offspring reared by early-weaned mother mice that

spontaneously show lower LG when nursing [10]. A comparison between offspring of nor-

mally-weaned mother mice and offspring of early-weaned mother mice, which themselves

were normally weaned, is a good model to examine the effect of maternal LG in the develop-

ment. We firstly examined the maternal effect on skin barrier function in the intact skin and

barrier-distracted skin, together with gene expression in the skin and the DRGs.

Materials and methods

Animal preparation and procedures

C57BL/6 mice obtained from Japan Clea Co., Ltd. (Yokohama, Japan) were used for all experi-

ments. Male and female mice were pair-housed in cages (175 × 245 × 125 mm) for breeding,

and pups were reared by both parents until weaning. Food and water were supplied ad libitum,

and the environment was maintained at a constant temperature (24 ± 1˚C) and humidity

(50 ± 5%) under a 12 h light–dark cycle (lights on at 08:00). All animal experiments were

approved by the Ethical Committee of Azabu University (#070412).

The procedure to obtain early-weaned mice (F1) was similar to our previous study [28].

Briefly, when female mice became pregnant, they were checked daily in the morning until par-

turition. For each litter, the date of birth was designated postnatal day 0 (PD0). On PD16, half

of the litter was separated from each dam and assigned to the early-weaned group. The

remaining pups were assigned to the normally-weaned group, cared for with standard proce-

dures, and weaned on PD28. The early-weaned mice were fed powdered pellets until PD28.

Thereafter, all pups were fed pellets. After weaning, 2–3 pups were housed together with sib-

lings, according to sex. When both the early-weaned and normally-weaned F1 female mice

were 8 weeks of age, each female was paired with a normally-weaned male mouse for breeding.

All of the resulting litters (F2) were normally weaned on PD28 and housed as described above.

In the present study, F2 males from both early-weaned and normally-weaned F1 mothers

(EW-F2 and NW-F2) were tested in adulthood as described below.

To examine the effect of low maternal care on the development of skin tissue, we performed

the following experiments using NW- and EW-F2 offspring. Adult NW- and EW-F2 offspring

(34–39-week-old, NW-F2 offspring: n = 9; EW-F2-offspring: n = 7) were used in Experiment

I. Trans epidermal water loss (TEWL) in the intact trunk skin was measured to evaluate skin

barrier function. Mice were then killed by cervical dislocation, and the trunk skin and DRGs

were harvested for histological and gene expression assessments. In Experiment II, adult NW-

and EW-F2 offspring (9–11-week-old, NW-F2 offspring: n = 8; EW-F2 offspring: n = 10) were

used for analysis of the developmental effect of low maternal care on the skin barrier
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disruption response. TEWL was measured before and after acetone-diethyl-ether (AE) treat-

ment for 4 days on the trunk skin. Mice were then killed by cervical dislocation, and the trunk

skin and DRGs were harvested for histological and gene expression assessments.

Measurement of TEWL on the trunk skin

On the day before TEWL measurement and AE treatment, mice were anesthetized with 2%

isoflurane (Wako pure chemical industries, Ltd., Osaka, Japan) and the hair on the trunk skin

was shaved using electric razor. TEWL was measured using a Tewameter TM210 (Courage &

Khazawa) under 2% isoflurane anesthesia. TEWL was assessed six times in each individual,

and average value of the six measurements was used for analysis. In Experiment II, TEWL was

measured before, and on the day after AE treatment for 4 days. The percent increase in TEWL

was calculated by dividing the TEWL value after AE treatment by that before treatment in the

same individual.

AE treatment for cutaneous barrier disruption

A cotton pad soaked with a mixture of acetone and diethyl-ether (1:1) was placed on the

shaved skin for 15 s under 2% isoflurane anesthesia. The treatment was performed twice daily

(AM and PM) for 4 days. Although each mouse was anesthetized 8 times, it has been reported

that the anesthesia did not induce significant differences in the skin microcirculation which

plays a significant role in the skin homeostasis [29]. The minimum interval between AM and

PM was 6 hours.

Skin tissue histology

Skin tissue was fixed in 3.7% formalin in phosphate buffered saline (PBS) overnight at 4˚C.

Formalin-fixed skin tissue was cut and stained with hematoxylin and eosin (HE) at the Bio-

pathology Institute Co., Ltd. (Oita, Japan). Photomicrographs were taken using a BZ-X710

microscope (KEYENCE, Japan) at magnification of x 400.

Quantification of mRNA in the trunk skin and T2-L2 DRGs

Trunk skin and T2-L2 DRGs were dissected from the mice. Total RNA was isolated from

trunk skin using an RNeasy Fibrous Mini Kit (QIAGEN, Venlo, Netherlands), and from

DRGs using an RNeasy Mini Kit (QIAGEN). Concentration and purity were assessed using a

NanoDrop-1000 (Thermo Scientific, Inc., MA, USA). Total RNA was reverse-transcribed and

amplified using a High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific,

Inc.). The quantity of mRNA was analyzed using TaqMan gene expression assays, TaqMan

Master Mix, and a 7500 Fast Real-time PCR system (Thermo Fisher Scientific, Inc.). The fol-

lowing TaqMan gene expression assays were used: Mm00498375_m1 (Transglutaminase 1,

Tgm1), Mm00493699_m1 (Tight junction protein 1, Tjp 1), Mm00516701_m1 (Claudin-1,

Cld-1), Mm00515514_s1 (Claudin-4, Cld-4), Mm01716522_m1 (Filaggrin, Flg),

Mm01962650_s1 (loricrin, Lor), Mm01305291 (Keratin 5, K5), Mm00492992_g1 (Keratin 1,

K1) and Mm00515219_s1 (Involucrin, Ivl) for the skin, and Mm01701887_g1 (Mas-related G-

protein coupled receptor member B4, MrgprB4) and Mm00447557_m1 (Tyrosine hydroxy-

lase, Th) for the DRGs. The quantity of mRNA was normalized to that of ribosomal protein P0

(Rplp0, Mm00725448_s1) in individual samples [30–32]. For comparison between NW- and

EW-F2 offspring, data are presented as the ratio of the values to the normalized values of

NW-F2 offspring without AE treatment in Experiment I. For correlation analysis, relative gene
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expression data were calculated by dividing by the amount of Rplop0 mRNA in individual

samples.

Statistical analysis

Results are expressed as means ± SE. All statistical analyses were performed using GraphPad

Prism version 6.0 (Graphpad Software Inc., CA, USA). Two-way repeated measures and facto-

rial ANOVA with Bonferroni and Tukey’s post hoc test were performed to compare multiple

groups, and unpaired t-tests with two-tailed distribution were used to assess statistical signifi-

cance when two group was compared. Pearson’s correlation coefficient was used to assess asso-

ciations. A significance threshold of α = 0.05 was used.

Results

Skin barrier function, skin histology and mRNA expression in the trunk

skin of adult mice reared by normally- or early-weaned mothers

The integrity of barrier function was assessed by TEWL. A high TEWL value reflects reduced

skin barrier function with high permeability [33]. TEWL values of the intact trunk skin were

not significantly different between NW- and EW-F2 offspring (NW-F2 offspring: 10.62 ± 0.98

g/m2 per h; EW-F2 offspring: 9.35 ± 0.28 g/m2 per h, p = 0.28, unpaired t-test, Fig 1A), indicat-

ing that spontaneous lower LG behavior while nursing does not alter skin barrier function in

the intact skin.

We then examined differences in skin resistance against AE treatment. It has been shown

that AE treatment increases TEWL values [34, 35]. Consistently, two-way repeated measures

ANOVA detected a significant main effect of AE treatment (F (1, 16) = 34.88, p< 0.0001).

There was no significant effect of maternal care (F (1, 16) = 0.1557, p = 0.6984) or interaction

between maternal care and AE treatment (F (1, 16) = 3.792, p = 0.070, NW-F2 offspring:

7.6 ± 0.98 g/m2 per h [before AE], 12.7 ± 1.1 g/m2 per h [after AE]; EW-F2 offspring: 8.46 ± 0.48

g/m2 per h [before AE], 11.0 ± 0.80 g/m2 per h [after AE], Fig 1B). On the other hand, the per-

cent increase of TEWL by AE treatment in EW-F2 offspring (133.2 ± 7.2%) was significantly

lower than that of NW-F2 offspring (191.7 ± 24.4%, p< 0.05, unpaired t-test, Fig 1C).

We performed hematoxylin-eosin (HE) staining in intact trunk skin in Experiment I and

AE treated trunk skin in Experiment II. Representative data is shown in Fig 2A. Epidermal

hyperplasia was observed in the spinous-granular layers in the AE treated skin of both NW-

and EW-F2 offspring, and the degree of hyperplasia were not different between groups. In

addition to histological analysis, we quantified mRNA levels related to differential markers of

skin keratinocytes and skin barrier function (S1 Table). Keratin-5 (K5) is a differential maker

of basal layer, and keratin-1 (K1) and involucrin (Ivl) are differential markers of spinous-gran-

ular layers of the epidermis [36]. Tight junction protein 1 (Tjp1), and Claudin-1 and -4 (Cld-1

and -4) are components of tight junctions which are complex cell-cell junction and form a bar-

rier in the glanular layer of the skin [37, 38]. Transglutaminase-1 (Tgm1), Filaggrin (Flg) and

Loricrin (Lor) are expressed in the spinous-granular layers [39, 40]. Tgm1 is involved in the

formation of the cornified cell envelope which is a critical structure to barrier function in the

skin epidermis [38]. Flg and Lor are terminally differentiating structural proteins contributing

to the protective barrier function of the skin [40, 41]. Two-way factorial ANOVA tests detected

a significant main effect of AE treatment in K5, K1, Ivl, Tjp1, Cld-1, Cld-4, Flg and Lor mRNA

levels, but not in Tgm1 mRNA levels (S2 Table). There were no significant main effect of

maternal care or interaction between maternal care and AE treatment in the mRNA levels of

all genes examined.
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Fig 1. TEWL value in the intact trunk skin and percent increase of TEWL after AE treatment. (A) TEWL value in the

intact trunk skin. (B) TEWL values before and after AE treatment in NW- (black) and EW-F2 (white) offspring. Two-

way repeated measures ANOVA showed main effect of AE treatment. (C) Percent increase in TEWL after AE treatment.

Percent increase of TEWL was calculated in the same individuals. All data are presented as the mean ± SE (n = 7–10, �:

p< 0.05).

https://doi.org/10.1371/journal.pone.0219674.g001
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Expression of mRNA in T2-L2 DRGs in adult mice reared by normally- or

early-weaned mother mice

We quantified mRNA levels of low-threshold mechanoreceptors, MrgprB4 and Th, in DRGs

in AE untreated (Experiment I) and treated offspring (Experiment II). In MrgprB4 mRNA lev-

els, two-way factorial AVOVA detected a significant main effect of maternal care (F (1, 30) =

9.404, p = 0.0046), and there was no significant AE treatment effect (F (1, 30) = 1.974,

p = 0.1703) or interaction between maternal care and AE treatment (F (1, 30) = 1.165,

p = 0.289, NW-F2 offspring: 1.00 ± 0.09 [without AE], 1.15 ± 0.06 [with AE], EW-F2 offspring:

1.26 ± 0.03 [without AE], 1.28 ± 0.04 [with AE], Fig 3A). On the other hand, with respect to

Fig 2. Skin histology and expression of mRNA in the trunk skin without and with AE treatment. (A) Representative HE staining

of the trunk skin with and without AE treatment in NW- and EW-F2 offspring (bar indicating 50 μm). (B) Expression of mRNA in

the trunk skin with and without AE treatment in NW- and EW-F2 offspring. Gene expression data are presented as a ratio of the

amount of mRNA in NW-F2 offspring before AE treatment. Two-way factorial ANOVA showed significant main effect of AE

treatment in K5, K1, Ivl, Tjp1, Cld-1, Cld-4, Flg and Lor. All data are presented as the mean ± SE (n = 7–10).

https://doi.org/10.1371/journal.pone.0219674.g002
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Fig 3. Expression of MrgprB4 and Th mRNA in offspring, and correlation between MrgprB4 mRNA and percent

increase in TEWL after AE treatment. (A) Expression of MrgprB4 and Th mRNA in T2-L2 DRGs in NW- (black) and

EW- (white) F2 offspring with and without AE treatment. Gene expression data are presented as a ratio of the amount of

mRNA in NW-F2 offspring without AE treatment. Two-way factorial ANOVA showed significant main effect of maternal

care in MrgprB4, and significant main effect of AE treatment in Th. Data are presented as the mean ± SE (n = 7–10). (B)

Correlation between the relative amounts of MrgprB4 mRNA in the T2-L2 DRGs from AE treated mice and the percent

increase of TEWL after the treatment.

https://doi.org/10.1371/journal.pone.0219674.g003
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Th mRNA levels, two-way factorial ANOVA detected a significant main effect of AE treat-

ment (F (1, 30) = 12.23, p = 0.0015), and there was no significant effect of maternal care (F

(1, 30) = 3.451, p = 0.073) or interaction (F (1, 30) = 0.1428, p = 0.7082, NW-F2 offspring:

1.00 ± 0.08 [without AE], 1.27 ± 0.07 [with AE], EW-F2 offspring: 1.13 ± 0.05 [without AE],

1.46 ± 0.10 [with AE], Fig 3A). Interestingly, further analysis revealed that the amount of

MrgprB4 mRNA in offspring with AE treatment showed significant negative correlation

with the percent increase in TEWL by AE treatment (r = -0.47, p< 0.05, Fig 3B). Nonethe-

less, there was no significant correlation between the amount of MrgprB4 mRNA in the off-

spring without AE treatment and the TEWL value in the intact trunk skin (r = -0.43,

p = 0.09). In terms of Th mRNA levels, there was no significant correlation between mRNA

levels in the offspring without AE treatment and TEWL values in the intact skin (r = -0.32,

p = 0.22), or between mRNA levels in the offspring with the treatment and the percent

increase of TEWL (r = -0.19, p = 0.46).

Discussion

We investigated the effects of maternal care in the development of peripheral tissues by analyz-

ing offspring of early-weaned mother mice, which show low LG on nursing. We found that

these offspring showed normal skin barrier function in the intact trunk skin, and higher resis-

tance against the AE treatment than offspring from normally-weaned mothers. Furthermore,

offspring of early-weaned mothers had higher mRNA levels of MrgprB4 in the DRGs. Addi-

tionally, the levels of MrgprB4 mRNA expression in the DRGs were correlated with skin resis-

tance. Although some reports has suggested that epigenomic changes in parents are

transmitted to offspring [42, 43], such the trans-generational epigenomic inheritance is still

controversial. Our findings suggests that maternal care has a developmental effect on periph-

eral tissues of offspring, and low maternal care leads to improved skin resistance under severe

conditions.

In the present study, we found that the percent increase in TEWL was lower in EW-F2 off-

spring after AE treatment, although TEWL values in the intact skin were not different between

both maternal care groups. This clearly suggests that skin resistance against AE treatment was

enhanced in offspring of early-weaned mother mice, although skin barrier function in the

intact skin was not affected. It has been previously reported that LG stimulation during the

pre-weaning period has effects on the development of the CNS [5–11]. To the best of our

knowledge, this is the first report suggesting that LG stimuli also influence the development of

skin function.

Similarly, the histological characteristics and mRNA levels known as makers for epidermal

differentiation and skin barrier functions were examined in the offspring of normally- and

early-weaned mothers. With AE treatment, epidermal hyperplasia was observed in the spi-

nous-granular layers. Consistently, two-way ANOVA showed significant main effect of AE

treatment in almost gene examined, but there was no significant maternal care effect or inter-

action between AE treatment and maternal care in those genes. That is, mRNA levels of the

epidermal differential markers in the skin (K5, K1 and ivl) and epidermal barrier structural

proteins expressed in the spinous-granular layers (Flg and Lor) were higher in the AE-treated

skin. Moreover, in the tight junction protein, Cld-1 mRNA levels were higher in the AE treated

skin. On the other hand, Cld-4 and Tjp1 mRNA levels were lower in the AE treated skin.

Tgm1 mRNA levels were not changed by AE treatment. These suggest that AE treatment

caused structural and functional changes. On the other hand, the results of two-way ANOVA

also suggested that enhancement of skin resistance in the offspring of early-weaned mothers

was not depending on those changes of gene expression in the skin.
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Interestingly, we found the significant main effect of maternal care in mRNA levels of

MrgprB4 in DRGs by two-way ANOVA analysis, but there was no significant main effect of

AE treatment or interaction between maternal care and AE treatment. That is, mRNA levels of

MrgprB4 in DRGs were higher in offspring of early-weaned mothers. These suggest that

mRNA levels of MrgprB4 was negatively regulated by LG stimuli in pre-weaning period. It has

been previously reported that maternal separation up-regulates the gene expression of voltage-

gated channel in colonic DRGs in rat offspring, implying that maternal care down-regulates

that gene expression in DRGs [44]. These suggest that LG stimulation could down-regulate the

expression of certain genes within DRGs. In the present study, it was further found that

MrgprB4 mRNA levels were significantly correlated with the percent increase in TEWL after

AE treatment, but not with TEWL values in the intact skin. This suggests that MrgprB4

mRNA levels in DRGs were not related to skin barrier function in normal conditions but were

correlated with skin resistance against AE treatment. The selective and artificial activation of

MrgprB4+ neurons can result in the promotion of conditioned place preference, suggesting

that MrgprB4-expressing sensory neurons participate in positive affective valence [24], but lit-

tle is known about the involvement of these neurons in skin resistance. The present results sug-

gest that the activation of MrgprB4+ sensory neurons might contribute to the enhancement of

skin resistance. It has been shown that activation of nociceptive neurons in the skin induces

the release of inflammatory neuropeptides such as substance P, thereby causing neurogenic

skin inflammation and reduction of skin barrier function [26, 27]. These studies provide sup-

port for the notion that the primary sensory neurons influence the cutaneous responses. Fur-

ther investigation into the direct effect of MrgprB4+ neuronal activation on skin resistance is

needed. Our studies suggest that the action of MrgprB4+ sensory neurons provide benefits to

physical function as well as cognitive function.

Notably, low maternal care enhanced the ability of skin resistance in the present study. This

may have physiological significance from an ecological point of view. It has been reported that

all organisms show a remarkable flexibility that allows them to survive under severe conditions

such as an insufficient maternal care in the wild environment [45–47]. Although previous

studies demonstrated that early-weaned rodents show increased anxiety-like behaviors [48,

49], this change could be explained by their potential ability to elevate vigilance against severe

environmental conditions such as their mother had to wean their pups earlier. That is, this

notion suggest that lower maternal care could increase behavioral flexibility of offspring. In

the present study, higher mRNA level of MrgprB4 in offspring of early-weaned mothers might

be attributed to increased flexibility to adapt to lower somatosensory input. Our results may

have important implications for understanding the development of peripheral function in off-

spring under insufficient maternal care.

In summary, we revealed that low maternal care enhances skin barrier resistance, and was

correlated with higher levels of MrgprB4 mRNA. This study provides new insight into the

developmental benefit of low maternal care during the pre-weaning period on skin tissue,

including cutaneous sensory neurons.
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