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Abstract

The hypothesis of data probability density distributions has many effects on the design of a

new statistical method. Based on the analysis of a group of real gene expression profiles,

this study reveal that the primary density distributions of the real profiles are normal/log-nor-

mal and t distributions, accounting for 80% and 19% respectively. According to these distri-

butions, we generated a series of simulation data to make a more comprehensive

assessment for a novel statistical method, maximal information coefficient (MIC). The

results show that MIC is not only in the top tier in the overall performance of identifying differ-

entially expressed genes, but also exhibits a better adaptability and an excellent noise

immunity in comparison with the existing methods.

1 Introduction

A gene expression profile can indicate whether a particular gene has been expressed, expressed

abundance, and the differentially expressed levels in different tissues, different development or

physiological states. It plays an important role in studying the characteristics of an organism

and its gene functions [1, 2]. A gene expression profile can also be used to identify differen-

tially expressed genes (DEGs), helping to discover the biological processes and dysfunctions of

the organism, and to understand the pathogenesis of diseases, the drug response and therapeu-

tic effects. Gene expression analysis overcomes the shortcomings yielded from single gene

analysis, and maximizes the integration of various biological information to comprehensively

analyze the expression and functions of multiple genes during a disease development [3–6].

It is an important challenge of statistical methodology to identify differentially expressed

genes from gene profiles [7]. In response to this challenge, many studies have proposed num-

bers of promising methods for gene expression analysis [5–28]. Maximal information coeffi-

cient (MIC) is a novel statistical method of data analysis [29]. We have successfully applied it

to genome-wide association studies, identifying differentially expressed genes and miRNAs,

and achieved good results [30–33]. In these studies, however, we just focused on the applica-

tion of MIC, lacked fully evaluation MIC in terms of performance. In addition, in order to
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discover knowledge from a dataset, we often need to assume the probability density distribu-

tion of the dataset. The distribution hypothesis extremely affects the design of a new data min-

ing method and the accuracy and interpretability of the results. So far a method used to

analyze gene expression profiles usually (or potentially) assume that the probability density of

the profiles is a normal distribution. Although the assumption is feasible in many cases, the

feasibility may be not enough. And, there may be other distributions involved in gene expres-

sion data besides the normal.

This study attempts to explore the probability density distributions on real gene expression

profiles. And, according to the real distributions, we generated a series of simulation datasets

and employed SAM, Limma, ROTS and DESeq2 as benchmarks of MIC to illustrate its overall

performance in identifying differentially expressed genes. Our experiments showed that the

primary probability density distributions of real gene expression profiles are normal/log-nor-

mal distribution (~80%) and t-distribution (~19%) and a few Cauchy distributions (~1%). The

simulation experiments on the four distributions reveal that MIC not only has the overall per-

formance of identifying differentially expressed genes at the first tier comparing with the exist-

ing methods, but also its adaptability, especially the noise immunity are better than the

existing methods, as well as its shorter runtime. Thus, MIC is an excellent method for identify-

ing differentially expressed genes.

The first major contribution of this study is to explore the probability density distributions

of real gene expression data, which might provide theoretical supports for an analysis of gene

expression in the future, and overcome the lack of distribution hypothesis for that the hypothe-

sis of probability distribution in current researches is usually just normal distribution. In addi-

tion to that the hypothesis of the probability distribution of a dataset might affect the design of

a new method, existing methods have some limitations, at least partly [34]. Therefore, continu-

ing to explore new methods for identifying differentially expressed genes is still an important

task in bioinformatics. The second major contribution of the study is to comprehensively ana-

lyze the performance of the novel statistical method MIC in identifying differentially expressed

genes on the real probability distributions, which could provide reference values for employing

MIC to identify differentially expressed genes or other analysis.

2 Material and methods

2.1 Material

2.1.1 Real gene expression profiles collection. All real profiles were obtained from the

gene expression omnibus (GEO) on NCBI [35]. The data were randomly downloaded from

GEO, by using the strategy ‘as many common species as possible’. There are totally 100 data-

sets with 20 species were collected in our study, shown in Table 1.

2.1.2 Simulation data. By the experiment of probability density analysis on real gene

expression data in Section 3.1, we got four distributions, that is, normal, log-normal, t (Stu-

dent) and Cauchy distribution. According to these distributions, a series of simulation datasets

were generated.

To generate normal distribution simulation data, the parameters used in work [36] and

[37] were employed. The parameters of three non-differentially and three differentially

expressed genes of normal distribution were cross-combined into a total of 9 groups of param-

eters. And, the other three distribution parameters are listed in Tables 2–4, where are 16

groups totally. Each group of parameters was repeatedly generated into 100 datasets, each of

which contains 6 cases and 6 controls, 10,000 genes (5% of which is 500 differentially expressed

genes). In this way, a total of 25 groups, i.e. 2,500 datasets, were obtained. Among log-normal,

t and Cauchy distributions, for each distribution, we generated one group of dataset with
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probability density curve shape significantly different from the real data, while the other

groups is as close as possible to the real data.

2.1.3 Transformation of simulation data for DESeq2. DESeq2 is a method for RNA-seq

data analysis. RNA-seq data is a discrete count dataset. Since a gene expression profile is con-

tinuous, it is necessary to convert the profile into discrete type. The conventional approach is

to round off the expressed values into integers. The disadvantages of this approach include (1)

a lot of information of the low expressed level genes will be lost; (2) the expressed values less

than 0 cannot be processed; (3) the data with large variance (e.g., Cauchy distribution) may

make DESeq2 fail. This study designed an algorithm (shown in Box 1) to make a transforma-

tion of the data to avoid the disadvantages.

Table 1. Real gene expression profiles.

Sample Count

Arabidopsis thaliana 6

Arachis hypogaea 1

Citrus limonia 1

Citrus reticulata 2

Citrus sinensis 7

Danio rerio 1

Drosophila melanogaster 6

Glycine max 5

Homo sapiens 32

Mus musculus 16

Oryctolagus cuniculus 1

Oryza sativa 4

Phaseolus coccineus 1

Rattus norvegicus 7

Solanum lycopersicum 1

Staphylococcus aureus 2

Staphylococcus aureus subsp. aureus str. Newman 1

Triticum aestivum 3

Triticum turgidum subsp. durum 1

Zea mays 2

https://doi.org/10.1371/journal.pone.0219551.t001

Table 2. Parameters of log-normal distribution in simulation.

Group Non-differential expression Differential expression

Case Control Case Control

α σ α σ α σ α σ
1 5 1.5 5 1.5 4.5 1 5 2

2 5 1.5 5 1.5 5 1 6 1.1

3 5 1.5 5 1.5 6 0.8 6.5 1.2

4 5.5 1.3 5.5 1.3 4.5 1 5 2

5 5.5 1.3 5.5 1.3 5 1 6 1.1

6 5.5 1.3 5.5 1.3 6 0.8 6.5 1.2

7 7 1 7 1 4.5 1 5 2

8 7 1 7 1 5 1 6 1.1

9 7 1 7 1 6 0.8 6.5 1.2

https://doi.org/10.1371/journal.pone.0219551.t002
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Since a probability density curve is not deformed by scaling and translation, the algorithm

will not affect the distribution of the data, that is, it will not affect the results of identifying dif-

ferentially expressed genes of a method.

2.2 Methods

2.2.1 Maximal information coefficient. Maximal information coefficient was proposed

by David N. Reshef in 2011 to explore possible, undiscovered relationships between two vari-

ables [29]. It is a non-parametric statistical tool, thus, it can directly yield the degree of associa-

tion between the two variables without assuming a mathematical model between the variables.

So far, in a gene expression profile, there is no accepted mathematical model between sample

phenotype and gene expressed value, therefore, MIC is a good choice for gene expression data

analysis.

To calculate the MIC value, David N. Reshef et al. consider the bi-variable as points on a

plane and divide the points into x and y bins in the horizontal and vertical axis. Thus, a grid

with size of xy will be formed on the plane. MIC of dataset D with bi-variable can be defined as

[29]

MICðDÞ ¼ max
xy<BðnÞ

fMðDÞx;yg; ð1Þ

where, n represents the sample size, B(n) is the upper limit of the grid size (usually, ω(1)<B
(n)<O(n1−ε), 0<ε<1), and M(D) is the characteristic matrix of D, which is defined by

MðDÞx;y ¼
I�ðD; x; yÞ

log minfx; yg
; ð2Þ

I� is the mutual information between the two variables in D.

The pair of features, ’sample phenotype’ and ’gene expressed value’ in a gene profile, can be

considered as a bi-variable, so that the MIC value between the features can be calculated. Let

the profile contains N samples, each sample having L genes, the phenotype T = (t1,t2,� � �,tN)

(ti ¼
0; controls

1; cases

(

), the gene expressed vector G = (g1,g2,� � �,gL)T, where, gj = (g1j,g2j,� � �,gNj),

Table 4. Parameters of Cauchy distribution in simulation.

Group Non-differential expression Differential expression

Case Control Case Control

μ λ μ λ μ λ μ λ

1 1000 10 1000 10 1000 10 950 9

2 100 5 100 5 100 5 95 4

https://doi.org/10.1371/journal.pone.0219551.t004

Table 3. Parameters of t distribution in simulation.

Group Non-differential expression Differential expression

Case Control Case Control

df ncp df ncp df ncp df ncp
1 3 0 3 0 3 1 4 0

2 4 0 4 0 4 1 3 0

3 3 3 3 3 3 2 4 1

4 3 2 3 2 3 1 4 0

5 1.5 0 1.5 0 1.5 0 1.3 0.5

https://doi.org/10.1371/journal.pone.0219551.t003
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gij represents the expressed value of the gene j in the i-th sample, then the mathematical model

between gene gj and its phenotype T can be simply described as a map

T ¼ f ðgjÞ: ð3Þ

Obviously, this is an abstraction that can represent any model. Therefore, regardless of the

model of real gene expression profiles, the association between genes and disease can be

inferred easily by MIC. The level of MIC value indicates the degree of an association between

the gene and the disease.

2.2.2 Benchmarks. For the purpose to evaluate the performance of MIC on identifying

differentially expressed genes, four existing methods, DESeq2, Limma, ROTS and SAM were

selected as the benchmarks in our experiments.

1. DESeq2. DESeq2 is an improved version of DESeq. DESeq performs analysis on massive

RNA-seq data using a negative binomial (NB) model with mean and variance linked by local

regression [20]. DESeq2 uses shrinkage estimators to achieve dispersion and fold change,

reducing type I errors. After a necessary transformation, a gene expression data can be ana-

lysed by DESEQ2.

2. Linear models for microarray. Limma supposes that gene expression data meets a linear

model [27]

EðygÞ ¼ Xag ð4Þ

and

var ðygÞ ¼Wgs
2

g ð5Þ

where yg is the expressed vector, X is a design matrix, ag is a coefficient vector, and wg is a

known non-negative weight matrix.

Box 1. Data transformation for DESeq2

for i 1 to cnt /� cnt is the number of rows of dataset d �/

do if cc = 1 /� cc is a bool variable. cc = 1 represents Cauchy distribution,

and cc = 0 is the other distributions. �/

then do if d[i]< -2σ /� σ is the standard deviation of s �/

then do remove d[i] /� remove the outlier �/

else d[i] d[i]�10

if test0(d) /� Function test0() is used to test there is any minus in d.

It returns true if exists. �/

then do d + |min(d)| + 2 /� min(d) represents the minimum value in the dataset,

and +2 is used to reduce the count of ‘0’. �/

for i 1 to cnt

do round(d[i]) /� round off the values into integers �/

Density distribution of gene expression profiles and evaluation of using maximal information coefficient
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Intergenic differences can be represented as

bg ¼ C
Tag ; ð6Þ

where C is the contrast matrix.

The linear model is fitted to the response variable to obtain an estimator s2g of the coefficient

estimators âg and s2
g . The contrast estimator is defined as b̂g ¼ CT âg , and its covariance matrix

estimator is

var ðb̂g Þ ¼ C
TVgCs

2

g ; ð7Þ

where Vg is an unscaled covariance matrix.

Limma’s hypothesis of b̂g and s2g is to obtain a modified t-statistic

tgj ¼
b̂gj

sg
ffiffiffiffiffivgj
p ; ð8Þ

vgj is the j-th diagonal element of CTVgC.

3. Reproducibility-optimized test statistic. Reproducibility-optimized test statistic

(ROTS) performs well in microarrays, massive RNA-seq data and mass spectrometry-based

proteomics data analysis [15, 28, 38].

ROTS maximizes the scaled reproducibility based on the parameter α = (α1, α2)(α12[0,1),

α22{0,1}) and the top list with size k [28],

RkðdaÞ � R0
kðdaÞ

skðdaÞ
; ð9Þ

where sk(dα) is the estimator of standard deviation of the bootstrap distribution of the observed

reproducibility. Rk(dα) corresponds to the repeatability of the random vectors.

The method calculates the average repeatability of a permuted random dataset from the

sample. Repeatability calculation requires a statistic similar to a t-test

da ðgÞ ¼
j �xg � �yg j
a1 þ a2sg

; ð10Þ

where, �xg and �yg are the means of the genes g in the samples of groups x and y respectively, Sg
is a standard error.

4. Significant analysis of microarrays. For two independent gene samples with normal

distribution, the traditional t-test [39] can be represented as

t ¼
�g1 � �g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2g1
n1
þ

s2g2
n2

q ; ð11Þ

where, sg1 and sg2 are the variances of the gene expression g1 and g2 on different conditions. For

genes with low expressed level, sg1 and sg2 are usually tiny, producing a large t from Eq (11),

leading to a misjudgement. To overcome this shortcoming, Tusher et al., Smyth and Broberg

proposed the methods significant analysis of microarrays (SAM), B-statistics, and samroc,

respectively [11, 14, 23].

SAM employs a method that is similar to t-statistics and permutation test to estimate the

false discovery rate [14], and mitigates the small variance problem involved in traditional t-test

Density distribution of gene expression profiles and evaluation of using maximal information coefficient
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by adding a small positive constant s0. SAM statistic is defined as

ts �
�g1 � �g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2g1
n2
þ

s2g2
n1

q

þ s0
: ð12Þ

2.2.3 Description of the experiments. The experiments in this study were based on the

platform with Windows 7, 32-bit operating system, i5-3470@3.2GHz CPU, 4 GBs memory.

MIC was implemented by employed the function written in Matlab provided in work [40] (the

core of the code is written in C), and the benchmarks were implemented by using R language

functions provided by Bioconductor (V3.7). Except the parameter B (Bootstrap count) of

ROTS, all the parameters of the functions were used the defaults. In addition, all experiments

related to runtime were run in a single task (i.e., only the experimental program is running).

The real data were only used to the experiment for obtaining the probability density distribu-

tions of gene expression profiles, while the simulation data were used to the other experiments.

3 Results

3.1 Probability density distributions of real data

We plotted the probability density curves of the 100 real datasets, and calculated their means

and variances. Based on the shapes of the curves, the density distributions were firstly assumed

by artificial ways. Next, we tested the accuracy of the assumption by the following process: (1)

employ a function to generate a dataset with the assumed distribution, and adjust the function

parameters so that the probability density curve of the data is close to the assumed distribution

curve; (2) the mean and variance of the generated data are calculated and compared with the

real values. Our experiments showed that although the density curve shape of the generated

data with Weibull, gamma or chi-square distribution may be close to an assumed curve by

suitable parameters, the mean and/or variance of the generated data are far from the real data.

Finally, the experiment screened out four distributions as the probability density distributions

of real data (Table 5). The typical density curves are shown in Fig 1, while all the 100 curves are

shown in S1–S100 Figs.

3.2 Test bootstrap count for ROTS

ROTS uses Bootstrap sampling for statistical inference. The default Bootstrap count (parame-

ter B) in the R function of ROTS is 1000. Our experiments showed that the ROTS runtime is

proportional to B (see S101 Fig). At B = 1000, the runtime of a single dataset was 4.74 minutes.

To reduce unnecessary cost in runtime, we let ROTS analyse the group 1 simulation dataset of

the four distributions with several B values and calculated their average AUCs, respectively.

The results shown in Fig 2 indicate that the average AUC with normal distribution is most

affected by B, and the others are much less affected by B. When B>20, the average AUC with

normal distribution hardly increases, while it decreases instead in log-normal distribution.

Table 5. Probability density distributions of real data.

Distribution Count

Log-normal 43

Normal 37

t 19

Cauchy 1

https://doi.org/10.1371/journal.pone.0219551.t005
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Therefore, the parameter B = 20 was employed in the subsequent experiments of ROTS. It

should be noted that B = 20 is not the optimal parameter of t and Cauchy distributions, but (1)

it is suboptimal, (2) the average AUCs of the two distributions are little affected by B, and (3)

the occurrence of the two distributions in real data are very low probabilities. Thus, the param-

eter B = 20 of ROTS has few effects on the results.

3.3 Performance evaluation based on noise-free data

The 2,500 simulation datasets generated in Section 2.1.2 were analysed by MIC and its bench-

marks. The ROC curves were plotted based on the analysis results, and the AUCs of the curves

Fig 1. Four typical density distributions of real data.

https://doi.org/10.1371/journal.pone.0219551.g001
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were calculated to characterize the abilities of identifying differentially expressed gene of the

methods. Then, based on the AUCs, the boxplots were drawn, which are shown in Figs 3–6.

The identification of differentially expressed genes is a typical binary classification. For a

binary-classification method, when its AUC is equal to 0.5, the prediction of the method is just

a random guess and loses the predicting value; and the prediction is worse than a random

guess when AUC< 0.5. Therefore, for testing the performance of MIC further, we counted the

five methods on the four distributions when AUC� 0.5, respectively (Table 6).

3.4 Performance evaluation based on noisy data

A real gene expression profile is inevitably mixed with a great amount of noise [41], which

may lead the identifying method to yielding numerous false positives. The noise immunity is

one of the important performance indicators for a method used to identify differentially

expressed genes. This study simulated noisy expression data by adding white noise to the sim-

ulation data generated in Section 2.1.2. The noise intensity in the noisy data is represented by

Fig 2. Bootstrap-AUC curves. The curve on upper-left, upper-right, lower-left and lower-right has a normal, log-normal, t or Cauchy distribution respectively. The

Bootstrap counts of the 20 points are: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100, respectively.

https://doi.org/10.1371/journal.pone.0219551.g002
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the signal-to-noise ratio (SNR). And, the larger SNR is, the lower noise is. In our experiments,

11 kinds of white noise with different intensity levels were added to each dataset, where the 11

noisy levels are SNRs of 0~10 with step 1. Based on the results of the experiments, the boxplots

of the methods on the distributions were produced on the model of Section 3.3, which are

shown in Figs 7–10.

●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●●●●●

Fig 3. AUC boxplots on normal data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g003
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In order to explore the change of AUC with noise intensity, we also made linear fittings to

the noise-AUC points. There are some errors naturally in the fitted lines affected by the errors

of the methods. Thus, in our experiments, the fitted line was considered as a straight line

approximately while the slope of the line is within the range of ±1.0×10−4. A horizontal noise-

AUC fitted line indicates that the method producing the line is almost free from the noise; the

line with a slope less than 0 represents the performance of the method is naturally affected by

the noise intensity, and on the contrary, the method with a slope greater than 0 may be abnor-

mal. Table 7 shows the counts of the noise-AUC fitted lines with a slope greater than 0, where

the counts of the approximate horizontal straight line were removed. The fitted lines of all the

methods on the four distributions are shown in S102–S121 Figs.

Fig 4. AUC boxplots on log-normal data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g004
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3.5 Algorithm runtimes test

Although the algorithm runtime test could not accurately reflect the difference in speed perfor-

mance since the implementations of the methods are different, it is still possible to tell a sum-

mary distinction. Here, the five methods were employed to analyse the first simulation dataset

in the first group of each distribution, respectively. The runtimes of the methods were

recorded, which are shown in Table 8.

4 Discussions

Identification of differentially expressed genes is a binary classification problem in data min-

ing. To improve the performance of a binary classification method for expressed gene profiles

further, we constructed the model (3), where the sample phenotype T is the dependent variable
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Fig 5. AUC boxplots on t data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g005
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and gene j (gj) is the independent variable. Based on this model, differentially expressed genes

can be screened by simply calculating the MIC values of all genes in the expression profile. The

calculation does not involve any parameter assumptions or estimations.

4.1 Probability density distributions of real gene expression profiles

By analysing 100 real expression datasets, it was found that the normal and log-normal distri-

butions account for up to 80% (37 normal distributions and 43 log-normal distributions, see

Table 5). Since the normal distribution and the log-normal distribution can be easily converted

to each other, it is feasible to assume that a gene expression profile is normal distribution in

existing studies. In addition to the two distributions, there are t distribution of 19% and Cau-

chy distribution of 1%, indicating that besides the normal distribution, the t and Cauchy

Fig 6. AUC boxplots on Cauchy data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g006
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distribution (at least the t distribution) need to be considered in a comprehensive study of

gene expression. Moreover, although the distributions of Weibull, gamma and chi-square are

also possible based on the density curves shape, it was found that either forms or the means

and variances of the curves simulated by the three distributions are far from the real data.

Thus, the three distributions are not likely to appear in the density distributions of real gene

expression profiles.

4.2 Performance of identifying DEGs by MIC on noise-free data

Since the Bootstrap used in ROTS will cost a lot of runtime, we tested the optimal Bootstrap

count (i.e., the parameter B of ROTS) for the method. Our experiments showed that B = 20 is

the best compromise case between the accuracy and runtime of ROTS for identifying
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Fig 7. AUC boxplots on normal noisy data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g007
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differentially expressed genes, and the runtime has a good linear relationship with the B. All

experiments on ROTS were done based on this parameter.

The study used AUC as a characterization of the ability of identifying differentially

expressed genes for each method. The boxplots of the four distributions in Figs 3–6 show that

the identifying ability of MIC is significantly stronger than Limma and DESeq2 methods

(Limma is also significantly weaker than the other benchmarks). The identifying ability of

MIC in the normal distribution data is second only to that of ROTS (the AUC median is 6.19%

smaller), ranked no. 2; the AUC median in the log-normal distribution is slightly smaller than

that of ROTS and SAM (are smaller 3.57% and 1.52% respectively), ranked no. 3, and that in t

distribution is also slightly smaller than ROTS and SAM (are smaller 3.95% and 3.39% respec-

tively), ranked no. 3 too, while that in Cauchy distribution is significantly better than the four

benchmarks. In addition, an AUC variance can reflect the adaptability of a method to the data.
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Fig 8. AUC boxplots on log-normal noisy data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g008
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Fig 9. AUC boxplots on t noisy data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g009

Table 6. Counts of AUC� 0.5.

Distribution MIC DESeq2 Limma ROTS SAM

Normal 0 378 896 33 300

Log-Normal 0 141 438 0 1

t 0 0 490 0 0

Cauchy 0 44 73 0 0

Total 0 563 1897 33 301

Ratio (%) 0 22.52 75.88 1.32 12.04

Note: The counts come from the 2,500 simulation datasets, one for each.

https://doi.org/10.1371/journal.pone.0219551.t006
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Fig 10. AUC boxplots on Cauchy noisy data ‘×’s are the means. Bidirectional arrows represent ±1σ.

https://doi.org/10.1371/journal.pone.0219551.g010

Table 7. Counts of fitted lines with a slope greater than 0.

Distribution MIC DESeq2 Limma ROTS SAM

Normal 2 79 823 88 56

Log-Normal 0 38 0 0 8

t 0 0 100 3 3

Cauchy 0 47 12 50 24

Total 2 164 935 141 91

Ratio (%) 0.08 6.56 37.40 5.64 3.64

Note: The counts come from the 2,500 simulation datasets, one for each. And, the approximately horizontal lines have been removed.

https://doi.org/10.1371/journal.pone.0219551.t007
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A smaller AUC variance means that the method is more adaptable to the data, that is, the

method does not bring large fluctuations in its result caused by the overall change in expressed

levels. Figs 3–6 show that Limma has the smallest variance, and MIC is better than or equiva-

lent to the other three methods. Among the four distributions, any of methods has a distribu-

tion that its variance is weaker than the other distributions (MIC, ROTS and SAM are Cauchy,

DESeq2 and Limma are Normal). So far, we can conclude that the performance of identifying

differentially expressed genes by MIC on noise-free data is significantly better than that of

Limma and DESeq2, while it is almost same with ROTS and SAM. MIC is weaker than Limma

in terms of adaptability to changes in expressed levels, and is almost same with DESeq2,

ROTS, and SAM. The adaptabilities of all the methods to distributions are similar. However,

we could consider that the adaptabilities of MIC, ROTS and SAM are better than the other two

methods, because the possibility of density distribution of Cauchy in real data is significantly

lower than a normal distribution.

In addition, for a binary classifier, when AUC = 0.5, the method has no practical value,

while AUC<0.5 indicates that the method has serious defects. Fewer AUC� 0.5 indicates that

the method is more robust and adaptable to data. In the results of AUC� 0.5 shown in

Table 6, MIC does not exhibit the case of AUC� 0.5, which is significantly better than the

benchmarks.

Therefore, compared to the existing methods, MIC is in the first tier in the performance of

identifying differentially expressed genes, and it has stronger robust and higher data

adaptability.

4.3 Noise immunity of MIC in identifying differentially expressed genes

The noise in a gene expression profile is an important factor affecting the accuracy of an iden-

tifying method, especially for the genes with low expressed levels. In order to investigate the

noise immunity of MIC, we tested the identifying performance of MIC in a noisy environment

by adding white noise to a noise-free dataset. Our experiments used SNR to represent the

noise intensity in the data. The results (see Figs 7–10) show that the AUC medians of MIC in

the noisy data is significantly better than the benchmarks, while the overall variance is weaker

than the benchmarks. However, the change to the variance of MIC among the four distribu-

tions is greatly smaller than the benchmarks, and the variances of MIC on noisy data are simi-

lar to that on noise-free data. It means that the noise immunity of MIC is significantly better

than the benchmarks.

To further investigate the relationship between performance and noise intensity for a

method, we made linear fitting for the (1-SNR)-AUC scatter points. If a method has excellent

noise immunity, its fitted line should be approximately horizontal, and there are no (or almost

no) cases where the slopes of the lines are greater than 0. Table 7, the counts of the fitted line

with a slope greater than 0, show that the count of MIC is only 2, which is strikingly better

Table 8. Algorithm runtimes (unit: second).

Distribution Method

MIC DESeq2 Limma ROTS SAM

Normal 0.72 6.37 0.30 9.59 1.06

Log-Normal 0.60 6.39 0.41 9.08 1.46

Student 0.89 5.36 0.28 9.08 1.06

Cauchy 0.71 9.00 0.34 9.06 1.13

Total 2.92 27.11 1.34 36.81 4.71

https://doi.org/10.1371/journal.pone.0219551.t008
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than the benchmarks. S102–S121 Figs also show that MIC is the only one of the methods has

no (1-SNR)-AUC (where AUC is a mean) fitted line with a slope greater than zero in all

distributions.

Thus, compared to the existing methods, the noise immunity of MIC shows an obvious

advantage.

4.4 Comparison of algorithm runtimes

Since the implementations of the methods are different, the runtime comparison can only be

rough. The runtimes shown in Table 8 indicate that the runtime of MIC is greatly longer than

Limma, slightly shorter than SAM, but significantly shorter than DESeq2 and ROTS. It shows

that MIC is overall faster than the most existing methods. The reason why Limma’s runtime is

the shortest among all methods is mainly because it assumes that the variables are linear rela-

tionship, which makes the computational complexity significantly smaller than the other

methods.

4.5 Advantages and disadvantages of MIC

MIC is a non-parametric statistical method with good noise immunity. It has better ability to

discover non-functional relations than the existing methods in exploring bivariate relations.

Furthermore, it has a good uniformity to function relations [29] (i.e., MIC can yield almost the

same value for any function relations). A gene expression profile has usually a lot of noise [41]

and the function relation between the phenotype and gene expressed levels is not clear, thus,

MIC is very suitable for analysis of gene expression data.

The deficiencies of MIC are mainly reflected in the fact that it rasterizes (i.e., discretizes)

the continuous gene expression data, which leads it to be an approximation method and

reduce its accuracy.

5 Conclusion

In summary, the result of the analysis of the real expression profiles suggested that the proba-

bility density distribution of a gene expression data may be normal, log-normal, t or Cauchy,

and is mostly normal or log-normal distribution (accounting for 80%). Due to the ease of con-

version between normal and log-normal distributions, we could assume the density distribu-

tion of a gene expression profile is normal in a simple analysis. However, for more accurate

analysis, at least a t-distribution (accounting for 19% in the real data) is needed besides a nor-

mal. In addition, the simulation experiments reveal that MIC is not weaker than the existing

methods (in the top tier) in the performance of identifying differentially expressed genes, and

it is superior to existing methods in adaptability and noise immunity (especially its noise

immunity). And, MIC has a shorter runtime. In conclusion, MIC has a good performance of

identifying differentially expressed genes, noise immunity and a shorter runtime. It is an excel-

lent method for identifying differentially expressed genes.
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S101 Fig. Bootstraps-Elapse of ROTS.

(TIF)

S102 Fig. Average fitted line on Normal for MIC.

(TIF)

S103 Fig. Average fitted line on Normal for DESeq2.

(TIF)

S104 Fig. Average fitted line on Normal for Limma.

(TIF)

S105 Fig. Average fitted line on Normal for ROTS.

(TIF)

S106 Fig. Average fitted line on Normal for SAM.

(TIF)

S107 Fig. Average fitted line on Log-Normal for MIC.

(TIF)

S108 Fig. Average fitted line on Log-Normal for DESeq2.

(TIF)

S109 Fig. Average fitted line on Log-Normal for Limma.

(TIF)

S110 Fig. Average fitted line on Log-Normal for ROTS.

(TIF)

S111 Fig. Average fitted line on Log-Normal for SAM.

(TIF)

S112 Fig. Average fitted line on Student for MIC.

(TIF)

S113 Fig. Average fitted line on Student for DESeq2.

(TIF)

S114 Fig. Average fitted line on Student for Limma.

(TIF)

S115 Fig. Average fitted line on Student for ROTS.

(TIF)

S116 Fig. Average fitted line on Student for SAM.

(TIF)

S117 Fig. Average fitted line on Cauchy for MIC.

(TIF)

S118 Fig. Average fitted line on Cauchy for DESeq2.

(TIF)

S119 Fig. Average fitted line on Cauchy for Limma.

(TIF)
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S120 Fig. Average fitted line on Cauchy for ROTS.

(TIF)

S121 Fig. Average fitted line on Cauchy for SAM.

(TIF)
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