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Abstract

Nucleotides ratcheted through the biomolecular pores of nanopore sequencers generate raw

picoamperage currents, which are segmented into step-current level signals representing the

nucleotide sequence. These ‘squiggles’ are a noisy, distorted representation of the underly-

ing true stepped current levels due to experimental and algorithmic factors. We were inter-

ested in developing a simulation model to support a white-box approach to identify common

distortions, rather than relying on commonly used black box neural network techniques for

basecalling nanopore signals. Dynamic time warped-space averaging (DTWA) techniques

can generate a consensus from multiple noisy signals without introducing key feature distor-

tions that occur with standard averaging. As a preprocessing tool, DTWA could provide

cleaner and more accurate current signals for direct RNA or DNA analysis tools. However,

DTWA approaches need modification to take advantage of the a-priori knowledge regarding

a common, underlying gold-standard RNA / DNA sequence. Using experimental data, we

derive a simulation model to provide known squiggle distortion signals to assist in validating

the performance of analysis tools such as DTWA. Simulation models were evaluated by com-

paring mocked and experimental squiggle characteristics from one Enolase mRNA squiggle

group produced by an Oxford MinION nanopore sequencer, and cross-validated using other

Enolase, Sequin R1_71_1 and Sequin R2_55_3 mRNA studies. New techniques identified

high inserted but low deleted base rates, generating consistent x1.7 squiggle event to base

called ratios. Similar probability density and cumulative distribution functions, PDF and CDF,

were found across all studies. Experimental PDFs were not the normal distributions expected

if squiggle distortion arose from segmentation algorithm artefacts, or through individual nucle-

otides randomly interacting with individual nanopores. Matching experimental and mocked

CDFs required the assumption that there are unique features associated with individual raw-

current data streams. Z-normalized signal-to-noise ratios suggest intrinsic sensor limitations

being responsible for half the gold standard and noisy squiggle DTW differences.
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Introduction

Raw current signals (nanostreams) are recorded as each DNA or RNA molecule is ratcheted

one nucleotide at a time by a motor protein through a nanopore biomolecule in a sensor array

on a device such as the Oxford Nanopore MinION sequencer [1, 2]. Various techniques can be

used to convert the picoamperage raw signal (e.g. 4000Hz on the MinION) into a series of

stepped current levels corresponding ideally 1:1 to the ratcheted nucleotides [3]. However, in

practice the series of stepped current levels (a.k.a. “squiggles” [4]) are a stretched and distorted

representation of the DNA or RNA sequence.

The original equipment manufacturer (OEM) provides a k-mer model for the correspon-

dence of nucleotide sequence to current levels, based on many experiments done internally.

This allows us to trivially calculate a ‘golden’ signal for any given nucleotide sequence. Raw sig-

nal segmentation algorithms generate squiggles that are a noisy and distorted representation

of the underlying true stepped current levels due many factors. These include 1) the uneven

production of current steps per unit time due to the stochastic nature of the motor protein

driving the steps, 2) homopolymerism where long chains of multiple identical bases are misin-

terpreted, 3) in-silico chimeric reads, 4) experimental sensor errors and noise generated mea-

suring the current by steric configuration of the nucleotides and 5) segmentation artefacts.

These errors can be represented as a certain probability of insertions and deletion into the

squiggle. These respectively represent signals falsely interpreted as the presence of additional

bases, or the failure of the passage of a base through a nanopore to generate a raw signal that

can be segmented into a squiggle event.

The difference between the squiggles, (see Fig 1), and the underlying gold standard that

describes RNA / DNAmolecular characteristics can be identified through dynamic time warp-

ing (DTW). This provides a comparison where the similarity between a pair of squiggles is

maximized by stretching each squiggle while minimizing the total Euclidian distance between

them [5]. Chan et al. [6] demonstrate that using the DTW Barycentre averaging, DBA, algo-

rithm [7, 8] could generate a consensus from multiple noisy squiggles, which cannot be

Fig 1. Thirty representative squiggles from the A) Enolase and B) Sequin R2-55-3 studies. The leaders, shown in red, can be identified by differences between

local leader and global stream characteristics of intensity means and standard deviations. A further data pruning was used to remove stream outliers that varied

by more than 5 standard deviations from the mean ensemble characteristics.

https://doi.org/10.1371/journal.pone.0219495.g001
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achieved through the direct use of DTW which only compares signal pairs. DBA is able to gen-

erate a consensus signal without averaging out the key-characteristics of individual data-sets as

would occur with standard averaging approaches. It was suggested that the generation of a

clean consensus signal would be a useful preprocessing stage leading to more accurate results

following the application of existing analysis tools.

Our experiments comparing the DBA consensus signal [7] with those generated by two

other dynamic time warped-space averaging, DTWA, algorithms proposed by Schultz and Jain

[9] have identified a major difference between the uses of DTWA algorithms in other fields

compared to this new squiggle-space application. DTWA algorithms are commonly applied to

generate a consensus signal from similar signals from multiple different sources. DTWA algo-

rithms have not been optimized to take advantage of unique a-priori information available in

this new signal space environment. Each squiggle is formed from stepped current signals seg-

mented from raw current nanostream signals convergent towards the same fundamental gold-

standard sequence of DNA or RNA molecules.

We propose the development of a novel simulation framework that provides a detailed

characterization of the distortions introduced by nanopore sequencing devices or in conjunc-

tion with associated segmentation methods. This framework can be used to assist in optimiz-

ing DTWA algorithms to make use of the domain-specific gold-standard not available in other

fields of study. Both DTWA and the proposed simulation model are intended as tools to sup-

port a white-box approach to identify common distortions, rather than relying on commonly

used black box neural network techniques for basecalling nanopore signals.

This paper is organized as follow. The Methods section outlines techniques used to identify,

and quantify, the key distortions present in squiggles. A simulation model incorporating these

characteristics is proposed. The Result section provides details of an empirical investigation of

the key distortion parameters identified as present in Enolase squiggles generated by the

Oxford MinION sequencers. An investigation is undertaken on how to use these noisy param-

eter estimates within a simulation model to generate mocked squiggles whose characteristics

best match those of actual squiggles. Preliminary results of applying this proposed model to

the smaller and noisier Sequin R1_71_1 and Sequin R2_55_3 RNA [10] squiggle ensembles are

provided. The Conclusion section summarizes our findings and proposed future research

directions.

Methods

This section proposes techniques to identify the key distortions present in the squiggle data

ensemble. First, cleaning is performed to remove all streams that are extreme outliers from the

data ensemble averages. The probability density function, PDF, and the cumulative distribu-

tion function, CDF, are then determined. Potential tools are proposed to estimate the number

of insertion and deletion distortions in a given squiggle relative to the calculated ‘golden’

squiggle associated with the underlying nucleotides spiked into the experiments. Insertions

and deletions are respectively an indication of bases erroneously indicated as present or absent

from a squiggle without attribution of the source of the error. Finally, a procedure to estimate

the noise level present in experimental squiggles is detailed.

Generation and cleaning of noisy squiggles

Data were generated using the SQK-RNA001 direct RNA sequencing kit and protocol v1.08

with the MinION Mk1B sequencer [1, 2] running the OEM MinKnow device control software.

One DNA sample contained only the OEM-provided yeast enolase mRNA spike-in. Two oth-

ers, R1_71_1 and R2_55_3, were supplemented with RNA Sequin v1 Pool A [10].

Simulation models to mimic the squiggle distortions introduced by nanosequencers and segmentation algorithms
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Squiggles whose distortions were outliers from the average characteristics of the approxi-

mately 7000 squiggles from the Enolase ensemble were eliminated using the following

procedure.

• It was found experimentally that the squiggles segmented from all three raw current streams

had a mean length x1.7 larger than that of the underlying gold standard squiggle. All squig-

gles whose length was smaller than the gold-standard’s length were therefore deleted as gross

outliers. This left signals similar to those shown in Fig 1A and 1B for the Enolase ensemble

and the noisier R2_55_3 data ensembles respectively.

• The leaders of the streams, shown in red, are associated with the enzyme used in the wet-lab

process to guide the RNA to the sensor. While physically essential to the process to generate

a raw signal, this leader does not contribute directly to the gene sequence of interest. The

header was identified by its local mean and standard deviations not matching those of the

general stream.

• The remaining squiggle lengths did not follow a normal distribution, making it inappropri-

ate to reject outliers identified on the basis of characteristics deviating by more than two

standard deviations from various ensemble squiggle mean values. We therefore performed a

less stringent pruning and only removed outliers whose intensity, mean and length charac-

teristics deviated by more than 5 standard deviations from the ensemble global and local

means.

• To identify in-silico chimeric reads, we broke each squiggle into sections and calculated the

mean of the standard deviations of section event intensities. Squiggles were rejected if this

mean was more than 2 standard deviations from the ensemble mean of standard deviations

of section intensities.

Statistical characterization of sequences

Investigation of overall squiggle length statistics. In their preliminary investigation into

using DBA to generate consensus signals, Chan et al. [6] proposed a simple distortion model

involving equal probabilities of base information in the calculated gold standard squiggle

appearing duplicated or absent, i.e. deleted, in a given segmented squiggle. However, we have

identified that both the Enolase and Sequin R1 distorted squiggles were typically x1.7 times

than their respective gold standard length, indicating significantly higher insertion probabili-

ties compared to deletion probabilities. To better characterize the squiggle distortions, the

length details of the cleaned Enolase experimental squiggles were identified. The experimental

probability density function, E-PDF, was then determined to allow calculation of the experi-

mental cumulative distribution function, E-CDF. These density functions can be used to evalu-

ate the accuracy of the mocked probability density, M-PDF, and cumulative distribution.

M-CDF, functions generated by the proposed simulation models.

Estimating the overall Signal-to-Noise statistics

The simulation model proposed by Chan et al. [6] assumed that Gaussian white noise would

be present with a standard deviation of between 2% and 4% of the maximum range of gold-

standard intensities. These correspond to signal-to-noise ratios, SNR, of 50 : 1 and 25 : 1

respectively using a standard SNR definition of

SNR ¼ Maximum range of signal intensities=standard deviation of noise ð1Þ

Simulation models to mimic the squiggle distortions introduced by nanosequencers and segmentation algorithms
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DTW and DTWA studies are typically undertaken on z-normalized versions of the signal,

SZ-NORM(n) = (S(n)–SMEAN) / stdev(S(n), which removes the signal mean, SMEAN, before nor-

malizing the signal amplitude to a standard deviation, stdev, of 1. As this format does not char-

acterize signals in terms of a range of intensities, we have proposed a new SNRZ-NORM measure

in our research into noise characterization of signals in squiggle space:

SNRZ� NORM ¼ stdevðSZ� NORMðnÞÞ=stdevðnoiseÞ ¼ 1=stdevðnoiseÞ ð2Þ

We used the following procedure to generate an estimate of the experimental SNRZ-NORM:

• The Enolase ensemble contains squiggles of lengths ranging from 1400–3500. The 60 squig-

gles in the length range 1600–1700 were selected to provide a dataset with fairly homoge-

neous insertion, deletion and noise characteristics across all members of this sub-ensemble.

• A DTW comparison was made between pairs P and Q of this squiggle subset:

½distDTWP Q;WPPðnÞ;WPQðnÞ� ¼ dtwðSquigglePðnÞ; SquiggleQðnÞÞ ð3Þ

to identify the WPP(n) and WPQ(n) warping paths with minimal Euclidean distance.

• The difference, DIFFP-Q, between the warped versions of the squiggles

DIFFP� QðnÞ ¼ SquigglePðWPPðnÞÞ � SquiggleQðWPQðnÞÞ ð4Þ

will be predominately noise if we assume that the squiggles with similar lengths have similar

characteristics. This provides an estimate of the experimental SNRZ-NORM as

SNRZ� NORMðnÞ ¼ K stdevðSZ� NORMðnÞÞ=ðstdevðDIFFP� QðnÞÞ=
ffiffiffi
2
p
Þ ð5Þ

The mean and standard deviation of SZ-NORM were determined. The scaling factor K
accounts for any contribution to DIFFP-Q from differences between the locations of specific

insertions and deletions across two similar streams. The statistics of comparing two noisy

sequences requires the introduction of the root(2) term.

Proxies to evaluate overall insertion and duplication statistics. To identify the charac-

teristics of the duplications and deletions introduced into segmented current steps, we have

adopted a procedure that uses DTW-based proxies to compare the squiggle associated with the

calculated gold-standard and the ensemble of experimental noisy squiggles. An accurate simu-

lation model will lead to these proxies providing similar results for both experimental and

mocked squiggles, even when the proxies are not entirely appropriate for determining actual

insertion and deletion rates.

The DTW algorithm [11, 12] returns the warping paths, WPGOLD(n) and WPSQUIGGLE(n)
necessary to minimize the Euclidian distance, distDTW, between the known gold standard

and the nth squiggle

½distDTWn;WPGOLDðnÞ;WPSQUIGGLEðnÞ� ¼ dtwðgold; squiggleðnÞÞÞ ð6Þ

The presence of MEmultiple entries in the warping path WPGOLD(n) implies that the gold

standard stream must be time-stretched at ME locations to match this squiggle. We propose

thatME be interpreted as an estimate of the number of duplications (a.k.a. insertions), MEDU-
PLICATIONS, present in the squiggle and not present in the gold stream. In an equivalent man-

ner, the multiple entries in the WPSQUIGGLE(n) warping path can be interpreted as indication

of MEDELETIONS entries in the gold standard stream that are absent in the squiggle. The

Simulation models to mimic the squiggle distortions introduced by nanosequencers and segmentation algorithms
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experimental mean and standard deviations for single and multiple MEDUPLICATIONS and

MEDELETIONS were calculated for the squiggle ensemble as a whole, and for small groups of

squiggles with similar lengths.

Proposed simulation model. The simulation model proposed in Chan et al. [6] assumed

that there was an X% chance of both deletions and insertions, and (100 – 2X)% chance of an

undistorted squiggle value. The schematic of a more complex simulation model better

matched to the experimental squiggle characteristics is shown in Fig 2.

• A random number generator selects a stream length model based on values from a cumula-

tive distribution function, CDF, determined directly from the experimental data. Alterna-

tively, as discussed later, CDFs can be calculated from proposed theoretical distribution

models that approximate the experimental data.

• Gold-standard squiggle event values are singly copied, or duplicated, into the mock squiggle

based on the probability P(INSERT) determined experimentally or from a proposed duplica-

tion model.

• The experimental or theoretical probability P(DELETE) determines whether the next gold-

stream entry will be used to generate a mocked-squiggle value or whether multiple entries in

the gold-squiggle will be skipped over, i.e. deleted from the mocked-squiggle.

• Finally, to model the level of experimental noise on a squiggle, Gaussian white noise was

added until the mocked signal’s SNRZ−NORM matched the experimental SNR.

Fig 2. The proposed simulation model uses either an experimentally determined or proposed cumulative distribution function to

generate a stream length model for the mocked squiggle. Each gold-stream base is either inserted into, or deleted from, the mocked

stream based on probability functions determined experimentally or from an assumed theoretical model.

https://doi.org/10.1371/journal.pone.0219495.g002
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Results

The empirical Enolase squiggle ensemble was broken into groups of 2000 to allow evaluation

of its anticipated temporal characteristics due to factors that may change later in an experi-

ment, e.g.motor fuel and voltage bias levels. Basic squiggle length, insertion and deletion rates

and noise characteristics were evaluated for each group. Several simulation models were pro-

posed for one temporal grouping, and initially accepted based on whether their mocked cumu-

lative distribution function, M-CDF, matched the experimental Enolase E-CDF of that group.

Models were then rejected based on whether their mocked squiggle characteristics matched

the observed insertion and deletion rates. Finally, the experimental E-CDF and best model’s

M-CDF for this initial group were compared to the E-CDF and M-CDFs of other real and

mocked groupings of Enolase squiggles, and for the Sequin R1_71_1 (116 squiggles) and Sequin
R2_55_3 (122 squiggles).

Determination of squiggle characteristics

Data length characteristics. Typically 80% of squiggles in a cross-validation group

remained after removal of the squiggles with characteristics that were gross outliers from the

ensemble’s intensity mean and standard deviation and stream length, and the removal of

squiggles with in-silico chimeric reads. Fig 3 compares the histograms of the cleaned experi-

mental squiggle lengths from three groupings of 2000 Enolase squiggles.

The smoothed probability density function, E-PDF for the first temporal group, SG1-2000,

had a broad peak at x1.6 of the gold standard length. The second (SG2001-4000, solid red line)

Fig 3. The original length distribution from SG2001-4000 (red line) has a broad PDF peak at around x1.7 longer

than the gold standard length, with a long high-length tail. Other stream groupings (dotted and dashed red lines) have

similar, but shifted, PDF’s. The GEV PDF for SG2001-4000 (solid black line) is shown for comparision.

https://doi.org/10.1371/journal.pone.0219495.g003
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and third (SG4001-6000) temporal groupings had similar broad peaks at x1.70 and x1.69 times

the gold standard length respectively.

It is to be expected that the experimental length distortion measure evaluated as squiggle

events divided by bases called, would be nearly identical amongst the Enolase squiggle group-

ings. The samples had been prepared in the same biological manner with raw current signals

generated by the same nanopores. It might be anticipated that similar levels of segmentation

artefacts would be generated from their nearly identical features. However, it was not antici-

pated that the Sequin samples prepared in a different, i.e. synthetic, manner and analyzed

using raw current signals generated from a different nanopore device would produce such

similar x1.7 squiggle event to bases called ratios. Additionally, the sequence composition of the

Sequins and Enolase are very different, yet generate similar distortion levels. Later in this

paper, we offer explanations for why we believe this common ratio seen across multiple ensem-

bles is not an artefact associated with an imperfect segmentation algorithm.

The E-PDF did not exhibit a normal distribution, having a significantly longer tail above

the peak than below. We empirically attempted to fit the E-PDF to non-Gaussian distributions.

The black-line in Fig 3 shows the generalized extreme value (gev) distribution [13] fitted to the

SG2001-4000 group of squiggles. Neither this nor the log-normal [14] or log-logistic [15] long-

tailed distributions investigated provide a close match for both the E-PDF’s broad intensity

peak and tails. However, their approximate fit allows their distribution parameters to be used

as a practical proxy for evaluating similarity between the Enolase E-PDF and M-PDF.

The experimental insertion and deletion rates from groups of Enolase squiggles differing by

no more than 50 points in their average length are displayed in Fig 4. Empirically it was found

Fig 4. Experimental insertion and delete rates can be characterized by expressions of the form A + B (1–1 / LSF)
where the length scaling factor LSF = squiggle_length / gold_standard_length.

https://doi.org/10.1371/journal.pone.0219495.g004
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that both the P(INSERT) and P(DELETE) probabilities can be described by experimental

curves of the form

PðLSFÞ ¼ Aþ B ð1 � 1=LSFÞ ð7Þ

where the length scaling factor, LSF, is given by

LSF ¼ squiggle length=gold � standard length ð8Þ

The A and B parameters for the various insertion and deletion rates are shown in Table 1.

The full 7000 stream Enolase study was analyzed when generating Fig 4 in order to provide

estimates of P(LSF) in the lowly populated tails of the data.

Only the first three deletion probabilities and first four insertion probabilities have support-

ing empirical data. Given the rapid decrease in the A and B deletion parameters, it was

assumed that four or more additional deletions would occur with near zero probability. How-

ever, a similar assumption could not be made for the insertion probabilities. As will be shown

later, it is the occasional low probability for a large number of insertions in a given stream that

is mainly responsible for the details of the high LSF characteristics of the data set. The A inser-

tion parameter is close to 0 after two insertions, and the B insertion parameter is approxi-

mately decreasing by a factor of 1.3 as the number of insertions increases. Therefore the initial

approximation for the probability for I� 5 insertions occurring was modeled as:

PðLSF; I � 5Þ ¼ 0þ B4� INSERTIONSð1 � 1=LSFÞ=1:3ðI� 4Þ ð9Þ

where the B4-INSERTIONS parameter was set as 6.2 from Table 1.

DTW distance and SNRZ-NORM characteristics. The mean DTW distance between the

gold-standard and the total Enolase data ensemble, Frechet measure [9], was determined as

463 ± 65 across the cleaned squiggles.

The mean SNRZ-NORM was estimated as 3.8 ± 0.4 for the SG1600-1699 squiggle grouping

using Eq (5). This estimate was based on a value K = 1.25 calculated on the assumption that

the number of residual insertions and deletions in DIFFP-Q(n) was proportional to the mean

LSF for this data group

K ¼ squiggle mean length ð1650Þ=gold � standard length ð1310Þ ð10Þ

Table 1. The experimentally determined insertion and deletion probabilities for a distorted squiggle’s length scal-

ing factor (LSF) can be modelled as A+B(1+1/LSF).

A B

NO INSERTIONS 90.2 -56.1

NO DELETIONS 88.7 17.7

ONE INSERTION 11.0 14.0

ONE DELETION 9.7 -15.0

TWO INSERTIONS 2.1 12.5

TWO DELETIONS 1.1 -1.8

THREE INSERTIONS -0.2 8.8

THREE DELETIONS 0.3 -0.4

FOUR INSERTIONS -0.7 6.2

https://doi.org/10.1371/journal.pone.0219495.t001
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Poor fit associated with PDF models assuming local distortions

The simple distortion model in Chan et al. [6] assumed that each base in every DNA sequence

had an equivalent 70% to 90% probability of being correctly represented as a squiggle event,

and a 5% to 15% probability of either being duplicated or deleted.

Two variants of this model would match the experimentally observed x1.61 to x1.7 event to

base ratios. Either each individual base has a high probability of P(INSERT) = 70% of individ-

ual duplication, giving a mean LSF = 1 + P(INSERT)/100, or a lower P(INSERT) = 40% proba-

bility of repeated duplications occurring, leading to a mean LSF = 1 / (1 –P(INSERT)/100); a

better match to the general characteristics of the experimental data.

In Fig 5A the experimental E-CDF, red line, is compared to the M-CDF for this simple

duplication model, dashed black line. On the hypothesis that there is an underlying model that

represents all squiggle distortions in a similar manner in all studies, the CDFs are plotted

against the length scaling factor, LSF, of the squiggles.

Updating this simple model to further account for an X% probability that a deletion will

occur would require that duplication probability rates be increased to P(INSERT) = (40 + X)%
to maintain the overall x1.7 event to base ratio. This model was not explored in detail as inclu-

sion of these additional model parameters in the simulation did not provide the wide range of

stream lengths that was experimental observed.

A similar narrow M-CDF, black dotted line, is generated when the experimental insertion

probability rates given in Table 1 are applied to identify introduced distortions as individual

bases pass through the nanopore. This model generates a mean LSF factor of around 1.4,

smaller than the x1.7 found experimentally. Using the full experimental insertion and deletion

rates, thick dotted line, increases the mean LSF but not the overall length range of the squiggles

which remains narrow. The DTW Insertion–Deletion proxies showed that the 1–5 insertion

and 1–3 deletion probabilities calculated from these mocked squiggles were lower than found

experimentally, Table 2.

Improved PDF models assuming squiggle-specific distortions

The earlier results we have presented suggest that it is inappropriate to use a simulation model

with common probabilities arising from the raw current signals generated as nucleotides pass

Fig 5. Comparison of original Enolase SG2001–4000 E-CDF (red line) againstM-CDF’s generated using experimental insertion and deletion

probabilities applied to A) base-specific and B) squiggle specific simulation models.

https://doi.org/10.1371/journal.pone.0219495.g005
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through nanopores are segmented into individual squiggle events. We suggest an alternate

simulation model be considered where there are common insertion and distortion probabili-

ties associated with the entire length of a given raw current signal as it is segmented into a

squiggle. The gev, log-normal and log-logistic curves provide a reasonable representation of

the squiggle PDF. We therefore suggest that such common probabilities are associated with

errors introduced by either or both of the twin manufacturing processes of producing the

RNA molecules to be sampled and the generation of the nanopore sensors rather than being

solely by artefacts of an imperfect segmentation process.

Squiggle-specific length model based on experimental parameters. Applying this new

probability model using the Table 1 parameters associated with specific raw current / squiggle

data streams leads to the M-CDF shown as the thin dot-dashed line in Fig 5B. This squiggle-

specific distortion produces a wider mock M-CDF, closer to the width of the empirical E-CDF,

although having the equivalent mean LSF as the local distortion model using the same experi-

mental insertion and / or deletion probabilities,

The introduction of multiple additional insertions

PðLSF; I � 5Þ ¼ 0þ B4� INSERTIONSð1 � 1=LSFÞ=1:3ðI� 4Þ ð11Þ

leads to an even wider M-CDF, thick dot-dashed line, that is an improved approximation of

the true E-CDF. Increasing the scaling factor for insertion rates above 4 from 1.3(I-4)to 2.0(I-4),
thick solid line, provides a better fit to the E-CDF at high LSF values, but begins to over-fit at

Table 2. Comparison of insertion and deletion probabilities between the original SG2001-4000 squiggle ensemble with local and global models using experimental

probability rates.

INSERTION PROBABILITIES1 DELETION PROBABILITIES2

0 1 2 3 s 4 5 0 1 2 3

Original

SG2001-4000
66.2±3.8 17.1±1.4 7.5±1.1 3.6±0.8 2.0±0.6 1.1±0.4 96.3±1.0 3.3±0.9 0.3±0.1 0.1±0.1

LOCAL MODELS
Modified Chan 59.1±1.3 23.9±1.2 9.9±0.8 4.1±0.6 1.7±0.4 0.7±0.2 100±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Experimental. Insertion Only 70.3±1.7 16.7±1.0 7.4±0.7 1.9±0.4 3.5±0.5 0.0±0.0 100±0.0 0.0±0.1 0.0±0.0 0.0±0.0

Experimental. Insertion + Deletions 68.9±1.3 15.5±1.0 6.8±0.7 3.3±0.5 1.8±0.4 1.4±0.3 98.3±0.3 1.4±0.3 0.1±0.0 0.0±0.0

GLOBAL MODELS
Expt. Insertions Only 70.3±2.7 16.7±1.3 7.4±1.0 3.5±0.7 1.9±0.5 0.0±0.0 100±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Expt. Insertions + Deletions 68.6±3.9 15.6±1.5 6.9±1.1 3.4±0.8 1.8±0.5 1.4±0.4 97.0±0.5 2.6±0.5 0.4±0.1 0.0±0.0

P(INSERT)
= 100 (1–1 / LSF)

58.1±5.9 23.7±1.5 10.1±1.9 4.4±1.4 2.0±0.9 0.9±0.6 100±0.0 0.0±0.0 0.0±0.0 0.0±0.0

P(INSERT)
= 100 (1–1 / LSF)
P(DELETE)
= 25.5 (1–1 / LSF)

65.3±4.5 19.7±1.3 8.4±1.5 3.7±1.2 1.6±0.8 0.7±0.5 96.3±0.5 3.3±0.5 0.3±0.1 0.1±0.1

P(INSERT)
= 114.4 (1–1/LSF)
P(DELETE)
= 25.5 (1–1 LSF)

59.8 ±5.0 20.1±1.3 9.7±1.5 4.9±1.4 2.5±1.1 1.3±0.9 97.1±0.5 2.6±0.5 0.3±0.1 0.0±0.0

P(INSERT)
= 8.6+100 (1–1/LSF)
P(DELETE)
= 8.7+15 (1–1/LSF)

60.7±4.5 18.8±1.3 9.7±1.4 5.0±1.2 2.1±1.0 1.4±0.7 96.2±0.8 3.3±0.7 0.4±0.2 0.1±0.1

1The empirical insertion probabilities were chosen to better match the experimental and mocked CDF
2The empirical deletion probabilities were chosen to match those of the original SG2001-4000 ensemble

https://doi.org/10.1371/journal.pone.0219495.t002
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low LSF values. Despite its improved M-CDF, we consider it inappropriate to adopt this exper-

imental-based model with its increased scaling factor given the experimental inaccuracies asso-

ciated with Table 1 parameters.

Squiggle-specific length model based on empirical parameters. Based on the experi-

mental results shown in Table 1, we next investigated theoretical insertion and deletion models

of the form

PðINSERTÞ ¼ I0 þ I1�ð1 � 1=LSFÞ; PðDELETEÞ ¼ D0 þ D1�ð1 � 1=LSFÞ ð12Þ

The effectiveness of the model would be evaluated by the level of matching between M-CDF
and E-CDF, Fig 6, the level of matching between the insertions and deletion probabilities eval-

uated by the proposed DTW insertion-deletion proxies, Table 2, and the fit to three distribu-

tions with long tails, Table 3.

There was a near perfect agreement between E-CDF and M-CFD for P(INSERT) = 100 (1–1
/ LSF) and P(DELETE) = 0, dotted line in Fig 5B. However this model was considered inappro-

priate as Table 2 shows that applying the DTW insertion-deletion proxies to this mocked data

provides over-estimated global insertion probabilities in addition to providing zero global

deletion probabilities.

However, given that this simple insertion model, I1 � (1–1 / LSF), led to an excellent M-CFD
approximation, we explored models where both insertion and deletion probabilities having a

similar format. Setting P(DELETE) = 25.5 (1–1 / LSF) restores the deletion probabilities in the

mocked data closer to the original experimental values, Table 2. However, this results in a

M-CFD with a low median value (dot-dashed line). Compensating for the deleted values by

Fig 6. Comparison of the original Enolase SG2001–4000 CDF (red line) against CDF’s from proposed theoretical

insertion and deletion rate models.

https://doi.org/10.1371/journal.pone.0219495.g006
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increasing the insert probability, P(INSERT) = 114.4 (1–1 / LSF), restores M-CDF closer to

E-CDF, thin solid line. However the DTW insertion-deletion probes show elevated insertion

probabilities compared to the original data, Table 2.

An alternative approach investigated was to set an initial deletion probability to experimen-

tal values that approximated those shown in Table 1, P(DELETE) ~ 9.7+ 15 (1–1 / LSF), and

adjusting P(INSERT) to create a match between E-CDF and M-CFD. Setting P(DELETE) =
8.7+ 15 (1–1 / LSF) and P(INSERT) = 8.6 + 10 (1–1 / LSF) gave an M-CDF fit, light dashed line,

which essentially overlaps the dot-dashed line associated with the previous P(DELETE) = 25.5
(1–1 / LSF) and P(INSERT) = 114.4 (1–1 / LSF).

Both previous models use a compensatory increase in P(INSERT) to avoid a low mean LSF
arising from deletions. An alternative approach of maintaining the length is to consider that

the ME additional terms in the WPSQUIGGLE(n) in Eq (6) are associated with ME distortions in

the mocked squiggle rather than ME deleted terms. While this leads to higher mean LSF values

without requiring a boosted P(INSERT), the current proposed format of this distortion model

is inappropriate as deletion probabilities detected by the DTW insertion-deletion proxies now

fall to zero.

Table 3 provides an alternative quantitative viewpoint on how well the characteristics

match between the original and mocked data streams. The original and mocked data sets were

modeled using three distributions with long tails–log-logistic, log-normal and the generalized
extreme value (gev).

• Both the base-specific and squiggle-specific models based entirely on the experimental inser-

tion and deletion rates from Table 1 show low mu and sigma values for all three distributions

Table 3. Comparison of the fits of the original and mocked probability density functions to the long-tailed loglogistic, lognormal and generalized extreme value

distributions.

Loglogistic Lognormal Generalized

Extreme Value (GEV)

ORIGINAL mu = 7.73;

[7.72, 7.74]

sigma = 0.061;

[0.058, 0.063]

mu = 7.73;

[7.73, 7.74]

sigma = 0.106;

[0.103, 0.111]

mu = 2194;[2183, 2206]

sigma = 217; [209, 225]

k = -0.10; [-0.13, -0.06]

GLOBAL MODELS

P(INSERT)

= 100 (1–1 / LSF)

mu = 7.73;

[7.72, 7.73]

sigma = 0.060;

[0.058, 0.063]

mu = 7.73;

[7.72, 7.74]

sigma = 0.106;

[0.102, 0.110]

mu = 2190; [2179, 2202]

sigma = 212; [204, 220]

k = -0.08; [-0.11, -0.04]

P(INSERT)

= 114.4 (1–1 / LSF)

P(DELETE)

= 25.5 (1 –LSF)

mu = 7.73;

[7.72, 7.73]

sigma = 0.068;

[0.065 0.071]

mu = 7.74;

[7.73, 7.74]

sigma = 0.120;

[0.116, 0.124]

mu = 2180; [2167, 2193]

sigma = 232; [223, 241]

k = -0.023; [-0.06, 0.01]

P(INSERT)

= 8 + 100 (1–1 / LSF)

P(DELETE)

= 8 + 14 (1 –LSF)

mu = 7.74;

[7.73, 7.74]

sigma = 0.069;

[0.066, 0.071]

mu = 7.74;

[7.74, 7.75]

sigma = 0.121;

[0.117, 0.125]

mu = 2187; [2174, 2200]

sigma = 236; [227, 246]

k = -0.08; [-0.11, -0.05]

Experimental insertion

and deletion

probabilities

mu = 7.68;

[7.68, 7.68]

sigma = 0.044;

[0.043, 0.047]

mu = 7.68;

[7.68, 7.69]

sigma = 0.078;

[0.075, 0.080]

mu = 2111; [2102, 2120]

sigma = 165; [158, 171]

k = -0.24; [-0.27, -0.21]

LOCAL MODEL

Experimental insertion

and deletion probabilities

mu = 7.68;

[7.67, 7.67]

sigma = 0.014;

[0.013, 0.014]

mu = 7.68;

7.67, 7.68]

sigma = 0.024;

[0.023, 0.026]

mu = 2136; [2134, 2139]

sigma = 52; [50, 54]

k = -0.24; [-0.26, -0.22]

https://doi.org/10.1371/journal.pone.0219495.t003
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reflecting the experimentally unrealistic low mean and narrow range of LSF values shown in

Fig 5A and 5B.

• The mu values describing mean LSF characteristics from these three distributions overlap,

within experimental error, for all models using empirically determined insertion and dele-

tion probabilities, indicating a general agreement between the original and mocked squig-

gles. However including the deletion terms in the empirical models leads to higher sigma
reflecting the miss-matched extreme LSF values in the tails of the mocked data shown in

Fig 6.

Matching DTW distance and SNRZ-NORM characteristics

Schultz and Jain [9] applied the Frechet measure to determine the effectiveness of DTW-based

averaging algorithms that generate a consensus signal from time-distorted signals from multi-

ple sources. In this paper, we propose modifying that measure to provide a second quantitative

measure of whether the distortions in the mocked and original data streams are similar.

Table 4 compares the mean and standard deviations of the DTW distance between the

known gold standard and N original and mocked data sets.

DTW distance ¼
X

n

dtwðgold; nanostreamðnÞÞ=N ð13Þ

The similarity between the Frechet distances of the original and mocked squiggles increases

with the complexity of the simulation model. We propose that the majority of the remaining

differences can be explained in terms of the noise level present on the experimental squiggles.

The mean experimental SNRZ-NORM was estimated as 3.8 ± 0.4. Table 5 shows the changes

in the Frechet distance as the SNRZ-NORM level changes for the two proposed simulation mod-

els. Adding noise to the mocked data set equivalent to SNRZ-NORM ~ 3.7 to 4.0, shown in bold,

generated mean and standard deviation of the DTW distances between the gold standard and

mocked squiggles equivalent to that between the gold standard and original squiggles.

Table 4. Comparing the DTW Frechet distance between the original and mocked squiggles and the gold standard.

As the complexity of the model increases, the Frechet distance becomes closer between the original and mocked data

sets.

Mean DTW Distance

ORIGINAL SQUIGGLE 483 ± 53

LOCAL MODELS

Experimental insertions only 27 ± 18

Experimental full model (insertions and deletions) 76 ± 28

GLOBAL MODELS

Experimental Insertions only 29 ± 17

Experimental full model (insertions and deletions) 70 ± 28

P(INSERT) = 100 (1–1 / LSF) 35 ± 23

P(INSERT) = 100 (1–1 / LSF)

P(DELETE) = 25.5 (1 –LSF)

109 ± 28

P(INSERT) = 114.4 (1–1 / LSF)

P(DELETE) = 25.5 (1 –LSF)

117 ± 34

P(INSERT) = 8.6 + 100 (1–1 / LSF)

P(DELETE) = 8.7 + 15 (1 –LSF)

149 ± 34

https://doi.org/10.1371/journal.pone.0219495.t004
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Application of the simulation model to other squiggle sets

A final validation of the proposed models was their application to other squiggle sets.

• Fig 7 compares the E-CDF of three Enalose squiggle groups, SG1-2000, SG2001-4000 and

SG5001-7000 with the M-CDF of the mocked squiggles. It can be seen that there is a tempo-

rally-related shift in the mean LSF between the first SG1-2000 and last SG5001-7000 group

within the Enolase squiggle ensemble.

Fig 7. The proposed simulation model provides individual matches between the E-CDF and M-CDF of the three

Enolase data streams, SG1-2000, SG2001-4000 and SG5001-7000. However additional simulation terms need to be

introduced to model the experimental reason behind the increased mean LSF value for the SG2001–4000 and SG5001-
7000 Enolase streams compared to the Enolase SG1-2000 and to the Sequin squiggles.

https://doi.org/10.1371/journal.pone.0219495.g007

Table 5. Comparison of the DTW Frechet distance between the original and mocked squiggles and the gold stan-

dard as the simulated SNRZ-NORM level deteriorates.

P(INSERT) = 114.4 (1–1 / LSF)

P(DELETE) = 25.5 (1–1 / LSF)

P(INSERT) = 8.6 + 100 (1–1 / LSF)

P(DELETE) = 8.7 + 15 (1–1 / LSF)

No noise 116 ± 33 149 ± 34

SNRZ-NORM = 50 128 ± 30 160 ± 28

SNRZ-NORM = 20 169 ± 27 199 ± 24

SNRZ-NORM = 10 247 ± 33 275 ± 29

SNRZ-NORM = 5 397 ± 50 421 ± 43

SNRZ-NORM = 4.0 460 ± 55 480 ± 50

SNRZ-NORM = 3.7 494 ± 60 512 ± 54

SNRZ-NORM = 3 573 ± 69 588 ± 63

Original
Frechet distance

483 ± 53

https://doi.org/10.1371/journal.pone.0219495.t005
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• Fig 8 compares the E-CDF and M-CDF for the noisier Sequin R1_71_1 and Sequin R2_55_3
squiggles, c.f. Fig 1A and 1B. After leader removal and general data cleaning, these sequences

respectively provided approximately 65 streams out of the original 116 and 122 squiggles.

M-CDF’s are shown for simulation models using the equivalent number of squiggles, 65, and

using the proposed model and empirical E-CDF of these Sequin ensembles to generate a

smoother M-CDF from 2000 simulated streams.

While differences can be seen, there were comparable fits between the E-CDF and M-CDF
across all five experimental squiggle ensembles (Figs 7 and 8). We therefore conclude that

either the proposed insertion and deletion probabilities P(INSERT) = 114.4 (1−1/LSF) with P
(DELETE) = 25.5 (1−1/LSF) or P(INSERT) = 8.6+100 (1−1/LSF) with P(DELETE) = 8.7+15 (1

−1/LSF) will be appropriate to generate simulated, distorted squiggles within our proposed

framework. Appropriate distributions of simulated squiggles LSFs can be derived from the

Enolase-derived E-CDFs provided in the depository [16], or E-CDFs derived from the user’s

own empirical results.

Conclusion

We have undertaken an investigation of simulation models to characterize the typical distor-

tions introduced by production of raw current signals, and their segmentation into current

step level, squiggles, given the stochastic nature of the motor protein, current measurement

Fig 8. The simulation model provides comparable E-CDF and M-CDF for the noisier SEQUIN R1_71_1 and SEQUIN
R 2_55_3 squiggles. Given the low number of experimental available data streams, 116 and 122 respectively, the simulation

model is used to generate 2000 mocked streams to provide a smootherM-CDF to compare to the original E-CDF.

https://doi.org/10.1371/journal.pone.0219495.g008
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uncertainty and other factors. This model could be used to assist in optimizing segmentation

and squiggle consensus building methods by researchers interested in underlying squiggle

space and experimental preparation characteristics, including identifying white-

box approaches to identify common distortions, rather than relying on commonly used black

box neural network techniques for basecalling nanopore signals.

The underlying characteristics of experimental Enolase squiggles produced using an Oxford

MinION nanopore-based sequencer and provided squiggle converter were determined. The

distribution function of the squiggle length was identified, and new tools proposed to evaluate

the probabilities for insertion and deletion distortions introduced as raw current signals are

generated and segmented into squiggles. Several simulation models were evaluated by compar-

ing mocked and experimental squiggle characteristics generated from Enolase and Sequin
studies.

A number of common underlying squiggle features were identified while generating the

simulation models. A new z-normalized signal-to-noise approach allowed estimation of the

noise on the squiggles (~3.7:1 for our RNA datasets). The ratio of the mean-length of the

squiggles to the underlying gold-standard length, squiggle event / bases called, was x1.6 –x 1.7
across all three studies. Each squiggle ensemble studied was represented by similar cumulative

distribution functions, CDF. We suggest that the consistent event to base ratio and common

CDF factors are more than common artefacts produced by an imperfect segmentation

algorithm.

The best match between the experimental and mocked data sets occurred if it was assumed

that insertion and deletion distortion probabilities describing properties of the segmented

squiggle events are related to the properties of the entire (highly variable length) original raw

current streams rather than with probabilities associated with individual bases passing through

specific nanopores. We speculated that such common global properties might be at least par-

tially associated with variability in the manufacturing processes of physically producing the

RNA molecules and nanopore sensors and the stochastic nature of the motor proteins rather

than improper segmentation of raw current events into individual squiggle events.

There was an unanticipated finding that matches for certain squiggle characteristics were

best described using a simulation model involving duplicated insertions of the calculated gold

standard signal into the mocked data stream, but no deletions. While this model led to an

excellent match between the experimental and mocked CDFs, it led to a poor match of the

experimentally determined insert and deletion probabilities. One possible explanation for this

observation is that insertions and deletions are generated by different aspects of the distortions

introduced by nanopore sequencing devices and / or associated segmentation methods. Fur-

ther work is under-investigation on how best to employ this and other observations to provide

improved experimental and post processing procedures to reduce the impact of distortions on

a variety of DNA / RNA analyses applied to the raw current or segmented current step level

signals.
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