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Abstract

Simulator imperfection, often known as model error, is ubiquitous in practical data assimila-

tion problems. Despite the enormous efforts dedicated to addressing this problem, properly

handling simulator imperfection in data assimilation remains to be a challenging task. In this

work, we propose an approach to dealing with simulator imperfection from a point of view of

functional approximation that can be implemented through a certain machine learning

method, such as kernel-based learning adopted in the current work. To this end, we start

from considering a class of supervised learning problems, and then identify similarities

between supervised learning and variational data assimilation. These similarities found the

basis for us to develop an ensemble-based learning framework to tackle supervised learning

problems, while achieving various advantages of ensemble-based methods over the varia-

tional ones. After establishing the ensemble-based learning framework, we proceed to

investigate the integration of ensemble-based learning into an ensemble-based data assimi-

lation framework to handle simulator imperfection. In the course of our investigations, we

also develop a strategy to tackle the issue of multi-modality in supervised-learning prob-

lems, and transfer this strategy to data assimilation problems to help improve assimilation

performance. For demonstration, we apply the ensemble-based learning framework and the

integrated, ensemble-based data assimilation framework to a supervised learning problem

and a data assimilation problem with an imperfect forward simulator, respectively. The

experiment results indicate that both frameworks achieve good performance in relevant

case studies, and that functional approximation through machine learning may serve as a

viable way to account for simulator imperfection in data assimilation problems.

Introduction

In recent years, the advent of big data era has led to surging interest in handling big data assim-

ilation problems in data assimilation community [1, 2]. In reservoir engineering, using 4D

seismic data for reservoir characterization through a certain history matching method consti-

tutes a big data assimilation problem crucial to the industry. 4D seismic data contain spatially

rich information of the hydrocarbon reservoir, while such information is often unavailable—
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or at least, extremely difficult to extract—from the conventional production data. Qualitative

use of 4D seismic for reservoir monitoring [3] has now become a standard tool in the industry,

yet quantitative utilization of 4D seismic for reservoir characterization, often under the name

of 4D seismic history matching (4D SHM), still appears to be unmatured.

In the past few years, there have been a series of investigations [2, 4–10] inside the author’s

group at the International Research Institute of Stavanger (IRIS, now a part of Norwegian

Research Centre, NORCE), which were dedicated to the research and development of an effi-

cient workflow for 4D SHM through ensemble-based data assimilation [11]. In our investiga-

tions, we encountered a few major challenges, namely, big data, uncertainty quantification and

imperfection in forward seismic simulators [12]. Driven by the needs to address these identified

challenges in our studies, certain (multidisciplinary) methods, such as image processing [4,

10], sparse data representation [2, 4, 6], adaptive localization [7–9], have been exploited or

developed, and integrated into an ensemble-based SHM workflow, whose efficacy is now dem-

onstrated in a full Norne field case study using real production and seismic data [5].

So far, our investigations have been mainly dedicated to tackling the issues of big data and

uncertainty quantification, while leaving the issue of imperfection largely untouched. As an

attempt towards addressing this remaining challenge, in the current work, we propose a

method that treats simulator imperfection from the perspective of functional approximation

through machine learning, and investigate the integration of this method into an ensemble-

based data assimilation framework.

Imperfection in forward simulators (also known as model error) is a ubiquitous problem in

geophysical data assimilation practices. Imperfection will arise when there are, e.g., unresolved

fine-scale resolutions, missing or mis-specified physical processes, incorrect boundary condi-

tions and so on, in the course of developing a physics-based forward simulator. In the context

of practical SHM, for instance, one may expect that the rock physics model (RPM), as an

essential part of the forward seismic simulator, is prone to imperfection, since the RPM is

often built upon simplified assumptions on rock physics, and calibrated using core or well log

data at a few locations.

In the course of identifying and handling simulator imperfection during data assimilation,

a challenge involving the combined effects of imperfection and uncertain model state and/or

parameters will arise. For instance, when there are substantial gaps (residuals) between real

and simulated observations, they may be attributed to simulator imperfection, or the inability

of the assimilation algorithm to obtain globally optimal estimations of model state and/or

parameters, or both. As a result, a prerequisite for addressing the issue of simulator imperfec-

tion would be to choose a method that helps untangle the gross effects of simulator imperfec-

tion and uncertain model state and/or parameters.

Currently, a common practice in this regard is to add some (typically) additive stochastic

term into the forward simulator, as a simple way to represent simulator imperfection (see, for

example, [13–21]). For practical convenience, one may presume that the stochastic term fol-

lows a Gaussian distribution, so that the effect of simulator imperfection is taken into account

by including the mean and covariance matrix of the stochastic term into the assimilation algo-

rithm. There are a few simplifying assumptions, e.g., whiteness, stationarity, absence of bias

and normality [15], involved in this way of treating simulator imperfection, which may not

necessarily be valid in practice. There is also some recent work that aims to account for simula-

tor imperfection from other perspectives. For instance, in [22], the authors assume that there

is an orthogonality between residuals due to simulator imperfection and those due to uncer-

tain model state and/or parameters. Based on this assumption, local basis functions can be

constructed and used to describe simulator imperfection. In practice, however, it is not clear

yet to what extent the orthogonality assumption may be valid.
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In the current work, we consider an approach that treats the modelling of simulator imper-

fection as a functional approximation problem, which can be solved using a certain machine

learning method. To this end, we start from a supervised learning problem, in which one aims

to optimize a certain function that maps a set of training inputs to a corresponding set of train-

ing outputs. We first show similarities between supervised learning and variational data assim-

ilation. Motivated by this observation, we then proceed to develop a derivative-free, ensemble-

based learning framework to tackle a class of supervised learning problems. In doing so, we are

able to not only achieve all the benefits in using ensemble-based methods (which will be dis-

cussed later), but also facilitate the integration of the proposed imperfection-handling method

into an ensemble-based data assimilation framework, which is presented after introducing the

ensemble-based learning framework.

For demonstration, we investigate the performance of the ensemble-based learning frame-

work in a supervised learning problem. We identify a challenge which may arise when multi-

modal training inputs are present in the learning process, and propose a strategy that helps

overcome this problem. After that, we study a data assimilation problem with an imperfect for-

ward simulator. Ensemble-based learning is then incorporated into an ensemble-based assimi-

lation algorithm to tackle the data assimilation problem, while the insights and experience

gained in the supervised learning problem are transferred to the data assimilation problem,

helping improve the performance of data assimilation. Based on the results obtained in these

two experiments, we conclude the current work with discussions and some thoughts of future

work.

An ensemble-based kernel learning algorithm for a class of

supervised learning problems

This section focuses on supervised learning, which is one type of machine learning problems.

Formally, machine learning is defined as “a set of methods that can automatically detect pat-

terns in data, and then use the uncovered patterns to predict future data, or to perform other

kinds of decision making under uncertainty” [23]. Machine learning typically consists of three

major types of problems, namely, supervised learning, unsupervised learning and reinforce-

ment learning [23].

As manifested in our previous discussions, the current work is related to supervised learn-

ing problems (SLP). Of particular interest here is the development of an ensemble-based learn-

ing method to tackle SLP. In the literature, ensemble learning has found wide applications in

various scenarios, including (but not limited to), for instance, ensemble kernel learning [24,

25], ensemble feature selection [26, 27], and so on. The main idea behind an ensemble-based

method is to combine multiple base-methods to perform tasks like prediction or decision

marking, and by doing so, substantial performance improvements can often be obtained as the

errors incurred by each individual base-method will likely be compensated by others [28, 29].

As will be shown later, the ensemble method to be presented in this work can be considered

as a special case of ensemble learning, in which the base-learners share the same learning

model, but differ from each other in terms of the parameters associated with each individual

model. In general, the ensemble method adopted in the current work can also be extended to

include various types of learning models (e.g., support vector machines, deep neural networks,

etc, see [23]), although this is not done in the current work.

Supervised learning as a variational data assimilation problem

We consider a class of supervised learning problems, in which we are given a set of Ns inputs,

denoted by X � fxi : xi 2 Dx � Rg
Ns
i¼1

; and the corresponding set of Ns outputs, denoted by

Ensemble-based kernel learning for model error characterization
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Y � fyi : yi 2 Dy � Rg
Ns

i¼1
, with Dx and Dy being the domains with respect to the inputs and

outputs, respectively. Here, our objective is to learn a certain function h : Dx ! Dy, such that

h(xi) match yi (i = 1, 2, � � �, Ns) to a good extent. Note that, in general, the outputs yi may be

contaminated by certain noise.

To achieve the above objective, one can solve the SLP as a regularized empirical risk mini-

mization (ERM) problem [30]), as defined below

h� ¼ arg min
h

1

Ns

XNs

i¼1

Lðyi � hðxiÞÞ þ gRðkhkÞ ; ð1Þ

where L is a suitable loss function that measures the distance between yi and h(xi), γR(khk) is a

regularization term, with γ being the regularization parameter, khk the norm of h with respect

to a certain metric space, and R the regularization operator. From the perspective of inverse

problem theory [31], the regularization term is typically introduced to prevent the estimated

function h� from over-fitting the training data, as well as avoid potential numerical issues in

the course of solving the minimization problem.

Clearly, without imposing any constraint on the functional h, the regularized ERM problem

in Eq (1) is intractable. In practice, it is customary to assume that h belongs to a certain func-

tion space, and can be approximated through some parametric model, e.g., in the form of

hð�Þ � ĥð�; θÞ ; ð2Þ

where θ is a set of parameters in the (parametric) functional ĥ. Since ĥ is parametrized by θ,

replacing h by ĥ, then the regularized ERM problem in Eq (1) becomes a parameter estimation

problem, in the form of

arg min
θ

1

Ns

XNs

i¼1

Lðyi � ĥðxi; θÞÞ þ gRðθÞ : ð3Þ

In addition, let us define

Ys ¼ ½y1; y2; � � � ; yNs
�
T

; ð4Þ

Xs ¼ ½x1; x2; � � � ; xNs
�
T

; ð5Þ

Ĥðθ;XsÞ ¼ ĥðx1; θÞ; ĥðx2; θÞ; � � � ; ĥðxNs
; θÞ

h iT
; ð6Þ

where in Ĥ we place the argument θ in front of Xs to emphasize that now θ is the quantity in

estimation, and we use a semicolon to separate quantities in estimation (i.e., θ) and those that

are given (i.e., Xs). Similar custom will be adopted later for notational convenience.

To facilitate the introduction to our idea, we first consider the situation in which the train-

ing inputs xi follow a certain unimodal distribution. In this case, we choose the functionals L
and R in such a way that

XNs

i¼1

Lðyi � ĥðxi; θÞÞ ¼ ðY
s � Ĥðθ;XsÞÞ

TC� 1

y ðY
s � Ĥðθ;XsÞÞ ; ð7Þ

RðθÞ ¼ ðθ � θb
Þ
TC� 1

θ ðθ � θb
Þ ; ð8Þ
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where C� 1

y and C� 1

y
are some pre-chosen weight matrices associated with L and R, respectively,

and θb stands for a (pre-chosen) initial guess (called “background” hereafter) of θ. Under these

settings, the regularized ERM problem in Eq (3) is equivalent to

arg min
θ
ðYs � Ĥðθ;XsÞÞ

TC� 1

y ðY
s � Ĥðθ;XsÞÞ þ gðθ � θb

Þ
TC� 1

y
ðθ � θb

Þ : ð9Þ

Comparing Eqs (3) and (9), the scalar factor 1/Ns is dropped in Eq (9), with its impact being

absorbed into the regularization parameter γ. From a perspective of data assimilation, Eq (9)

constitutes a conventional variational data assimilation (VAR-DA) problem, which can be

solved through, e.g., optimal interpolation (OI) or three-dimensional variational (3D-VAR)

method [32].

When the training inputs follow a multi-modal distribution, it may be necessary to cluster

the training inputs into different groups (so that each group contains unimodal training inputs),

and then estimate a set of parameters θ for each group, using an estimation method developed

for unimodal cases. In this sense, a parameter-estimation method developed for unimodal cases

can serve as the building block of a method for multi-modal cases, similar to the work of [33,

34]. For this reason, in what follows, we focus on presenting an ensemble-based estimation

method for unimodal cases. We will discuss how one can adapt the developed method to multi-

modal cases, when we come to a concrete SLP problem with multi-modal training inputs.

An ensemble-based approach to solving the supervised learning problem

In analogy to the advance of assimilation approaches from the conventional variational meth-

ods [32] to the more recent, ensemble-based methods [11], it is natural for us to develop a cer-

tain ensemble-based method to tackle the SLP. To this end, instead of solving Eq (9) to obtain

a single set of estimated parameters, we aim to estimate an ensemble of such parameters. By

doing so, we will obtain all the intrinsic benefits in using ensemble-based methods, which

includes, for instance [6],

• no need to develop a complicated and time-consuming adjoint system (“adjoint free”);

• the capacity to provide a means of uncertainty quantification for the estimated results

(“uncertainty quantification”);

• the ability to handle large numbers of state and/or parameter variables (“algorithm

scalability”);

• straightforward and fast implementation (“implementation convenience”).

Employing this “ensemblizing” strategy, we reformulate the regularized ERM problem in

Eq (9) as an minimum-average-cost (MAC) problem [35], in terms of

arg min
fθjg

Ne
j¼1

1

Ne

XNe

j¼1

�

ðYs � Ĥðθj;X
sÞÞ

TC� 1

y ðY
s � Ĥðθj;X

sÞÞþ

gðθj � θb
j Þ

TC� 1

y
ðθj � θb

j Þ

�

;

ð10Þ

where Ne is the size of the ensemble Y � fθjg
Ne

j¼1
of parameters in estimation. Note that each

ensemble member θj has its own associated background θb
j . Typically, the initial values of θb

j

are generated at random, thus θb
j 6¼ θb

k almost surely if j 6¼ k. As a result, solving the MAC

Ensemble-based kernel learning for model error characterization
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problem in Eq (10) would result in an ensemble Y
a
� fθa

j g
Ne

j¼1
(called analysis ensemble hereaf-

ter) of diversified estimates, and this naturally leads to a way of conducting uncertainty quanti-

fication for the estimated results.

Following the convention in ensemble-based methods, we choose Cy to be the covariance

matrix of the observation noise in the outputs yi, and Cθ to be the sample covariance matrix

with respect to the background ensembleΘb � fθb
j g

Ne

j¼1
, in the sense that

Cy ¼ Sb
y
ðSb

y
Þ
T

; ð11Þ

Sb
y
�

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p θb
1
� �θb; θb

2
� �θb; � � � ; θb

Ne
� �θb

h i
; ð12Þ

�θb ¼
1

Ne

XNe

j¼1

θb
j : ð13Þ

As shown in [35], with a linearization-based approximation strategy, a solution to the MAC

problem in Eq (10) is given by

θa
j ¼ θb

j þ KðYs � Ĥðθb
j ;X

sÞÞ; j ¼ 1; 2; � � � ;Ne; ð14Þ

K � Sb
y
ðSb

hÞ
T
ðSb

hðS
b
hÞ

T
þ gCyÞ

� 1
; ð15Þ

Sb
h �

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne � 1

p Ĥ θb
1
;Xs

� �
� �yb

h; Ĥ θb
2
;Xs

� �
� �yb

h; � � � ; Ĥ θb
Ne

;Xs
� �

� �yb
h

h i
; ð16Þ

�yb
h � Ĥð�θb;XsÞ : ð17Þ

Eqs (11) through (17) essentially constitute the iterative ensemble smoother (iES) used in

[35]. In a practical implementation of the iES update formula Eq (14), one may choose to

apply a truncated singular value decomposition (TSVD) to Sb
h, so that the matrix inversion in

Eq (15) can be carried out in a low-dimensional subspace (with the dimension less than Ne).

For more information, see [8, 11, 36].

In addition, the update formula Eq (14) often has to be iterated for a number of times to

make sure that the estimated parameters would be able to achieve good data match. In such an

iteration process, we adopt a “warm restart” strategy, in such a way that an analysis ensemble

at one iteration step serves as the background ensemble at the next iteration step. The regulari-

zation parameter γ also needs to adapt to the iteration process, and is chosen in such a way to

avoid either too big or too small iteration steps. Details on the choice of γ and the associated

stopping criteria are elaborated in [8, 35], and are skipped in this work for succinctness.

RBF kernel based functional approximation

After establishing an ensemble-based framework to handle SLP, we go back to discuss the con-

crete approach to functional approximation in Eq (2). In this regard, there are many methods

(see, e.g. [23, 37]), such as generalized linear models (GLM), support vector machines (SVM),

and various (shallow or deep) neural networks that one may exploit. In the current work, tak-

ing into account various factors like capacity, complexity and cost, we choose to adopt radial-

basis-function (RBF) based kernels for functional approximation. The RBF kernel approach

Ensemble-based kernel learning for model error characterization
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was previously proposed in a seminal work of [38] to solve the SLP in Eq (1) in a way similar

to a VAR-DA method, and this led to the establishment of RBF networks [39]. Recently, the

RBF kernel approach is also adopted by [40] to build computationally efficient surrogate mod-

els for history matching.

Specifically, following the RBF kernel approach to functional approximation in [38], we

have

ĥðx; θÞ ¼
XNcp

k¼1

ck Kðx � xcp
k ; bkÞ ; ð18Þ

Kðx � xcpk ; bkÞ � expf� b2

k ðx � xcp
k Þ

2
=2g ; ð19Þ

θ ¼ ½c1; c2; � � � ; cNcp
jb1; b2; � � � ; bNcp

�
T
: ð20Þ

Note that in Eq (19), we adopt the Gaussian RBF kernel, but other types of kernel functions

can also be used, as long as they serve the purpose of functional approximation well. Hereafter,

for the convenience of discussion, we may drop the word(s) “Gaussian” and/or “RBF”.

Eq (18) indicates that, the approximation functional ĥ is composed of a set of Ncp kernels K,

which are associated with different weights ck, center points (CP) xcp
k , and scale parameters βk

that influence the spreads of the kernels. In the current work, for simplicity, we pre-choose Ncp

and xcp
k , such that ĥ is parametrized by a set θ of parameters ck and βk, as indicated in Eq (20)

(for ease of visualization, we use “|” to separate different groups of parameters in Eq (20)).

Eqs (18) through (20) are for univariate problems. To extend the kernel approach to multi-

variate problems (e.g., x 2 Dx � R
m

), one may consider the following form:

ĥðx; θÞ ¼
XNcp

k¼1

ck Kðx � xcp
k ; βkÞ ; ð21Þ

Kðx � xcp
k ; βkÞ � exp f� hβ2

k; ðx � xcp
k Þ

2
ig ; ð22Þ

hβ2

k; ðx � xcp
k Þ

2
i �

1

2m

Xm

‘¼1

b
2

k;‘ ðx‘ � xcp
k;‘Þ

2
; ð23Þ

θ ¼ ½c1; c2; � � � ; cNcp
jb1;1; b2;1; � � � ; bNcp;1

j � � � jb1;m; b2;m; � � � ; bNcp;m
�
T
: ð24Þ

In reservoir history matching problems, m can be interpreted as the number of different types

of petrophysical parameters (e.g., permeability, porosity and so on) associated with each reser-

voir gridblock, hence typically it may not be very large.

Eq (23) considers generic anisotropic scale parameters βk that may have different values βk,ℓ

along different axes xℓ (ℓ = 1, 2, � � �, m). In addition, the factor 1/m in Eq (23) is adopted to mit-

igate the issue of arithmetic underflow, which may arise in case that
Pm

‘¼1
b

2

k;‘ ðx‘ � xcp
k;‘Þ

2

becomes sufficiently large. Under the above settings, the total number (cardinality) of parame-

ters in θ is thus (m + 1) × Ncp, as indicated in Eq (24). Therefore, the cardinality of θ is con-

trolled by the number Ncp of center points, while the dimension m of x is typically fixed.

In comparison to the previous work of [38, 40], one feature of our proposed Kernel

approach to functional approximation is that the scale parameters βk not only adapt to differ-

ent center points xcp
k , but also vary along different coordinate axes. This kind of flexibility may

Ensemble-based kernel learning for model error characterization
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be considered desirable in the context of machine learning, as it leads to additional parameters

that may help improve the expressive power (or capacity) of a learning model to match the

training data, and also reduce generalization errors [37].

In addition, in many existing publications, the scale parameters are often manually chosen.

In contrast, the ensemble-based approach (Eqs (14) through (17)) renders an efficient and der-

ivate-free framework to estimate multiple sets of such parameters, hence also provides a natu-

ral means of uncertainty quantification for the estimation results.

Kernel-based learning workflow for a class of data assimilation

problems with imperfect forward simulators

After establishing ensemble-based kernel learning to deal with SLP, we investigate how this

framework can be integrated into ensemble-based data assimilation to handle a class of data

assimilation problems with imperfect forward simulators, which bear certain similarities to 4D

SHM problems. We will first formulate a mathematical description of the assimilation prob-

lems, and then develop a solution that combines ensemble-based approaches to both super-

vised learning and data assimilation. Within this integrated, ensemble-based framework, the

solution to the target data assimilation problems involves a certain joint estimation procedure,

in which one aims to simultaneously estimate both model variables and parameters associated

with a set of kernel functions. From this perspective, technically speaking, this type of data

assimilation problems with imperfect forward simulators would not become substantially

more complicated than the corresponding assimilation problems with perfect forward simula-

tors. Indeed, as will be shown later, for data assimilation in the presence of an imperfect for-

ward simulator, one can still use existing ensemble-based assimilation algorithms, although

there is a need to modify the forward simulator by including a residual functional to account

for possible imperfection.

Problem statement

We consider a data assimilation problem, in which the noisy observational data (observations)

do
2 Ddo are obtained through the following observation system

do
¼ fðztrÞ þ � ; ð25Þ

where ztr 2 Dztr � R
mz represents a set of true model variables, f : Dztr ! Ddo the true forward

simulator, and � additive observation noise, which is assumed to follow a Gaussian distribution

with zero mean and covariance matrix Cd. For better comprehension, here we have deliber-

ately avoided notational overlapping with those in the proceeding section as far as possible,

since such distinctions would be useful for our discussions later.

In the current work, we assume that, for all z 2 Rmz , one has fðzÞ ¼ ½f ðz1Þ; f ðz2Þ; � � � ; f ðzmz
Þ�

T
,

where f : R! R is a scalar function. Thus, an immediate implication of this assumption is that

the size of observations is also equal to mz, i.e., do
¼ ½do

1
; do

2
; � � � ; do

mz
�
T
. We note that, the

assumption we made here aims to mimic the situation in seismic history matching problems

(or other similar geophysical inversion problems which involve spatially distributed, image-

like geophysical data), but with certain simplifications to facilitate computations and discus-

sions later. Under this setting, one may treat the scalar function f as an analogy to a rock phys-

ics model, which maps petrophysical and/or dynamical parameters (the inputs) to certain

seismic attributes (the outputs), such as acoustic impedance, distributed over reservoir

gridblocks.

Ensemble-based kernel learning for model error characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0219247 July 11, 2019 8 / 40

https://doi.org/10.1371/journal.pone.0219247


As a data assimilation problem, our objective is to estimate a set z of model variables, condi-

tioned on the observations do and some initial guess (background) of zb, in such a way that z is

as “close” to ztr as possible. In a typical setting, we have access to a certain forward simulator g

that maps z to some simulated (or predicted) observations dsim, i.e.,

dsim
¼ gðzÞ ; ð26Þ

with gðzÞ ¼ ½gðz1Þ; gðz2Þ; � � � ; gðzmz
Þ�

T
for a scalar function g : R! R. This simulator, g, is

often imperfect, and may not be exactly identical to the true forward simulator f. In the next

subsection, we address the issue of imperfection by integrating ensemble-based kernel

approach to functional approximation into an ensemble-based data assimilation framework.

Integrating ensemble-based kernel learning into data assimilation

Based on Eqs (25) and (26), we have

do
¼ gðzÞ þ rðz; do

Þ; ð27Þ

rðz; do
Þ � do

� gðzÞ; ð28Þ

where r represents a functional of residuals that measure the differences between real

observations do and the simulations g(z). As in the preceding subsection, we have

rðz; do
Þ ¼ ½rðz1; do

1
Þ; rðz2; do

2
Þ; � � � ; rðzmz

; do
mz
Þ�

T
, with rðz‘; do

‘
Þ ¼ do

‘
� gðzo

‘
Þ for ℓ = 1, 2, � � �, mz.

Following the idea of kernel approach to functional approximation (Eqs (18) through (24)),

we can approximate rðz‘; do
‘
Þ by

rðz‘; do
‘
Þ � r̂ðz‘;ηÞ � r̂ðz‘;η; do

‘
;Do;cp;ZcpÞ ; ð29Þ

where r̂ is composed of a set of kernels with their parameters contained in η, in the form of

r̂ðz‘; ηÞ ¼
XNcp

k¼1

ck exp � β2

k;
z‘

do
‘
� gðz‘Þ

" #

�
zcpk

do;cp
k � gðz‘Þ

" # !2* +8
<

:

9
=

;
; ð30Þ

with the operator h•, •i being defined in Eq (23); Zcp � fzcpk g
Ncp
k¼1 represents a set of center points

zcpk , and Do;cp � fdo;cp
k g

Ncp
k¼1 stands for the corresponding set of observations associated with Zcp.

Likewise, we define r̂ðz; ηÞ � ½r̂ðz1;ηÞ; r̂ðz2;ηÞ; � � � ; r̂ðzmz
; ηÞ�T .

It is worth noting an essential difference between SLP and data assimilation problems. In

SLP (cf. Eqs (9) and (10)), one has multiple “matched” input-output pairs, Xs and Ys, respec-

tively, as the training data; In data assimilation problems, however, typically we only have

access to a single realization of the outputs (observations) do at a given time instance and a

given spatial location, whereas our purpose is to infer possible inputs z given do. Often, due to

the limited capacity of the assimilation algorithm, do and z do not constitute a “matched” pair,

or in other words, z would typically not be identical to the true model variables ztr that gener-

ate the observations do. Because of this inconsistency and the sample frequency of observations

(at a given time instance and a given spatial location), data assimilation problems with imper-

fect forward simulators tend to be more challenging than SLP, as we will see later.

The aforementioned difference between SLP and data assimilation motivates us to take a

slightly different form in Eq (30) for kernel-based functional approximation, in comparison to

those in SLP (Eqs (18) through (24)). Specifically, in Eq (30), we choose to augment both the

model variables zℓ and the corresponding residuals do
‘
� gðz‘Þ, and use the augmented vectors

as the inputs to the kernel functions. In comparison to the settings in SLP, using do
‘
� gðz‘Þ in
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kernel functions allows us to tune additional scale parameters in data assimilation, which may

be desirable in terms of flexibility. On the other hand, though, this also requires us to specify a

set of observations Do,cp associated with Zcp. In general, the choice of Zcp and Do,cp may be

case-dependent. For instance, if one has a set of ðzcpk ; d
o;cp
k Þ pairs from the hard data (e.g., those

obtained from core analysis or well log data), then they can be included. In a case study later,

we will give a specific implementation example on the choices of Zcp and Do,cp.

With kernel-based functional approximation to the residuals, similar to [35] (also see Eq

(10)), the data assimilation problem with an imperfect forward simulator can then be

addressed by solving the following optimization problem:

arg min
f~θ jg

Ne
j¼1

1

Ne

XNe

j¼1

�

ðdo
� ~gð~θ jÞÞ

TC� 1

d ðd
o
� ~gð~θ jÞÞþ

gð~θ j �
~θb
j Þ

TC� 1
~y
ð~θ j �

~θb
j Þ

�

;

ð31Þ

with

~θ � ½zT ;ηT�
T

; ð32Þ

~gð~θÞ � gðzÞ þ r̂ðz;ηÞ ; ð33Þ

where ~θ is a joint vector that augments model variables z and parameters η associated with

the set of kernels; C~θ is the sample error covariance matrix with respect to an ensemble

~Θb � f~θb
j g

Ne

j¼1
, similar to that in Eq (11); and ~gð~θÞ corresponds to the effective forward

simulator.

As in Eqs (10) and (31) also constitutes an MAC problem. As a result, Eqs (11) through (17)

provide an approximate solution to the data assimilation problem with an imperfect forward

simulator, provided that one replaces Ĥðθj;X
sÞ, θ and Cy therein by ~gð~θÞ, ~θ and Cd,

respectively.

When there is no imperfection in the forward simulator (or when one believes so), one may

choose not to introduce any correction mechanism. In this case, the parameter part η of ~θ (cf.

Eq (32)) can be simply taken out. Based on this observation, it is clear that adopting ensemble-

based kernel approach to accounting for imperfection in the forward simulator does not signif-

icantly change our ensemble-based data assimilation algorithm. Instead, with a modified for-

ward simulator ~gð~θÞ in Eq (33), it only requires some minor changes of the algorithm, by

inserting a residual term into the original forward simulator, and then combining parameters

associated with the kernel functions and the original model variables to form augmented vec-

tors in data assimilation.

As will be shown later, even with a perfect forward simulator, it might be still beneficial to

include a mechanism of model-error correction (i.e., the η term) for the improvement of data

assimilation performance. The rationale behind this notion is that, similar to machine learning

problems, the presence of η increases the dimension of ~θ, so that the assimilation algorithm

would have more degrees of freedom to exploit for the search of better results.

Numerical results in a supervised learning problem

In this section, we investigate the performance of ensemble-based kernel learning in a toy

supervised learning problem. One of our focuses here is to demonstrate a challenge arising in

Ensemble-based kernel learning for model error characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0219247 July 11, 2019 10 / 40

https://doi.org/10.1371/journal.pone.0219247


the toy problem, and develop a strategy that helps overcome this challenge. The insights

obtained in the study will shed light on certain limitations or cautions in using the plain

ensemble-based kernel learning framework, and the way for performance improvements. In

turn, they will help enhance the data assimilation performance when integrating ensemble-

based kernel learning into ensemble-based data assimilation.

The supervised learning problem is designed to mimic the situation of data assimilation

with an imperfect forward simulator. Specifically, we consider a forward system

yo ¼ f ðxÞ þ � ; ð34Þ

f ðxÞ ¼ ðjxj3 þ 1Þ
1=2
; ð35Þ

where x 2 R is a scalar input, yo 2 R is the noisy output contaminated by Gaussian noise �,

f : R! R represents the true mapping function, and � has zero mean, but its standard devia-

tion (STD) σ in general may depend on f(x), in the form of σ = max(10−6, 0.1 × |f(x)|).

In addition, we assume that there exists another imperfect forward simulation system

ysim ¼ gðxÞ ; ð36Þ

gðxÞ ¼ x2 : ð37Þ

In Fig 1, we show the outputs of f (without noise) and g, respectively, over the input interval

[−10, 10], while f and g intersect each other at x� ±1.38. Note that in the evaluations here

(and also later), the relevant (e.g., reference, biased or prediction) functions are evaluated at

the points from the set {−10 : 0.1 : 10}, which, following the MATLAB custom, represents a set

of points evenly distributed over the interval [−10, 10] with a span of 0.1. For better visualiza-

tion, we also re-plot their outputs over the input interval [−2, 2] in a separate, zoomed-in

subplot.

In the SLP, our objective is to learn the residual function r(x) = f(x) − g(x) based on a certain

set of training data. To this end, the ensemble-based approach developed in the previous sec-

tion (Eqs (10) through (17)) is adopted. In the experiments, we start with training data in

which the (noisy) outputs are generated by some unimodal inputs, and then move to the more

complicated situation in which the (noisy) outputs are produced using multi-modal inputs

instead.

For the purpose of comparison, in this work we adopt data mismatch and root mean

squared error (RMSE) as performance measures. Following the notations in the previous sec-

tions, given the real observations do, its associated observation error covariance matrix Cd and

an ensemble member θj (or ~θ j) in SLP (or data assimilation problems), suppose that the simu-

lated observations with respect to θj (or ~θ j) are dsim
j , then the corresponding data mismatch Xj

is defined as

Xj � ðd
o
� dsim

j Þ
TC� 1

d ðd
o
� dsim

j Þ; j ¼ 1; 2; � � � ;Ne ; ð38Þ

while the RMSE ej of the model zj (in data assimilation problems) with respect the reference

model ztr is

ej ¼
kzj � ztrk2

ffiffiffiffiffiffimz
p : ð39Þ

Throughout this work, we use the iES in [35] as the ensemble-based learning (or data assim-

ilation) algorithm to update the relevant parameters, although in principle other iES, e.g., [36,
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41], may also be adopted. In the experiments, the configuration of the iES is as follows. The

maximum (outer) iteration step is set to 10. If an iteration successfully reduces the average

data mismatch (over the ensemble members), then the current value of the regularization

parameter γ is multiplied by a factor of 2, aiming to further increase the step size of the next

iteration. In this case, the analysis ensemble at the current iteration step will be used as the

background one at the next iteration. In contrast, if the iteration leads to higher average data

mismatch, then following [36], we start a trial (inner) iteration process, in which the back-

ground ensemble at the current (outer) iteration step is always used as the background ensem-

ble in the trial process. A back-track line search strategy is adopted, in such a way that the

current value of γ is multiplied by a factor of 0.9, and then used in a trial iteration to see if the

new average data mismatch becomes lower than the original average at the current outer itera-

tion step. The trial iteration is repeated maximum 5 times, but an earlier stop may take place if

lower average data mismatch is found at a certain trial iteration step. We then use the last anal-

ysis ensemble obtained from the trial process as the background at the next outer iteration

step. Apart from the maximum number of (outer) iteration steps, we also adopt another two

stopping criteria, which become effective if (1) the change of average data mismatch values in

two consecutive iterations are less than 1% (for runtime control); or if (2) the average data mis-

match is lower than four times the number of observations for the first time (to avoid over-fit-

ting observations, see [6]). For ease of comparison, localization [7, 9, 42, 43] is not adopted in

the iES.

Fig 1. Outputs from the true (or reference) function (in red). and those from the biased one (in green). For better visualization,

we re-plot the reference and biased outputs over the input interval [−2, 2] in a separate, zoomed-in subplot.

https://doi.org/10.1371/journal.pone.0219247.g001
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Results with respect to unimodal inputs

In the experiment, we generate a set of 10, 000 input samples drawn from the univariate Gauss-

ian distribution N(−5, 1), and the corresponding noisy residuals (defined as the differences

between the noisy outputs yo and the simulations ysim). We randomly divide the set of input-

residual pairs into two subsets: one with 8, 000 (80%) of such pairs as the training dataset,

whereas the rest 2, 000 (20%) of such pairs as the cross-validation (CV) dataset. The training

dataset is used to estimate the parameters associated with the selected kernel functions,

whereas the CV dataset is not involved in learning these parameters. In a typical setting, the

CV dataset can be adopted to select hyperparameter(s) in a learning algorithm. In this particu-

lar case, though, we do not have hyperparameter(s) to tune. Therefore, we simply use the CV

dataset to inspect the performance of the learned parameters after the learning process is fin-

ished. Fig 2 shows the histograms of the inputs and noisy residuals in the training and CV

datasets.

To employ the kernel approach to approximating the residual function r(x) (Eqs (18)

through (20)), we need to specify a number of Ncp center points xcpk (k = 1, 2, � � �, Ncp). In prin-

ciple, it is possible to consider both Ncp and xcp
k as additional parameters that may be optimized

through certain criteria. However, this will make the resulting learning algorithm become

much more complicated. As a result, in the current work, we pre-choose Ncp and xcp
k manually.

Bearing this in mind, in the experiment below, we let Ncp = 200, and xcp
k be the points that

evenly span the half-closed interval [−6, 6). We have also tested other cases with Ncp = 2000,

Fig 2. Histograms of the unimodal inputs and noisy residuals (as labels), with respect to the training and cross-validation (CV) datasets,

respectively.

https://doi.org/10.1371/journal.pone.0219247.g002
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which turned out to lead to results similar to what we will present below. Consequently, for

brevity, below we focus on the cases with Ncp = 200, with which the number of parameters

(including the weights ck and the scale parameters βk, cf. Eq (20)) is thus 2 × 200 = 400.

An additional remark is that, in comparison to the histograms in Fig 2, it is clear that the

interval [−6, 6) and the input ranges of both training and CV datasets do not fully cover each

other. We choose such a setting to examine the impact of data coverage on the performance of

the learning algorithm.

Now we discuss how to initialize the ensembles of kernel parameters, weights ck and scale

parameters βk. For convenience of discussion, let us denote the ensembles with respect to the

initial weights and the initial scale parameters by C0 � fc0
k;jg

Ne

j¼1
and B0 � fb

0

k;jg
Ne

j¼1
, respectively.

In the current work, we let Ne = 100 unless otherwise stated, and b
0

k;j be initialized as follows:

b
0

k;j ¼
1

sti
� exp ðxk;jÞ; for k ¼ 1; 2; � � � ;Ncp; j ¼ 1; 2; � � � ;Ne; ð40Þ

xk;j � Nð0; 1Þ ; ð41Þ

where σti is the STD of the training inputs, and ξk,j are random samples drawn from the normal

distribution N(0, 1) for each center point and each ensemble member.

For a given ensemble member (i.e., a fixed j value), we then initialize c0
k;j (k = 1, 2, � � �, Ncp)

as follows. We first randomly select a pair of input-label from the training dataset, denoted by

ðxtij ; dy
tl
j Þ, where dytlj is the label (noisy residual) in the training dataset that corresponds to the

training input xtij . We then insert the pair ðxtij ; dy
tl
j Þ into Eq (18), by replacing x, ĥðx; θÞ and βk

therein by xtij , dytlj and b
0

k;j, respectively. At this stage, our goal is to find a set of weights c0
k;j

(k = 1, 2, � � �, Ncp) that approximately solve the the following equation:

dytlj ¼
XNcp

k¼1

c0

k;j Kðx
ti
j � xcpk ; b

0

k;jÞ ; ð42Þ

which can be re-written as the following vector-based equation

dytlj ¼ ðc
0
j Þ

T Kðxti
j Þ ; ð43Þ

c0
j � ½c

0
1;j; c

0
2;j; � � � ; c

0
Ncp;j
�
T

; ð44Þ

Kðxtij Þ � ½Kðx
ti
j � xcp

1 ; b
0

1;jÞ;Kðx
ti
j � xcp

2 ; b
0

2;jÞ; � � � ;Kðx
ti
j � xcpNcp

; b
0

Ncp;j
Þ�

T
: ð45Þ

An approximate solution to Eq (43) can be obtained by solving the following equation instead

dytlj Kðx
ti
j Þ ¼ ðKðx

ti
j ÞKðx

ti
j Þ

T
þ aIÞc0

j ; ð46Þ

where α is a positive scalar, and I is an Ncp × Ncp identity matrix. The term αI, essentially stem-

ming from a Tikonov regularization term introduced to solve Eq (43) as a regularized inverse

problem [31], helps to improve the numerical stability of the final solution

c0
j ¼ dy

tl
j Kðx

ti
j Þ=ðaj þ Kðxtij Þ

TKðxti
j ÞÞ : ð47Þ

Following the implementation of the iES in [35], in the current work, we let

aj ¼ expðxjÞKðxtij Þ
TKðxtij Þ with ξj* N(0, 1). It is clear that the solution in Eq (47) does
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not solve Eq (43) exactly. This, however, is desired, since in general the label dytlj may be

noisy, and an inexact solution to Eq (43) avoids the problem of over-fitting the training data.

Applying Eq (47) to Ne different pairs of ðxti
j ; dy

tl
j Þ (j = 1, 2, � � �, Ne), we get an initial ensemble

of Ne different parameter vectors c0
j .

Fig 3 shows the box plots of data mismatch values generated by 100 different sets of kernel

(weight and scale) parameters at different iteration steps, where mismatch values are calculated

using (a) training and (b) CV datasets, respectively. Note that in the course of learning, only

training dataset is used to update kernel parameters. Therefore, it is not surprising to see that

the reduction of training-data mismatch tends to be more significant than the reduction of

CV-data mismatch. The more important observation in this case, however, is that, even

though the CV dataset is not involved in training the kernel parameters, its corresponding

data mismatch tends to decrease as the training (iteration) process goes on, which implies that

the whole training process appears useful and there is no need to stop the iteration earlier.

Fig 4 depicts the error-bar plots (in terms of ensemble mean ± ensemble std) of kernel

parameters, namely, scales (β) and weights (c), associated with 200 center points that are evenly

distributed over the interval [−6, 6). For scale parameters (Panel (a)), the relative changes from

initial (in blue) to final (in red) values appear not so significant for all center points. In con-

trast, for weight parameters (Panel (b)), more substantial changes are spotted for center points

located in, e.g., the interval [−6, −2], whereas outside this interval, the changes tends to be less

significant again. This does not appear to be surprising, if we take into account the coverage of

training inputs (see the upper left panel of Fig 2), and the fact that a Gaussian kernel function

decays exponentially to zero as the distance between a training input and the center point asso-

ciated with the kernel function increases.

For further demonstration, in Panels (a) and (c) of Fig 5, we also compare the reference

curve (red) over the input interval [−10, 10], the corresponding biased curve (green), and

ensembles of corrected curves (blue), in the form of the biased curve plus ensembles of residual

terms. The reference and biased curves are the same as those in Fig 1, whereas the ensembles

of residual terms are calculated using Eqs (18) through (20), in which the kernel parameters

correspond to either the initial or the final ensembles of scale and weight parameters,

Fig 3. Box plots of data mismatch at different iteration steps, with respect to the (a) training and (b) CV datasets in case of unimodal inputs.

https://doi.org/10.1371/journal.pone.0219247.g003
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respectively. In addition, for better visualization, in panels (b) and (d), we plot the mean cor-

rected curves (cyan).

Fig 5(a) and 5(b) indicate that, compared to the biased curve, the way for us to initialize the

initial ensembles of kernel parameters tends to improve the prediction accuracies over the

interval (e.g., [−6, −4]) on which the training inputs largely concentrate (called concentration

interval hereafter). In addition, the resulting ensemble of corrected predictions provides a

means of conducting uncertainty quantification for the predictions. Recall that we adopt only

100 (as the ensemble size) random training input-output (label) pairs to initialize the ensem-

bles of kernel parameters. By learning (or updating) kernel parameters through more training

data, it appears that the performances of both prediction and uncertainty quantification are

improved over the concentration interval, as can be seen in Fig 5(c) and 5(d).

Fig 5 also shows that, for the intervals (e.g., [−2, 2]) over which there are sparse or even no

training data, the corrected predictions may be less accurate than the biased predictions them-

selves. In this case, a natural way to improve the performance of supervised learning is to

acquire more training data over different regions. Such an investigation will be carried out in

the next sub-section.

Results with respect to multi-modal inputs

To generate more training data, here we consider a scenario with multi-modal training

inputs. We will first identify a challenge for the ensemble-based learning algorithm to

handle multi-modal training inputs, and then investigate a strategy that helps overcome this

problem.

In the experiment, we generate a set of 10, 000 input samples from the distribution N(−5,

1), 10, 000 input samples from the distribution N(0, 1) and 10, 000 input samples from the dis-

tribution N(5, 1), and the corresponding noisy residuals. We then randomly split the resulting

30, 000 input-residual pairs into one training dataset (with 24, 000 data points) and one CV

Fig 4. Error-bar plots in case of unimodal training inputs, in the form of ensemble mean ± ensemble std, with respect to the initial (in blue) and final (in red)

ensembles of scale (Panel (a)) and weight (Panel (b)) parameters, respectively, associated with 200 center points that are evenly distributed over the interval

[−6, 6).

https://doi.org/10.1371/journal.pone.0219247.g004
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dataset (with 6, 000 data points). Fig 6 shows the histograms of the inputs and noisy residuals

in the training and CV datasets.

In the sequel, we first illustrate what will happen if one directly applies the ensemble-based

learning algorithm to the training data with multi-modal inputs. In the experiment, we still

adopt 200 center points that are evenly distributed over the interval [−6, 6). As in the previous

sub-section, the ensemble-based learning algorithm is directly adopted to update 400 kernel

parameters, namely, the scale and weight parameters associated with each center point. How-

ever, it turns out that, in the presence of multi-modal inputs, a straightforward application of

the ensemble-based learning algorithm may not achieve satisfactory performance. This point

is demonstrated in Fig 7. With more training data than in the previous sub-section, the accura-

cies of corrected predictions over certain input intervals, e.g., [−6, −4], are actually worsened,

as is evident if one compares panels (c) and (d) of Figs 5 and 7.

The under-performance of plain, ensemble-based algorithms in handling multi-modal vari-

ables is also discussed in the literature, see, for example, [33, 34, 44–46]. To deal with this

Fig 5. Red (reference curve) and green (biased curve) curves in all panels of the current figure are the same as those in Fig 1.

Panels (a) and (c) show the initial and final ensembles of predictions (with respect to the case of unimodal training inputs), obtained by

adding to the biased curve the corresponding ensembles of residual terms, which are computed using Eqs (18) through (20), wherein

the kernel parameters correspond to the initial and final ensembles of scale and weight parameters, respectively. Panels (b) and (d) also

report the means of the initial and final ensembles of predictions, respectively.

https://doi.org/10.1371/journal.pone.0219247.g005
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problem, we equip the ensemble-based algorithm with an multi-modal learning strategy

(MMLS). Concretely, similar to [33, 34, 44, 46], we adopt a Gaussian mixture model (GMM)

to fit the probability density function (pdf) of multi-modal variables, which naturally leads to a

number of clustered subsets of multi-modal variables (and their corresponding noisy labels).

Next, we use each cluster of training data to initialize (and then update) an ensemble of kernel

parameters that are associated with the center points (note that different clusters of training

data share the same set of center points). The corrected predictions are then taken as biased

outputs plus certain residual terms, whereas the latter are calculated as the weighted averages

of the residuals predicted using the kernel parameters in each cluster.

More specifically, suppose that the multi-modal inputs are clustered into Ncl mutually

exclusive subsets, and in each subset, the pdf of the inputs is modelled by a certain Gaussian

pdf. In other words, the pdf p(x) of training inputs is approximated by a GMM, in the form of

pðxÞ �
XNcl

s¼1

ws nðx; ms; s
2

s Þ ; ð48Þ

where ws is the weight associated with the sth cluster, and nðx; ms; s
2
s Þ is the corresponding

Gaussian pdf, parametrized by the mean μs and STD σs. For each cluster, say, the sth one, we

generate an initial ensemble Θ0

s � fθ
0

j;sg
Ne

j¼1
of kernel parameters for the set of center points, in

the same way as in the preceding sub-subsection. The ensemble Θ0

s is then updated to

Θu
s � fθ

u
j;sg

Ne

j¼1
, using the training data associated with the cluster. With the above quantities,

we are then able to generate corrected predictions for new inputs. For instance, given an input

Fig 6. Histograms of the multi-modal inputs and noisy residuals, with respect to the training and CV datasets, respectively.

https://doi.org/10.1371/journal.pone.0219247.g006

Ensemble-based kernel learning for model error characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0219247 July 11, 2019 18 / 40

https://doi.org/10.1371/journal.pone.0219247.g006
https://doi.org/10.1371/journal.pone.0219247


x0, we first calculate the probability Ps of x0 with respect to each cluster, through

Psðx0Þ ¼
wsnðx

0; ms; s
2

s ÞPNcl
s0¼1

ws0 nðx0; ms0 ; s
2
s0 Þ
: ð49Þ

Then, we can calculate an ensemble of corrected predictions, in the form of biased prediction g
(x0) plus predicted residual r̂ jðx0Þ (j = 1, 2, � � �, Ne), where r̂ jðx0Þ is given by

r̂ jðx0Þ ¼
XNcl

s¼1

Psðx
0Þĥðx0; θu

j;sÞ ; j ¼ 1; 2; � � � ;Ne ; ð50Þ

with θu
j;s 2 Θ

u
s , and ĥ a functional consisting of a set of kernel functions (cf. Eq (18) or (21))

parametrized by θu
j;s.

In terms of parametrization strategy adopted in SLP, a noticeable feature in case of multi-

modal training inputs is that, each cluster of training data will have its own ensemble of kernel

Fig 7. As in Fig 5, but for the case with multi-modal inputs, for which no multi-modal learning strategy (MMLS) is adopted. For better

visualization, in Panel (d) we re-plot the reference, the biased and the mean corrected curves over the input interval [−2, 2] in a separate,

zoomed-in subplot.

https://doi.org/10.1371/journal.pone.0219247.g007

Ensemble-based kernel learning for model error characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0219247 July 11, 2019 19 / 40

https://doi.org/10.1371/journal.pone.0219247.g007
https://doi.org/10.1371/journal.pone.0219247


parameters associated with the same set of center points. Following the discussion in the text

after Eq (24), for m-dimensional inputs, the total number of kernel parameters then becomes

(m + 1) × Ncp × Ncl, larger than that in case of unimodal training inputs. This may thus be con-

sidered as an additional way to improve the capacity of a learning model.

Results with Ncl = 3. In the first experiment, we investigate the case where the number of

clusters is the same as the number of modes in the training inputs, i.e., Ncl = 3. We use the

MATLAB function “fitgmdist” to estimate the parameters like weight (w), mean (μ) and vari-

ance (σ2) (cf. Eq (48)) associated with each Gaussian component. Table 1 summarizes the

number of training data points, as well as the values of the aforementioned parameters, associ-

ated with each component (cluster). This indicates that the GMM is fitted quite well, in light of

how these data are generated. Table 1 also provides each Gaussian component a label (e.g.,

“C1”), which will be adopted in the discussions below.

With the aforementioned settings, in principle one can update the kernel parameters associ-

ated with each cluster in parallel, although in the current work, such updates are conducted in

a sequential manner, namely, C1! C2! C3. Fig 8 shows the box plots of data mismatch,

with respect to training (left column) and CV (right column) datasets, respectively. For the

training dataset, we report data mismatch at different iteration steps cluster by cluster. For

instance, in Panel (a) of Fig 8, data mismatch is calculated using the differences between the

training outputs in C1, and the predicted outputs with respect to the training inputs in C1.

Under this setting, one can see that the ensemble-based learning algorithm progressively

reduces data mismatch within each cluster.

For the CV dataset, we do not pre-cluster the data points into different clusters. To compute

data mismatch with respect to the CV dataset, we use all the CV data points (6000 in total). For

better comprehension, Eqs (49) and (50) are referred in our discussion below. Given a CV

input xcv and an ensemble of kernel parameters θj,s (j = 1, 2, � � � , Ne) for a certain cluster s, we

compute an ensemble of predicted outputs ĥðxcv; θj;sÞ (cf. Eq (50)), as well as a probability

Ps(xcv) with respect to the GMM (cf. Eq (49)). Data mismatch with respect to the cluster s is

then calculated using the differences between the CV output weighted by Ps(xcv), and the pre-

dicted output ĥðxcv; θj;sÞ that is also weighted by Ps(xcv). In this way, we are able to cross-vali-

date the impacts of supervised learning within individual clusters. As reported in Panels (b),

(d) and (f) of Fig 8, data mismatch of the CV dataset with respect to all clusters tends to

decrease through the iterations, indicating that the learning process goes reasonably well.

Similar to Fig 4, in Fig 9 we also plot the initial (in blue) and final (in red) ensembles of

scale (left column) and weight (right column) parameters associated with different clusters.

For scale parameters, compared to the case with unimodal training inputs (cf. Fig 4(a)), there

appear to be more substantial differences between initial and final values in all three clusters

(cf. Fig 9(a), 9(c) and 9(e)). For weight parameters, similar to the case with unimodal training

inputs (cf. Fig 4(b)), significant changes from initial to final values can also be spotted in the

areas surrounding the mode of each Gaussian component.

Table 1. Number of training data points associated with each GMM component (cluster), and the corresponding

parameters estimated using the training data.

Cluster 1 (C1) Cluster 2 (C2) Cluster 3 (C3)

Number of data 8003 8003 7994

Estimated weight 0.3331 0.3344 0.3325

Estimated mean 5.0015 −0.0074 −5.0049

Estimated variance 0.9754 1.0155 0.9680

https://doi.org/10.1371/journal.pone.0219247.t001
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Fig 8. Box plots of data mismatch at different iteration steps, with respect to the (a) training and (b) CV datasets in case of multi-

modal inputs.

https://doi.org/10.1371/journal.pone.0219247.g008
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Fig 9. Similar to Fig 4, but for multi-modal training inputs. For visualization, we plot scale (left column) and weight (right column)

parameters associated with different clusters separately.

https://doi.org/10.1371/journal.pone.0219247.g009

Ensemble-based kernel learning for model error characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0219247 July 11, 2019 22 / 40

https://doi.org/10.1371/journal.pone.0219247.g009
https://doi.org/10.1371/journal.pone.0219247


Similar to Figs 7 and 10 shows the results after the MMLS is adopted to train kernel param-

eters cluster by cluster. As one can see, with the MMLS, the initial ensemble in Fig 10(a) exhib-

its multimodality, which is not the case for the initial ensemble in Fig 7(a), where the MMLS is

not employed. On top of the multi-modal initial ensemble, the ensemble-based training algo-

rithm in general tends to improve the predictions, by updating the kernel parameters sequen-

tially through the use of training data in individual clusters.

The impact of the number Ncl of clusters. The previous results indicate that, when the

MMLS is adopted and the number of clusters is the same as the number of modes in the train-

ing inputs, one can improve the performance of predictions using the learned kernel parame-

ters. Here, we also examine what will happen, when the MMLS is adopted, but the number of

clusters is not necessarily the same as the number of modes in the training inputs.

Fig 11 presents some of the final prediction results (after using all training data to learn ker-

nel parameters) from an experiment, in which we adopt different numbers Ncl of clusters (e.g.,

2, 4, 6 and 8) to fit the GMM using the same training inputs (with 3 modes) as in the previous

experiment. Combining the results in Figs 7, 10 and 11, it appears that, if the number of the

clusters is less than the number of modes in the training inputs, then the learned ensemble of

models tends to have insufficient capacities to perform relatively well in the prediction tests.

However, when the number of the clusters becomes no less than the number of modes, then

the capacities of the learned models tend to improve. In this particular case, it seems that, if Ncl

is slightly larger than the number of modes (e.g., Ncl = 6), then one might actually achieve bet-

ter prediction accuracies over certain intervals, in comparison to the choice of Ncl = 3. Of

course, given a fixed number of training data, on average the number of training data per clus-

ter will reduce as Ncl increases. Therefore, if Ncl becomes too large (e.g., Ncl = 8), the prediction

accuracies may be instead worsened as the number of training data within each cluster

decreases. This insight will be useful for us to handle data assimilation problems in the pres-

ence of forward-simulator imperfection, yielding improved flexibility and assimilation perfor-

mance, as will be shown in the next section.

Numerical results in a data assimilation problem with an imperfect

forward simulator

The preceding section indicates that, when combined with the MMLS, the ensemble-based

kernel learning algorithm performs reasonably well in the presented SLP. As discussed previ-

ously, the idea of kernel-based functional approximation can also be extended to handle data

assimilation problems with imperfect forward simulators.

Handling model imperfection is an important topic in many geophysical data assimilation

problems. While there are already substantial efforts, e.g. [13–21], dedicated to this research

topic, many of the methods have to rely on certain simplifying assumptions (e.g., Gaussianity,

stationarity etc), which are avoided in our proposed integrated framework that integrates func-

tional approximation (through a machine learning model) into data assimilation. To the best

of our knowledge, such an integrated ensemble data assimilation framework is not investigated

yet in the literature.

As a proof-of-concept study, in what follows, we illustrate the performance of the integrated

data assimilation framework, Eqs (31) through (33), in a synthetic 2D problem. In the experi-

ment, we have a reference model in the dimension of 100 × 120 (cf. Fig 12(a)). The corre-

sponding (noisy) observations (cf. Fig 13(a)) are generated by first applying a function f(z) =

(|z|3 + 1)1/2 to each gridblock of the reference model, and then adding 10% Gaussian white

noise (relative to magnitudes) to the simulation outputs. As a result, in data assimilation, we

have a set of observations distributing over the same gridblocks as in the reference model.

Ensemble-based kernel learning for model error characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0219247 July 11, 2019 23 / 40

https://doi.org/10.1371/journal.pone.0219247


Fig 10. Similar to Fig 7, but for the case in which the multi-modal learning strategy (MMLS) is adopted. In the

experiment, the number Ncl of clusters is 3, the same as the number of modes in the training inputs. Note that the

learning process is carried out cluster by cluster.

https://doi.org/10.1371/journal.pone.0219247.g010
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Fig 11. Similar to Fig 10, but for the final prediction results after all the training data in different clusters are used

to learn kernel parameters. Presented here are the results with respect to of the choices of using 2, 4, 6 and 8 clusters

to fit the GMM (from top to bottom), respectively.

https://doi.org/10.1371/journal.pone.0219247.g011
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The reference model in Fig 12(a) is generated through a fast Gaussian simulation method

[4, 8], as a realization of a 2D Gaussian random field with zero mean, and an anisotropic

covariance model whose STD is 2, and whose length scales along x and y directions are 15 and

25 gridblocks, respectively. The initial ensemble (with 100 members) is generated in a similar

way, but using a slightly different covariance model, whose STD is 2.2, and whose length scales

along x and y directions are 17 and 23 gridblocks, respectively. Fig 12(b) shows the mean of

the initial ensemble.

As mentioned earlier, to use kernel-based functional approximation in Eq (30), we need to

specify a set Zcp � fzcpk g
Ncp
k¼1 of center points, and a corresponding set Do;cp � fdo;cp

k g
Ncp
k¼1 of obser-

vations associated with Zcp. In the experiments, we do not assume to have hard data to condi-

tion on. Instead, we construct Zcp and Do,cp as follows. We set Ncp = 200, and take zcpk as the

points that evenly span an interval [zl, zu), where zl = zmin − 0.1|zmin| and zu = zmax + 0.1|zmax|,

with zmin and zmax being the minimum and maximum values of the initial ensemble of model

variables, respectively. To choose do;cp
k , we first compute the mean ẑ0 of the initial ensemble,

Fig 12. Reference and mean models in the perfect scenario. Top row: Reference model (Panel (a)) used to generate observations (cf. Fig 13(a)), and the mean model

(Panel (b)) of the initial ensemble. Bottom row: mean of the final ensemble obtained through data assimilation without any model-error correction (MEC) (Panel (c)),

and the corresponding mean when MEC is still adopted (Panel (d)) even though the forward simulator is perfect.

https://doi.org/10.1371/journal.pone.0219247.g012
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and treat ẑ0 as if it were the ground truth that generates the real observations do. With this

treatment, for each given zcpk , we find 20 variables in ẑ0 that are closest to zcpk . We then use the

locations of these 20 nearest neighbors to identify the corresponding 20 data points in do, and

take do;cp
k as the (equally weighted) mean of these 20 data points. Of course, in general, ẑ0 and

do may not be “consistent”. This inconsistency, however, is partially taken into account by

including do;cp
k as a part of the inputs to the kernel function (cf. Eq (30)), and assigning addi-

tional scale parameters (β) to adjust its influence in the course of data assimilation.

In the experiments, we consider two scenarios. In the first one, we study the case in which

there is no imperfection in the forward simulator g(z), i.e., g(z) = f(z) = (|z|3 + 1)1/2. Our objec-

tive here is to inspect the impact of kernel-based model-error correction (MEC) mechanism

on the performance of data assimilation, when there is no imperfection in the forward simula-

tor, but MEC is still adopted. For reference later, we call this perfect (simulator) scenario (PS).

In the second scenario, we investigate the case in which imperfection indeed exists in the

Fig 13. Real and simulated observations in the perfect scenario. Top row: Real observations (Panel (a)) generated using the reference model in Fig 12(a), and the

mean of simulated observations obtained by applying the forward simulator to the initial ensemble of model variables (Panel (b)). Bottom row: As in Panel (b), but for

the mean of simulated observations with respect to the final ensemble obtained without (Panel (c)) and with (Panel (d)) MEC in data assimilation, respectively.

https://doi.org/10.1371/journal.pone.0219247.g013
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forward simulator, with g(z) = z2. We examine how the performance of data assimilation may

change in the presence of simulator imperfection. Likewise, we call this imperfect scenario

(IS).

As a side remark, we note that the true (g(z) = (|z|3 + 1)1/2) and the imperfect (g(z) = z2) for-

ward simulators here are identical with those in the previous numerical example (cf Eqs (35)

and (36)) (other than this, the two numerical examples are independent of each other). We

make such choices on purpose, as here we aim to reflect certain differences between supervised

learning and data assimilation, which are discussed in a preceding section. In the previous

numerical example with respect to the supervised learning problem, one typically has a rela-

tively large number of training data, such that the estimated functions would be reasonably

good within the data coverage. In contrast, in data assimilation problems to be investigated

below, one typically has a single realization of observational data at a given time and a given

spatial location. This makes it more challenging for us to achieve reasonably good estimation

accuracies overall, as will be illustrated soon.

Results in the perfect scenario (PS)

In the PS, we conduct a comparison study involving two experiments. In one of them, no

MEC is adopted since the forward simulator is known to be perfect. In the other, kernel-based

MEC is introduced to data assimilation, even though the forward simulator is perfect (in many

places, we will simply say MEC when there is no confusion). Except for this difference, the

other settings in these two experiments are identical. We note that, in the relevant experiment,

MEC is conducted by combining Eqs (33) and (50), whereas in Eq (50) the number Ncl of clus-

ter is set to 1 in the current experiments, as we know that the initial ensemble is generated

used a Gaussian simulation method (hence unimodal). We will examine the impact of Ncl on

data assimilation in the IS.

In comparison to the real observations in Fig 13(a), the mean of simulated observations

with respect to the initial ensemble (Fig 13(b)) appears substantially different in many regions.

As a result, the data mismatch values of the initial ensemble are relatively large, as reported in

Table 2. Through data assimilation using the iES, data mismatch values of the updated ensem-

bles tend to decrease as the iteration process proceeds, whether MEC is introduced or not, as

one can see in Fig 14(a) and 14(b). Accordingly, after data assimilation, the means of simulated

observations with respect to the final ensembles (with or without MEC), as shown in Fig 13(c)

and 13(d), respectively, resemble the observations better than that with respect to the initial

ensemble.

In both experiments, the maximum iteration step of the iES is set to 10. In the experiment

without MEC introduced, however, the iES stops at the iteration step 7, due to an alternative

stopping criterion that is triggered to terminate the iES, when the average data mismatch is

lower than four times the number of observations (which is 4 × 12, 000) for the first time. This

early-stopping phenomenon indicates a higher risk of over-fitting observations, should the

iteration process have continued after iteration step 7. On the other hand, in the experiment

with MEC, since there are more parameters adopted in data assimilation, intuitively one might

Table 2. Means and STDs of data mismatch and RMSE with respect to the initial ensemble, and the final ensembles with or without model-error correction (MEC),

in the perfect scenario.

Initial ensemble Final ensemble (no MEC) Final ensemble (with MEC)

Data mismatch (mean ± STD) 1.0694 ± 0.5361(×107) 3.7326 ± 0.0223(×104) 6.2645 ± 1.7551(×104)

RMSE (mean ± STD) 2.5240 ± 0.3070 1.0889 ± 0.0025 0.8836 ± 0.0133

https://doi.org/10.1371/journal.pone.0219247.t002
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expect that the problem of over-fitting observations can be even more severe. Surprisingly, it

turns out that over-fitting actually appears avoided, while the iteration stops at the maximum

step. As a result, the final mean data-mismatch value in the experiment with MEC is higher

than that in the experiment without MEC, as reported in Table 2. One possible explanation of

the ability to avoid over-fitting may be related to the effect of localization [7], which is ren-

dered by the MEC mechanism, as will be discussed later.

For quality check, in Fig 14(c) and 14(d) we also show the box plots of RMSEs of the ensem-

bles of model variables at different iteration steps. When no MEC is introduced, the RMSEs

tend to decrease at the first five iteration steps, and then bounce back to somewhat higher val-

ues at the last two iteration steps. This kind of “U-turn” behavior was also found in the earlier

work of [6], and can be mitigated or avoided by introducing a procedure of sparse data repre-

sentation [6], or localization [7, 9], to the iES (an investigation on this issue, however, is

beyond the scope of the current work). In contrast, with MEC introduced to the iES, the “U-

turn” behavior seems vanished. Furthermore, the final mean RMSE value in the experiment

Fig 14. Box plots of data mismatch (top) and RMSE (bottom) with respect to the ensembles at different iteration steps in the perfect scenario. Results in Panels

(a) and (c) correspond to the case without MEC adopted in data assimilation, whereas those in Panels (b) and (d) to the case with MEC. Unless otherwise stated, data

mismatch in the experiment with MEC is always calculated using the modified forward simulator with a residual term, as in Eq (33). Note that in Panels (a) and (c), the

iES terminates at the iteration step 7, due to the stopping criterion that the average data mismatch at this step is less than four times the number of observations (which

is 4 × 12, 000 in this case) for the first time.

https://doi.org/10.1371/journal.pone.0219247.g014
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with MEC is lower than that in the experiment without MEC, as one can see in Table 2. In Fig

12(c) and 12(d), we show the mean of the final ensembles obtained in the experiments with or

with MEC. Clearly, the mean models of the final ensembles appear more similar to the refer-

ence model than the mean model of the initial ensemble in Fig 12(b). The mean model of the

final ensemble without MEC tends to do better than that with MEC in the regions on the left-

hand side (e.g., for x� 50), but worse in the rest of the regions.

One can also observe an interesting phenomenon by comparing the spreads of box plots in

Fig 14, or the calculated ensemble STDs of data mismatch and RMSE in Table 2. Recall that, in

the experiments, no localization is introduced to the iES. As a result, it may not be surprising

to see that, in the experiment without MEC, ensemble collapse seems to take place. In contrast,

in the experiment with MEC, ensemble collapse does not appear to be a problem, or at least is

mitigated. This seems to suggest that the kernel-based MEC mechanism can (partially) lead to

the same effect on preventing ensemble collapse as localization does. A possible explanation to

this phenomenon may be that, as aforementioned, since we use Gaussian RBF as the kernel

function, the kernel parameters (scale and weight) associated with a certain center point would

exhibit localized impacts, and mainly influence model variables that are sufficiently close to

that center point.

As aforementioned, in SLP, typically one has many (matched) input-output pairs as the

training data. In contrast, in data assimilation problems, we use a single realization (or one-

shot) of the observations (at a given time instance and a given spatial location) to infer possible

model variables. As a result, in SLP, one often has the luxury to split a dataset into two parts,

one for training (and cross-validation) and one for test; whereas in data assimilation with

MEC, this kind of luxury typically does not exist. This makes MEC a particularly challenging

problem. Indeed, apart from the potential inconsistencies between the observations and the

estimated model variables, there are only one-shot observations used for residual functional

estimation, which makes it difficult for the updated forward simulator to generalize to other

unseen training data (e.g., new input-output pairs), as our experiments indicate (results not

shown).

Bearing the above challenges in mind, when evaluating the performance of MEC, we do not

particularly focus on inspecting the generalization ability of the updated forward simulator

(after all, the goal of data assimilation is to estimate the ground truth corresponding to real

observations). Instead, we adopt the following cross-validation procedure, namely, for a given

ensemble of model variables in the experiment with MEC, we compare the corresponding data

mismatch values, when the residual term r̂ðz; ηÞ is used or not used in the forward simulator

(cf. Eq (33)). Such a comparison aims to examine whether the introduction of the residual

term to the forward simulator helps match real observations better or not.

Following this notion, Fig 15 shows the box plots of data mismatch differences at different

iteration steps, with respect to the experiment with MEC. At a given iteration step (hence a

given ensemble of model variables), these differences are obtained by subtracting data mis-

match values which are calculated with the residual term in the modified forward simulator in

Eq (33) (as in Fig 14(b)), from the corresponding data mismatching values which are calcu-

lated without including the residual term in Eq (33). Positive difference values in the box plots

thus imply that the presence of the residual term in Eq (33) is useful for helping match real

observations better, and vice versa. From this perspective, Fig 15 suggests that, with the initial

ensemble of kernel parameters, the effect of including the residual term in Eq (33) at iteration

step 0 is mixed, and there are substantial numbers of difference values residing on both sides

of zero (although overall the number of positive values does seem to dominate). After one iter-

ation (at iteration step 1), the model qualities are improved in terms of RMSE (cf. Fig 14(d)),

meanwhile the number of positive difference values also increases. However, as models are
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further improved, the number of positive difference values does not necessarily always domi-

nate, as one can spot in the box plot at iteration step 3. Nevertheless, as the iteration process

continues, this kind of “over-correction” diminishes. Eventually, the number of positive differ-

ence values dominates at the final stage, while the RMSEs of estimated models tend to gradu-

ally reduce.

Based on the experiment results in the PS, we conclude that, in this particular case study,

even though the forward simulator is perfect, it appears still beneficial to integrate kernel-

based MEC into data assimilation for performance improvements.

Results in the imperfect scenario (IS)

Results with Ncl = 1. In parallel to the results in the PS, we first report the results with

Ncl = 1 in the IS. In this case, we also compare the assimilation performance with respect to

one experiment where there is no MEC introduced, and another experiment where kernel-

based MEC is adopted, with the number of cluster Ncl = 1. The initial ensemble of kernel

parameters is generated in the way as in the case study of SLP.

Table 3 reports both data mismatch and RMSE (in terms of mean ± STD) for the initial

ensemble, and the final ensembles obtained when MEC is or is not adopted. For the purpose

of comparison, we adopt the same initial ensemble as in the PS. From Table 3, one can again

see that the use of MEC helps reduce mean values of both data mismatch and RMSE, while

Fig 15. Box plots of data mismatch differences at different iteration steps, for the experiment with MEC in the perfect

scenario. At a given iteration step, these differences are derived using data matching values that are calculated with the residual

term excluded from Eq (33), minus data matching values that are computed with the residual term included in Eq (33), with respect

to the corresponding ensemble of model variables at that iteration step. Therefore, positive data mismatch differences indicate that

including the residual term helps match real observations better. For better visualization, we show the box plots from iteration steps

2 to 10 in a separate, zoomed-in subplot in the upper right corner.

https://doi.org/10.1371/journal.pone.0219247.g015
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retaining higher ensemble spreads in the final ensemble, in comparison to the choice in which

MEC is not used. In addition, by comparing Tables 2 and 3, one also spots the impact of

imperfection on data assimilation: In the presence of imperfection, the performance of data

assimilation is worsened, with mean values of both data mismatch and RMSE in the IS becom-

ing larger than those in the PS.

The subsequent results in Figs 16–19 are shown in analogy to their counterparts, Figs 12–

15, in the PS, respectively. A comparison between these figures are largely consistent with our

observations stated in the preceding paragraph. In particular, the box plots of data mismatch

Table 3. Means and STDs of data mismatch and RMSE with respect to the initial ensemble, and the final ensembles with or without model-error correction (MEC),

in the imperfect scenario.

Initial ensemble Final ensemble (no MEC) Final ensemble (with MEC)

Data mismatch (mean ± STD) 6.5372 ± 5.2423(×107) 4.5211 ± 0.0590(×105) 1.3248 ± 1.2528(×105)

RMSE (mean ± STD) 2.5240 ± 0.3070 1.2053 ± 0.0091 1.0696 ± 0.0174

https://doi.org/10.1371/journal.pone.0219247.t003

Fig 16. As in Fig 12, but for the experiment results in the imperfect scenario (Ncl = 1).

https://doi.org/10.1371/journal.pone.0219247.g016
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differences at different iteration steps, as shown in Fig 19, also indicate that kernel-based MEC

is useful for improving data match to real observations.

Overall, the experiment results presented here confirm again that, in this particular case

study, kernel-based MEC helps improve the performance of data assimilation in the presence

of imperfection in the forward simulator.

Comparison to an alternative MEC mechanism. An alternative idea for MEC in data

assimilation would be that, in Eq (30), instead of adopting kernel-based functional approxima-

tion, one may simply approximate the residual term by an unknown bias term, similar to the

strategy adopted in, e.g., [15]. It would then be of interest to see how this alternative MEC

method performs, in comparison to kernel-based MEC. For reference later, we call this alter-

native method bias-based MEC.

In the experiment, we also choose to integrate this bias-based MEC into ensemble-based

data assimilation. To initialize an ensemble of biases, we first compute an ensemble of residuals

between real observations and simulated observations with respect to the initial ensemble. We

then calculate the mean and covariance of the residual, and use these statistics to draw an

Fig 17. As in Fig 13, but for the experiment results in the imperfect scenario (Ncl = 1).

https://doi.org/10.1371/journal.pone.0219247.g017
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(initial) ensemble of biases, in a way similar to that we adopted to generate the initial ensemble

of model variables. After that, similar to the setting in Eq (31), we augment both model vari-

ables and biases, and use the iES to update them in the course of data assimilation.

Fig 20 summarizes the experiment results with respect to bias-based MEC. In comparison

to the results with kernel-based MEC in Figs 16–19, it is clear that bias-based MEC tends to

result in higher data mismatch and RMSE. In terms of mean ± STD, the data mismatch values

of the final ensemble for bias-based MEC are (7.9847 × 106) ± 80.1288, and the corresponding

RMSEs are 1.9767 ± (2.7584 × 10−4). Relative to the mean values, the tiny STDs of the final

data mismatch and RMSEs suggest that ensemble collapse is a severe issue in the experiment

with bias-based MEC.

The relative under-performance of bias-based MEC might be partially attributed to the sim-

plifying assumptions, e.g., whiteness, stationarity, and normality [15], regarding simulator

imperfection. To see this, Fig 21 shows the histogram of the mean of the residuals with respect

to the initial ensemble. As one can see there, the distribution of the mean residuals does not

seem to resemble a normal distribution well.

The impact of the number Ncl of clusters. As in SLP, when using kernel-based functional

approximation for MEC, one can also choose to first group model variables into different

Fig 18. As in Fig 14, but for the experiment results in the imperfect scenario (Ncl = 1).

https://doi.org/10.1371/journal.pone.0219247.g018
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clusters, and then estimate an ensemble of kernel parameters for each cluster. The final resid-

ual functional is taken as the weighted average of the individual (kernel-based) approximation

functional estimated from each cluster, similar to the idea described in Eq (50). Note that, in

this case study, we know that the initial ensemble of model variables is generated using fast

Gaussian simulation [4, 8]. Therefore, in principle, either the joint or the marginal distribution

of the model variables is unimodal, and intuitively there would be no need to consider an

multi-modal-based approximation strategy. Nevertheless, as we will show below, the multi-

modal strategy may help improve the performance of data assimilation.

Fig 22 reports the box plots of RMSEs with respect to the final ensembles that are obtained

in data assimilation using different Ncl values. In the experiment, Ncl takes its value from the

set {1, 2, � � � , 10}. As one can see in Fig 22, except for the case with Ncl = 2, all other choices

tend to result in lower RMSEs, in comparison to the choice of Ncl = 1. This thus suggests that,

similar to the results in SLP (cf. Fig 11), one may obtain better assimilation performance by

using a relatively large value for Ncl that exceeds the actual number of mode(s) in the distribu-

tion of model variables. On the other hand, though, the optimal choice of the value of Ncl

remains to be an open problem in the current work.

Discussion and conclusion

This work focuses on addressing simulator imperfection in data assimilation from a perspec-

tive of functional approximation, which leads to an ensemble-based data assimilation frame-

work that integrates functional approximation through a certain machine learning approach

Fig 19. As in Fig 15, but for the experiment results in the imperfect scenario (Ncl = 1).

https://doi.org/10.1371/journal.pone.0219247.g019
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into an ensemble-based assimilation algorithm. For better comprehension of how such an

integration can be established, we start from considering a class of supervised learning prob-

lems, and then discuss the similarity between supervised learning and variational data assimi-

lation. This insight (of similarity) not only leads to an ensemble-based approach to solving

supervised learning problems, but also sheds light on the development of an ensemble-based

data assimilation framework that, in a natural way, merges machine learning and data assimi-

lation methods to handle simulator imperfection. In the current work, we adopt a kernel-

based learning approach to functional approximation. Nevertheless, as discussed in earlier

texts, one may also employ other suitable machine learning methods for the purpose of func-

tional approximation.

For performance demonstration, we first study a supervised learning problem. Through the

investigations therein, we identify a challenge that may arise when using kernel-based ensem-

ble learning in the presence of multi-modal training inputs. To overcome this problem, we

consider a multi-modal learning strategy that helps achieve reasonably good results. Moreover,

this multi-modal strategy can be transferred to the data assimilation problem later, also helping

Fig 20. Experiment results with bias-based MEC in the imperfect scenario.

https://doi.org/10.1371/journal.pone.0219247.g020
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Fig 21. Histogram of the mean of the residuals with respect to the initial ensemble.

https://doi.org/10.1371/journal.pone.0219247.g021

Fig 22. Box plots of RMSEs of the final ensembles, obtained with different numbers Ncl of clusters.

https://doi.org/10.1371/journal.pone.0219247.g022
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improve the performance of data assimilation. Apart from the multi-modal strategy, in the

data assimilation problem, we also inspect the performance of the ensemble-based data assimi-

lation framework with the integrated, kernel-based model-error correction (MEC) mecha-

nism. The experiment results indicate that, in this particular case study, using kernel-based

MEC tends to improve the data assimilation performance, no matter if simulator imperfection

is present or not. In addition, the experiment results also show that kernel-based MEC tends

to outperform an alternative, bias-based MEC mechanism.

As a proof-of-concept study, in the current work, we consider a relatively simple data

assimilation problem, in which there is only one unknown parameter to estimate for each grid-

block. Conceptually, based on Eqs (21)—(24), it will not be difficult to extend the integrated

data assimilation framework to case studies in which there are multiple unknown parameters

on each gridblock. This point is verified in an application of the integrated framework to han-

dle model errors in a rock physics model for history matching 4D seismic data in a real field

case study [47, 48], in which there are five types of unknown parameters, including porosity,

net-to-gross ratio, fluid pressure, water and gas saturations on each active gridblock, as the

inputs to a residual model complementary to the original rock physics model used in 4D seis-

mic history matching. Our preliminary results indicate that introducing kernel-based MEC to

the rock physics model helps to improve the qualities of estimated reservoir models, in terms

of the forecasts of production data. More details of the real field case study will be reported in

separate work in the near future.

Another line of future research will be to explore the integrations of the ensemble frame-

work into deep learning models. Such integrations are expected to result in some ensemble

deep learning methods that share certain implementational conveniences, e.g., derivative free

(no back propagations) and fast implementation, as observed in various ensemble data assimi-

lation methods in geosciences. Admittedly, however, it remains to be seen whether the result-

ing ensemble learning methods would be able to achieve other practical advantages, such as

accuracy or robustness, in comparison to the more conventional ones.
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