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Abstract

Recent research in machine learning pointed to the core problem of state-of-the-art models

which impedes their widespread adoption in different domains. The models’ inability to dif-

ferentiate between noise and subtle, yet significant variation in data leads to their vulnerabil-

ity to adversarial perturbations that cause wrong predictions with high confidence. The study

is aimed at identifying whether the algorithms inspired by biological evolution may achieve

better results in cases where brittle robustness properties are highly sensitive to the slight

noise. To answer this question, we introduce the new robust gradient descent inspired by

the stability and adaptability of biological systems to unknown and changing environments.

The proposed optimization technique involves an open-ended adaptation process with

regard to two hyperparameters inherited from the generalized Verhulst population growth

equation. The hyperparameters increase robustness to adversarial noise by penalizing the

degree to which hardly visible changes in gradients impact prediction. The empirical evi-

dence on synthetic and experimental datasets confirmed the viability of the bio-inspired gra-

dient descent and suggested promising directions for future research. The code used for

computational experiments is provided in a repository at https://github.com/yukinoi/bio_

gradient_descent.

Introduction

Modern machine learning algorithms can successfully tackle tough and complicated problems

by taking patterns buried inside datasets to build a model with remarkable predictive capabili-

ties [1]. However, the machine learning models fueling innovations in a variety of applications

from large-scale genomic sequencing and medicine [2–6] to automated driving [7] and robot-

ics [8] still pose serious challenges that make it difficult to fully trust and adopt them [7, 9, 10].

A lack of intelligence in these models leads to an inability to robustly differentiate between

noise and subtle, but significant variation in data. If the noise in data includes intentionally

small carefully crafted perturbations, which are used to generate so-called adversarial exam-

ples, the model may become vulnerable and misclassify them with high confidence [11–17]. It
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expectedly sets up the psychological roadblocks [7] to the widespread adoption of machine

learning models in different domains [3, 7, 11, 12, 17].

Addressing the question of vulnerability, the researchers created various attacking strate-

gies [18–23] to fool the model with adversarial examples as well as defenses [24–29] to resist

them, but that has not solved the problem completely. The common approach to creating

attacks is taking gradients with regard to their inputs, since gradients provide local linear

approximations of models behavior [12]. Goodfellow et al. [11] explored the connection

between models vulnerability and linear nature [30, 31] which allows introducing infinitesi-

mal changes in the gradients. According to the authors’ reasoning, the limited precision of

features leads to the identical interpretation on the input gradients and adversarial gradients.

With well-separated classes, the models assign the same class for both the input and adver-

sarial gradients as long as the magnitude of perturbations is less than the magnitude of the

input gradients which are predefined by the precision of features. For this reason, it seems

rational to penalize the large input gradients [12, 13] which are more likely to be utilized for

generating adversarial examples. The gradient regularization methods employ the idea of a

double backpropagation method first introduced by Drucker and Le Cun [32]: training neu-

ral networks by minimizing not only network “energy” but also the rate of energy changes

with regard to the input features. Adopting such gradient regularization on a training dataset

may increase robustness to adversarial perturbations embedded in an unseen dataset as

much as adversarial training [12].

What is not specifically undertaken in the studies mentioned above is whether the models

inspired by biological evolution [33–42] may result in better robustness to adversarial pertur-

bations. This is the research question raised in this study. The fundamental aspects of biologi-

cal intelligence, such as self-healing, evolution, and learning make biological organisms

successful to survive in unknown and changing environments [33]. The stability and adapt-

ability of biological systems strengthen the motivation for replicating the mechanisms of natu-

ral evolution in an attempt to create the models with characteristics comparable to those of

biological systems.

This paper seeks to refine the discourse on robustness to adversarial noise with the bio-

inspired gradient descent based on the generalized Verhulst population growth equation [43,

44]. The hyperparameters of the Verhulst equation are used to regularize gradients or, to put

it more specifically, to penalize the degree to which imperceptible changes in gradients may

influence prediction results. We refer to them as the lower and upper levels of visibility as they

limit the gradients to be near zero so that any small magnitude perturbation hidden in the gra-

dients is “visible” and, then, has no influence on prediction results.

Materials and methods

Gradient descent

Similarly to the learning setting presented by Soudry et al. [45] we consider a dataset fxi; yig
m
i¼1

with xi 2 R
n, yi 2 {0, 1} and minimize an empirical loss function

L ðθÞ ¼
Xm

i¼1

‘ðθTxiÞ;

with a weight vector θ 2 Rn. We are interested in linearly separable problems with a smooth

monotone strictly decreasing and non-negative loss function (see Assumption 1 and 2). For

clarity, the learning setting is illustrated in Fig 1.
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Assumption 1. The dataset is linearly separable: 9 θ� such that 8i: θ�T xi> 0.

Assumption 2. 8t 2 R: ℓ(t) is a differentiable, monotonically decreasing function bounded
from below: ℓ(t)>0, ℓ0(t)<0, lim

t!1
‘ðtÞ ¼ lim

t!1
‘
0
ðtÞ ¼ 0.

The solution to the problem min
θ2Rn
L ðθÞ can be found using the lth iteration of the gradient

descent GD updates with a learning rate η:

θlþ1 ¼ θl � ZrL ðθlÞ ¼ θl � Z
Xm

i¼1

‘
0
ðθT

l xiÞxi: ð1Þ

In Eq (1) it is assumed that 8i 2 {1, . . ., m}: yi = 1, kxik<1.

Fig 1. The influence of a difference in approaching the lower and the upper asymptote on the magnitude of gradients. (A) The definitions of levels of visibility and

ranges of invisibility based on the generalized logistic loss function ℓr(t; a, b) subject to the different pairs (a, b) = {(0, 1), (0.1, 0.9), (0.23, 0.77)} and r = 1. (B) A decision

boundary with reliable (1), noisy (2,3,4), and adversarial (5) instances. (C) The empirical generalized logistic loss function −ln L(t; a, b) with the levels of visibility for

reliable t1, noisy t2, t3, t4, and adversarial t5 instances subject to the different pairs (a, b) = {(0, 1), (0.1, 0.9), (0.23, 0.77)} and r = 1. (D) The magnitude of the gradients of

the empirical generalized logistic loss functionrln L(t; a, b) subject to the different pairs (a, b) = {(0, 1), (0.1, 0.9), (0.23, 0.77)} and r = 1.

https://doi.org/10.1371/journal.pone.0219004.g001
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The function ℓ(t) describes a common classification loss function, including the exponential

and logistic loss. The generalized Verhulst model allows us to introduce the generalized logistic

loss function. In contrast to the simple loss function, the generalized loss function involves a

lower and an upper asymptote that allow additional regulating the magnitude of input gradients.

Generalized Verhulst growth model

The population growth P(t) in an infinite environment can be described with a linear ordinary

differential equation [44, 46, 47]:

dPðtÞ
dt
¼ rPðtÞ; ð2Þ

where r� b − d> 0 is the per capita rate of population growth, b and d are respective per cap-
ita rates of birth and death. The solution to this equation is

PðtÞ ¼ P0 exp ðrtÞ; ð3Þ

where P0 is the initial population.

Eq (2) introduces the Malthus model that describes an exponential growth of the popula-

tion [47]. The Malthus model seems sufficient to describe the population in the initial stage of

growth while the population is still small. However, it fails on a longer time interval since it

leads to an infinite growth lim
t!1

PðtÞ ¼ 1 as it does not consider the scarcity of resources.

To overcome this disadvantage, Verhulst assumed that Eq (2) should include the correction

term [43, 46]. This term approaches 1 when P(t) tends to zero and decreases linearly as P(t)
increases. Thus, the Malthus equation takes the form of the Verhulst equation that includes

the correction term proportional to −P(t)2/K:

dPðtÞ
dt
¼ rPðtÞ 1 �

PðtÞ
K

� �

; ð4Þ

where K is the carrying capacity that represents the maximum size of population which can

be supported by the environment. As the population size approaches the carrying capacity

lim
t!1

PðtÞ ¼ K, the population stops growing.

The solution to Eq (4) introduces the logistic growth model:

PðtÞ ¼
K

1 � 1 � K
P0

� �
exp ð� rtÞ

: ð5Þ

The extension to Eq (4) that also considers a critical population size can be rewritten as

dPðtÞ
dt
¼ r P tð Þ � Að Þ 1 �

PðtÞ � A
K � A

� �� �

; ð6Þ

PðtÞ ¼ Aþ
K � A

1 � 1 � K� A
P0þA

� �� �
exp ð� rtÞ

; ð7Þ

where K is the upper asymptote or the population carrying capacity; A is the lower asymptote

or the population minimum size.

The asymptote A indicates critical population thresholds 0� A< K below which a popula-

tion crashes to extinction. It serves as a substitute for the Allee effects [48] which are broadly

defined as a decline in individual fitness at low population size or density.

Bio-inspired robust gradient descent
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Bio-inspired gradient descent

We introduce the generalized logistic loss function ℓr(t;a, b) with regard to the generalized

Verhulst growth model Eq (6) and its solution Eq (7):

‘
0

rðt; a; bÞ ¼ rð‘rðt; a; bÞ � aÞ 1 �
‘rðt; a; bÞ � a

b � a

� �

ð8Þ

8t 2 R : ‘
0

rðt; a; bÞ < 0; lim
t!1

‘
0

rðt; a; bÞ ¼ lim
t!� 1

‘
0

rðt; a; bÞ ¼ 0,

‘rðt; a; bÞ ¼ aþ
b � a

1 � 1 �
b � a
P0 þ a

� �� �

exp ð� rtÞ
� � ;

ð9Þ

so that 8t 2 R : ‘rðt; a; bÞ > 0; lim
t!1

‘rðt; a; bÞ ¼ b � a; lim
t!� 1

‘rðt; a; bÞ ¼ a, where the lower

asymptote a� A, the upper asymptote b� K, 0� a< b� 1 and P0 þ a ¼ b� a
2

, from which

P0 ¼
b� 3a

2
.

Eqs (8) and (9) can be presented as

‘
0

rðt; a; bÞ ¼
ðb � aÞr exp ð� rtÞ

1þ exp ð� rtÞ
¼ ðb � aÞr‘0ðtÞ; ð10Þ

‘rðt; a; bÞ ¼ aþ
b � a

1þ exp ð� rtÞ
; ð11Þ

where ℓ0(t) = ℓ(t)(1 − ℓ(t)) is the derivative of the simple logistic loss function ℓ(t) = ℓ1(t;0, 1).

Using Eq (10) to determine the gradient in Eq (1) allows us to present the bio-inspired gra-

dient descent BioGD updates:

θlþ1 ¼ θl � Z
Xm

i¼1

‘
0

rðθ
T
l xi; a; bÞxi ¼ θl � Zr

Xm

i¼1

‘
0
ðθT

l xiÞxi; ð12Þ

where ηr = (b − a)rη.

For the sake of completeness, we introduce the empirical generalized logistic loss function

and its gradient as follows:

lnL ðθ; a; bÞ ¼ �
Xm

i¼1

yi ln ‘rðθ
Txi; a; bÞ þ ð1 � yiÞ ln ð1 � ‘rðθ

Txi; a; bÞÞ;

r lnL ðθ; a; bÞ ¼ �
Xm

i¼1

ðyi � ‘rðθ
Txi; a; bÞÞ

‘
0

rðθ
Txi; a; bÞ

ð1 � ‘rðθ
Txi; a; bÞÞ‘rðθ

Txi; a; bÞ
xi; 8yi 2 f0; 1g:

Then, taking into account our assumption that yi = 1, Eq (12) can be given as:

θlþ1 ¼ θl � Z
Xm

i¼1

‘
0

rðθ
T
l xi; a; bÞ

‘rðθ
T
l xi; a; bÞ

xi ¼ θl � Zr
Xm

i¼1

‘
0
ðθT

l xiÞ
‘rðθ

T
l xi; a; bÞ

xi: ð13Þ

The BioGD’s gradients in Eq (13) involve the derivative of the logistic loss function ‘
0
ðθT

l xiÞ
which is directly used to define the Hessian matrix of the simple logistic loss function in a sec-

ond-order gradient method. This means that we can regularize the first-order gradients by

partly employing the beneficial properties of the second-order method.

Bio-inspired robust gradient descent
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By definition, b − a� 1 that implies P0 �
1

2
� a. Let a�(b) be the solution to f(a�(b);b) = 0,

where f ða; bÞ ¼ b� 3a
2

. Then, P0 < a if a> a�(b). This condition guarantees that the lower

asymptote of the generalized logistic loss function ℓr(t; a, b) is approached much more gradu-

ally than the upper asymptote. In other words, the lower plateaus of the generalized logistic

loss function ℓr(t; a, b) with the nontrivial values (a, b) = {(0.1, 0.9), (0.23, 0.77)} are broader

than its upper plateaus in comparison with the simple logistic loss function ℓ(t) (see Fig 1A).

The solution a�(b) influences the rate of the loss function growth ℓr(t; a, b) if t< 0. The

value of the lower asymptote has impact on the robustness of gradient descent if 8i 2 {1, . . .,

m}: t = θ�T xi< 0, i.e. in the presence of noisy and adversarial labels. Fig 1B depicts a decision

boundary with reliable 1, noisy 2, 3, 4, and adversarial 5 instances. The circles denoted by 1 are

true positive instances. The squares present true negative instances. The instances indexed by

2, 3, 4, but annotated as a positive class, are noisy labels. An adversarial instance denoted by

5 is moved away from its legitimate class in the direction orthogonal to θ and, as a result, is

“invisible” and misclassified by the model.

The labels marked in Fig 1B specify the reliable (t� 0) and noisy (t� 0) regions for the

empirical logistic loss function and its gradient in Fig 1C and 1D. As it can be seen, the differ-

ence in approaching the lower and upper levels of visibility produces a positive effect on the

loss function by dropping noisy t1, t2, t3, t4 and adversarial t5 instances. In addition, it limits

the gradients to be near zero that allows any small magnitude perturbations embedded in the

gradients to be “visible” and make sure that they have no influence on classification results.

Therefore, the existing difference in approaching the two asymptotes allows us to expose

small magnitude perturbations below some lower and upper asymptotes, i.e. the lower and

upper levels of visibility, and diminish its negative effect on results. In terms of population

dynamics, the range of invisibility between these levels, i.e. the minimum and the maximum

population size may be interpreted as the population persistence in spite of very limited food

supply or space.

BioGD

BioGD represents an implementation of bio-inspired gradient descent (see Algorithm). The

algorithm involves the optimization of hyperparameters a, b and r with a grid search. A grid

with sufficient granularity to optimizing hyper-parameters can be easily implemented but

requires considerable computational costs if there is a need for smaller grid step sizes. In addi-

tion, the hyperparameters need to be optimized with constraints imposed by their bio-inspired

interpretation in terms of the generalized Verhulst equation. An inappropriate choice of grid

steps taken by the constrained optimization problem may lead to a lack of convergence. As an

alternative to grid search, a random search may be taken into consideration [49]. This tech-

nique combines the hyperparameters randomly and demonstrates comparatively better

results. However, as the method is entirely random, it leads to high variance. Bayesian optimi-

zation has lower variance as it searches the hyperparameters relying on probabilistic inference

[50]. This virtue may, however, induce bias in the estimates of hyperparameters in the presence

of outliers. Consequently, the choice of method depends on specific requirements and hyper-

parameter space complexity related to the problem to be solved. In this paper, we focus on the

problem of robustness to outliers, in particular, adversarial noise. For this reason, we opt for a

grid search to provide more reliable results by the exclusion of unnecessary variance in the

estimates of hyperparameters.

Algorithm Bio-inspired gradient descent
1: procedure BIOGD (x, y, η, n)
2: Initialize θ0;
3: Initialize a 2 [amin, amax], b 2 [bmin, bmax], r 2 [rmin, rmax];

Bio-inspired robust gradient descent
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4: Initialize a grid of n points in the space a × b × r;
5: Split (x, y) into train (x, y)T and cross-validation (x, y)CV
subsets;
6: l  0;
7: repeat
8: θlþ1  θl � ðb � aÞrZrðθÞL ðθl; ðx; yÞTÞ;
9: l  l + 1;
10: until converge
11: ða; b; rÞ  GridSearchðL ðθlþ1; ðx; yÞCVÞ; a; b; rÞ;
12: return θl+1, (a, b, r)

Computational experiments

We analyzed the impact of the hyperparameters on the robustness properties empirically

in order to support the results of theoretical outcomes. According to theoretical results, the

hyperparameters a and b: 1) directly deal with the magnitude of gradients; 2) are adaptive to

the newly updated data; 3) allow us to improve robustness to noise by penalizing the degree to

which hardly visible changes in gradients impact prediction. Therefore, the empirical evidence

is based on the comparison between the simple logistic loss with a = 0, b = 1 and the general-

ized logistic loss with aopt, bopt. In addition, we varied incrementally a number of instances m
to explore the adaptivity of the hyperparameters aopt, bopt to the newly updated data. Finally,

we justified the improvement in robustness and performance of the generalized model over

the simple model on the synthetic linearly separable dataset with different proportions of noisy

labels. Then, we assessed the viability of the generalized logistic loss with the hyperparameters

in the more realistic setting on experimental datasets. The chosen datasets are normally not

linearly separable but are indicative of the behavior of the hyperparameters and their influence

on prediction results.

BioGD suggests a predefined value for the rate of population growth for computational

experiments on synthetic and experimental datasets. There are two reasons for choosing this

value. First, we intend to analyze the direct influence of the hyperparameters a and b on the

magnitude of gradients. Second, we explore the benefits of the generalized logistic loss with

some optimal hyperparameters aopt and bopt over the simple logistic loss with a = 0 and b = 1.

The simple logistic loss lacks the parameter r by definition. As a consequence, it is reasonable

to choose r = 1.

While the hyperparameters a and b address the issue of robustness, the growth rate r is

aimed at accelerating the rate of convergence adaptively. Consequently, the hyperparameter r
does not play a crucial role in improving the results on the synthetic and experimental datasets

since the results of computational experiments are given from the perspective of a discrimina-

tive model such as logistic regression for binary classification. This normally implies process-

ing smaller datasets. Even if the detailed analysis of the convergence rate issue is beyond the

scope of this study, we still took the parameter r into consideration to show the usefulness and

applicability while applying the proposed technique to a more complicated model on a large

dataset for multiclass image classification.

Synthetic datasets

Design of experiments. We created an n-dimensional dataset so that each dimension’s

mean μj is sampled from a Gaussian distribution N ð0; 1Þ while each dimension’s standard

deviation σj is generated according to a distribution N ð1; 1Þ. The feature space of n-dimen-

sional instances is sampled from the distribution N ðmj; sjÞ. The instances in the dataset were

labelled by a randomly chosen hyperplane, so that the generated dataset is linearly separable. A

Bio-inspired robust gradient descent
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similar design of experiments is given by [51]. For the originally generated dataset, the portion

of mislabelled examples is p = 0.0. We constructed the noisy versions of this dataset by flipping

the labels for the randomly selected proportion of data instances p = {0.05, 0.1, 0.15, 0.2, 0.25,

0.3}. A more detailed description of this procedure is presented by [52] The experiments were

carried out by changing the number of instances incrementally mk 2 [20, 100] and setting the

number of features n = 10.

The datasets were divided into the training subset and the validation subset using 5-fold

cross-validation. We evaluated the cross-validation estimates of the hyperparameters aopt and

bopt with BioGD refined over a grid of 20 points in the hyperparameter space a × b, where a 2
[0, 0.15] and b 2 [0.85, 1]. In addition, we computed the mean and standard deviation (sd) of

empirical logistic loss lnL ðθ; xmk ; aopt; boptÞ over N = 200 experiments to guarantee the reliable

estimates. We used the default value for the learning rate η = 1.5e-8 to run BioGD.

Results. Fig 2A, 2C and 2E present the estimates of mean and sd of empirical loss for the

simple logistic loss with a = 0, b = 1 and the generalized logistic loss with the optimal levels of

visibility aopt, bopt with regard to mk = [20, 100] and p = {0.0, 0.15, 0.3}. As it can be seen, the

generalized logistic loss with the asymptotes aopt, bopt brings the benefits to both mean and sd

of the empirical loss. Moreover, increasing the portion of noisy labels up to p = 0.3 (see Fig 2E)

allows us to have distinct advantage of introducing the loss with optimal levels of visibility aopt,

bopt over the simple loss with a = 0, b = 1 on linearly separable dataset p = 0.0 (see Fig 2A). The

impact of levels of visibility on the estimates may be seen in Fig 2B, 2D and 2F. We have line-

arly separable datasets in Fig 2B. The lower level of visibility does not come into play here as

aopt = 0, but the upper level of visibility handles premature convergence of the empirical loss.

On the other hand, different portions of noisy labels were presented in Fig 2D and 2F, where

Fig 2. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logistic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20,

100] and p = {0.0, 0.15, 0.3}. (A) The mean and +/-sd of empirical loss subject to p = 0.0. (B) The levels of visibility aopt, bopt subject to p = 0.0. (C) The mean and +/-sd of

empirical loss subject to p = 0.15. (D) The levels of visibility aopt, bopt subject to p = 0.15. (E) The mean and +/-sd of empirical loss subject to p = 0.3. (F) The levels of

visibility aopt, bopt subject to p = 0.3.

https://doi.org/10.1371/journal.pone.0219004.g002
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we can observe how the lower level of visibility minimizes both the mean and sd of the empiri-

cal loss. If the lower level of visibility aopt results in larger values, it produces a more dramatic

effect on the estimates of empirical loss. This is expected by definition as the lower level allows

us to directly regulate the magnitude of gradients (see Fig 1D). The results of experiments for

different pairs p = {0.05, 0.1} and p = {0.2, 0.25} are given in S1 and S2 Figs, respectively.

To confirm the viability of introducing the levels of visibility, we computed the estimates

summed over the interval mk = [20, 100] for the simple logistic loss with a = 0, b = 1 and the

generalized logistic loss with the optimal levels of visibility aopt, bopt with regard to different

proportions p = {0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} (see Fig 3). As we can see, there is a more

noticable improvement in both the mean (see Fig 3A) and sd (see Fig 3B) of the empirical loss

for larger portion of noisy labels that fully comply with the theoretical reasoning behind the

definitions of visibility levels presented in Fig 1. The estimates of mean and +/-sd of empirical

loss for p = {0.0, 0.3} are given in S1 and S2 Files, respectively.

We used the Wilcoxon signed-rank test [53] to confirm the statistical significance of the

differences in mean against sd of the empirical loss between the generalized logistic loss and

the simple logistic loss without assuming them to follow the normal distribution. This test is

usually considered an alternative to the paired Student’s t-test if the population can not be

assumed to be normally distributed. The null hypothesis is that there is no improvement in

the mean and sd of the empirical loss for the generalized logistic loss with the optimal levels of

visibility over the empirical loss for the simple logistic loss. Since the p-value turns out to be

0.01563, i.e. less than the 0.05 significance level, we rejected the null hypothesis. Consequently,

the difference between the mean and sd of the empirical loss for the generalized logistic loss

and the simple loss is statistically significant. In addition, we applied a one-sided Wilcoxon test

with Bonferroni correction [54] for each p. The tests resulted in p-value<0.001 which means

that for each value of p we have a sufficient reason to reject the null hypothesis.

Experimental datasets

Design of experiments. We chose 11 experimental datasets, which are freely available

from UCI Machine Learning repository, for validating BioGD. The information given in

Fig 3. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logistic loss with the optimal levels of visibility aopt, bopt subject to the

proportions of noisy labels p = {0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. (A) The mean of empirical loss summed over the interval mk = [20, 100]. (B) The sd of empirical loss

summed over the interval mk = [20, 100].

https://doi.org/10.1371/journal.pone.0219004.g003
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Table 1 includes the number of instances m, the number of features n, the class distribution

|yi = 0| and |yi = 1|. Incrementally varying a number of instances mk 2 [20, 100] randomly

taken from the original dataset with number of instances m, we explored the adaptivity of the

hyperparameters aopt and bopt to the newly updated data. By analogy with the empirical setting

for the synthetic datasets, we implemented BioGD over a grid of 20 points in the hyperpara-

meter space a × b, where a 2 [0, 0.15] and b 2 [0.85, 1], to make the cross-validation estimates

of the empirical loss and the asymptotes. The default learning rate η = 1.5e-8 was used.

Results. According to the results of computational experiments, the used datasets can be

divided into the groups with marked, little and no improvement in the generalized logistic loss

with the optimal levels of visibility aopt, bopt over the simple logistic loss with a = 0, b = 1. Figs 4

and 5 demonstrate the estimates of mean and sd of the empirical loss over N = 200 experiments

with regard to mk = [20, 100] for vertebral, liver, pima, and heart. We can observe that the gen-

eralized logistic loss with the asymptotes aopt, bopt brings the benefits to both mean and sd of

the empirical loss. Moreover, the loss function converges with an increasing number of exam-

ples mk. As we have seen in case of the synthetic dataset, the variations of the upper level of vis-

ibility bopt can be attributed to premature convergence of the empirical loss function, while the

lower level of visibility is sensitive to the outliers that results in its divergence. Moreover, the

larger values for either the lower or upper level of visibility are indicative of the domination of

the above-mentioned issues.

However, for banknote, breast-win, and climate datasets, we obtained little improvement as

both levels of visibility influence the results or their impact is negligible (see S3 Fig). This pin-

points a lack of salient presence of one of the above-mentioned issues. As a result, the empirical

loss function may not converge with an increasing number of examples mk. The levels of visi-

bility may not produce any improvement (see S4 Fig). For blood dataset the curves of empirical

loss function for the generalized logistic loss with the optimal levels of visibility aopt, bopt and

the simple logistic loss with a = 0, b = 1 have been overlapped. For parkinsons dataset, the

empirical loss functions have little advantage over the generalized loss. Both almost overlap.

In S5 Fig the empirical loss functions does not converge for the simple logistic loss with a = 0,

b = 1 at all. The corresponding curves have been set as zero-valued. But the optimal levels of

visibility aopt, bopt still allow us to estimate the mean and sd of the generalized loss.

Fig 6 depicts the differences in mean against sd of the empirical loss between the simple

logistic loss and the generalized logistic loss for all the datasets summed over the interval mk 2

[20, 100]. The circles, radius of which is proportional to the number of features n (see Table 1),

are colored according to the rate of improvement on the mean and sd of empirical loss. As the

Table 1. A brief description of the experimental datasets.

Dataset m = |yi| m = |yi = 0| m = |yi = 1| n

Blood Transfusion Service Center (blood) 748 570 178 4

Banknote Authentication (banknote) 1372 762 610 4

Vertebral Column (vertebral) 309 100 209 6

Liver Disorder (liver) 345 145 200 6

Pima Indians Diabetes (pima) 768 500 268 8

Breast Cancer Wisconsin (breast-win) 683 444 239 9

Heart Statlog (heart) 270 150 120 13

Climate Model Simulation Crashes (climate) 540 46 494 17

Parkinsons (parkinsons) 195 48 147 22

Chronic Kidney Disease (chronic-kidney) 157 114 43 24

Cervical Cancer (cervical) 668 623 45 33

https://doi.org/10.1371/journal.pone.0219004.t001
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empirical loss function does not converge for chronic-kidney and cervical datasets in case of

a = 0, b = 1, the illustrated differences do not include these datasets. The estimates of mean and

sd for the simple loss and the generalized loss separately are given in S6 Fig.

By analogy with the synthetic datasets, we used the Wilcoxon signed-rank test to confirm

the statistical significance of the differences in mean against sd of the empirical loss between

the simple logistic loss and the generalized logistic loss. Since the p-value is equal to 0.01427,

i.e. less than the 0.05 significance level, we rejected the null hypothesis. The difference between

the mean and sd of the empirical loss for the generalized logistic loss and the simple loss is sta-

tistically significant.

Real-world application

Design of experiments. As an example of the applicability of the proposed optimization

technique, we applied it to an Adam-based [55] neural network with two hidden layers, each

of them containing 10 neurons. Each layer was activated by an advanced sigmoid function.

The activation function of the neural network was built with the generalized logistic loss that

Fig 4. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logistic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20,

100]. (A) The mean and +/-sd of empirical loss for the vertebral dataset. (B) The levels of visibility aopt, bopt for the vertebral dataset. (C) The mean and +/-sd of empirical

loss for the liver dataset. (D) The levels of visibility aopt, bopt for the liver dataset.

https://doi.org/10.1371/journal.pone.0219004.g004
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introduced the hyperparameters a, b, and r into the model. We used the default values for the

Adam optimizer: η = 0.001, β1 = 0.9, β2 = 0.999. The neural network was trained on the freely

available MNIST handwritten digits dataset [56] to solve a 10-class classification problem. The

dataset consists of 10 handwritten digits {0, .., 9} from 250 different people, 50% of high school

students, and 50% of employees from the Census Bureau. Each feature vector contains n = 784

pixels unrolled from the original 28x28 pixels images. The dataset consisted of m = 60000

examples for training and m = 10000 examples for testing. The training set was divided into an

actual training set of 50000 examples and 10000 validation examples for selecting the hyper-

parameters. The number of epochs and the batch size for training were nepoch = 1 and nbatch =

25, respectively. The hyperparameters were optimized with a random search as a less computa-

tionally expensive alternative to a grid search in the hyperparameter space a × b × r, where a 2
[0, 0.15], b 2 [0.85, 1], and r 2 [0.5, 5.1]. We tested the model on a subset with adversarial per-

turbations to confirm the importance of the hyperparameters for regulating the degree to

which changes in gradients impact prediction.

Fig 5. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logistic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20,

100]. (A) The mean and +/-sd of empirical loss for the pima dataset. (B) The levels of visibility aopt, bopt for the pima dataset. (C) The mean and +/-sd of empirical loss for

the heart dataset. (D) The levels of visibility aopt, bopt for the heart dataset.

https://doi.org/10.1371/journal.pone.0219004.g005
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The model of neural network was built in TensorFlow using Keras API. We also imple-

mented a random search with a random pick 15% of the permutations for optimizing the

hyperparameters with Talos and FGSM [11] for generating gradient-based attacks with Fool-

box [57]. FGSM allowed us to add the signs of gradients to the images, and, by that, increase

the magnitude until the images were misclassified.

Results. Fig 7 depicts the probabilities of predicting correct images on a testing dataset in

presence of adversarial noise for the advanced sigmoid activation function and the simple acti-

vation function. We can see that the advanced function with the optimal hyperparameters did

not bring distinct advantages (see Fig 7A) but still allowed us to guarantee higher accuracy that

is 95.6% in comparison with the simple function that gives 92.8% on a testing dataset without

adversarial examples.

By definition, the hyperparameter a allows us to regulate the magnitude of gradients. Con-

sequently, we set a threshold value athreshold = 0.13 that was used on training the neural net-

work model. The neural network model with the parameter athreshold instead of aopt still

showed better prediction on a testing dataset that does not contain adversarial noise—94.6%

against 92.8%. We investigated the influence of this parameter on the probability of predicting

correct labels. The values b and r were fixed for clarity. Fig 7B) reflects a more marked increase

in the probabilities of predicting correct labels for the advanced activation function in compar-

ison with the simple activation function.

Consequently, the proposed optimization technique may contribute to increasing robust-

ness to adversarial noise by penalizing the degree to which subtle changes in gradients impact

prediction.

Fig 6. The differences in mean and sd of empirical loss between the simple logistic loss with a = 0, b = 1 and the generalized

logistic loss with the optimal levels of visibility aopt, bopt for all the datasets summed over the interval mk 2 [20, 100].

https://doi.org/10.1371/journal.pone.0219004.g006
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Discussion

BioGD shares some similarity with the gradient regularization method presented by Ross and

Doshi-Velez [12] which allows regulating how much infinitesimal noise in gradients affect

predictions. However, Ross and Doshi-Velez proposed a second-order method which implies

a cost of taking second derivatives. Yu et al. [13], in turn, proposed a novel robust training

method by regulating the first-order gradients of neural networks. But, the adversarial exam-

ples and neural networks were considered as quasi-linear models.

The BioGD is the first-order gradient method which aims to solve a predefined optimiza-

tion problem, but also involves an open-ended adaptation process with regard to two hyper-

parameters. Considering the fact that these hyperparameters directly deal with vulnerable

gradients, are adaptive to the newly updated data, and allow us to improve robustness to

adversarial noise by regularizing the degree to which hardly visible changes in gradients

impact prediction, the BioGD algorithm seems to be an efficient solution to the posed

problem.

There are two important limitations to this research. First, the BioGD is based on the Ver-

hulst logistic growth equation. An alternative model of logistic growth is the Gompertz equa-

tion that shows more flexible behavior near the lower and upper asymptotes in comparison

with the Verhulst equation. Consequently, it seems promising to explore the effect of the

asymptotes of the Gompertz equation on the magnitude of gradients below the lower and

upper levels of visibility.

Fig 7. The probabilities of predicting correct labels in the presence of adversarial perturbations for the advanced sigmoid activation function with the

hyperparameters aopt, bopt, ropt and the simple sigmoid activation function with the hyperparameters a = 0, b = 1, r = 1. (A) The hyperparameters are equal to aopt =

0.017, bopt = 0.93, ropt = 2.8. (B) The hyperparameters are equal to athreshold = 0.13, bopt = 0.93, ropt = 2.8.

https://doi.org/10.1371/journal.pone.0219004.g007
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The other limitation is related to the open-ended adaptation process of the pair of hyper-

parameters. The implemented hyperparameter optimization controls the behavior of a learn-

ing algorithm using the empirical loss on a validation subset. Optimizing the hyperparameters

on the same dataset tunes only the values of this pair. This adaptation process may be inter-

preted in terms of the single species population growth. As a direction for future research, we

suggest adapting BioGD to a meta-learning framework that infers a learning algorithm from a

set of datasets in order to improve robustness on unseen datasets. In contrast to hyperpara-

meter optimization, meta-learning would imply optimizing a set of the pairs of hyperpara-

meters and may be considered in the context of multiple species population growth.

Supporting information

S1 File. The estimates of mean and +/-sd of empirical loss subject to mk 2 [20, 100] and

p = 0.0.

(CSV)

S2 File. The estimates of mean and +/-sd of empirical loss subject to mk 2 [20, 100] and

p = 0.3.

(CSV)

S1 Fig. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logis-

tic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20, 100] and p = {0.05,

0.1}. (A) The mean and +/-sd of empirical loss subject to p = 0.05. (B) The levels of visibility

aopt, bopt subject to p = 0.05. (C) The mean and +/-sd of empirical loss subject to p = 0.1. (D)

The levels of visibility aopt, bopt subject to p = 0.1.

(EPS)

S2 Fig. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logis-

tic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20, 100] and p = {0.2,

0.25}. (A) The mean and +/-sd of empirical loss subject to p = 0.2. (B) The levels of visibility

aopt, bopt subject to p = 0.2. (C) The mean and +/-sd of empirical loss subject to p = 0.25. (D)

The levels of visibility aopt, bopt subject to p = 0.25.

(EPS)

S3 Fig. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logis-

tic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20, 100]. (A) The mean

and +/-sd of empirical loss for the banknote dataset. (B) The levels of visibility aopt, bopt for the

banknote dataset. (C) The mean and +/-sd of empirical loss for the breast-win dataset. (D) The

levels of visibility aopt, bopt for the breast-win dataset. (E) The mean and +/-sd of empirical loss

for the climate dataset. (F) The levels of visibility aopt, bopt for the climate dataset.

(EPS)

S4 Fig. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logis-

tic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20, 100]. (A) The mean

and +/-sd of empirical loss for the blood dataset. (B) The levels of visibility aopt, bopt for the

blood dataset. (C) The mean and +/-sd of empirical loss for the parkinsons dataset. (D) The lev-

els of visibility aopt, bopt for the parkinsons dataset.

(EPS)

S5 Fig. The estimates for the simple logistic loss with a = 0, b = 1 and the generalized logis-

tic loss with the optimal levels of visibility aopt, bopt subject to mk 2 [20, 100]. (A) The mean

and +/-sd of empirical loss for the chronic-kidney dataset. (B) The levels of visibility aopt, bopt
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for the chronic-kidney dataset. (C) The mean and +/-sd of empirical loss for the cervical dataset.

(D) The levels of visibility aopt, bopt for the cervical dataset.

(EPS)

S6 Fig. The estimates for all the datasets summed over the interval mk 2 [20, 100]. (A) The

mean of empirical loss against the sd of empirical loss for the simple logistic loss with a = 0,

b = 1. (B) The mean of empirical loss against the sd of empirical loss for the generalized logistic

loss with the optimal levels of visibility aopt, bopt.

(EPS)
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