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Abstract

The overnight polysomnographic (PSG) recordings of patients were scored by an expert to

diagnose sleep disorders. Visual sleep scoring is a time-consuming and subjective process.

Automatic sleep staging methods can help; however, the mechanism and reliability of these

methods are not fully understood. Therefore, experts often need to rescore the recordings

to obtain reliable results. Here, we propose a human-computer collaborative sleep scoring

system. It is a rule-based automatic sleep scoring method that follows the American Acad-

emy of Sleep Medicine (AASM) guidelines to perform an initial scoring. Then, the reliability

level of each epoch is analyzed based on physiological patterns during sleep and the char-

acteristics of various stage changes.

Finally, experts would only need to rescore epochs with a low-reliability level. The experi-

mental results show that the average agreement rate between our system and fully manual

scorings can reach 90.42% with a kappa coefficient of 0.85. Over 50% of the manual scoring

time can be reduced. Due to the demonstrated robustness and applicability, the proposed

approach can be integrated with various PSG systems or automatic sleep scoring methods

for sleep monitoring in clinical or homecare applications in the future.

Introduction

Sleep disorders, such as insomnia and obstructive sleep apnea can seriously affect the quality

of life of patients. The prevalence of insomnia symptoms, without using restrictive criteria, is

approximately 33% of the general population [1]. The diagnosis of sleep disorders involves

overnight polysomnographic (PSG) recordings of a sleeping patient, including electroencepha-

lograms (EEG), electrooculograms (EOG) and electromyograms (EMG). The PSG recordings

are scored by a well-trained expert according to the Rechtschaffen & Kales (R&K) rules or the

American Academy of Sleep Medicine (AASM) guidelines [2] to classify each epoch (i.e., 30-s

data) into one of the sleep stages, including wakefulness (stage W), non-rapid eye movement

(stages N1, N2, and N3) and rapid eye movement (stage R).
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Because visual sleep scoring is a time-consuming and subjective process, automatic sleep

staging methods based on multi-channel signals, including EEG, EOG, and EMG were devel-

oped [3] [4–8]. Scoring methods based on single-channel EEG or EOG were also developed

for home based sleep-monitoring [9–18]. Recently, deep learning, a branch of machine learn-

ing that utilizes the structure of Deep Belief Nets (DBNs), Convolutional Neural Networks

(CNNs), or Long Short-Term Memory (LSTM) to learn hierarchical representations or fea-

tures from input data, has also been employed in sleep staging [19–26]. The AASM interscorer

reliability program [27] reported that interscorer agreement is 82.6%. Although the reported

overall agreement from some automatic sleep scoring methods can reach higher than 82.6%,

experts often manually rescore the PSG data because the methods behind the scoring process

are poorly understood. Instead of fully automatic sleep scoring, some sleep centers use auto-

matic methods to oversee some of the decisions [28]. Nevertheless, the experts must always

manually rescore the PSG data. In other words, these automatic scoring methods cannot coop-

erate with the scorer to effectively reduce the amount of time and effort spent scoring.

According to the AASM interscorer program report, agreement are reduced during stage

transitions, such as from stage W to N1, stage N2 to N3, and stage N2 to R [27]. Even the

experts with three or more years of sleep scoring experience, the agreement reduces 10.5% dur-

ing the stage transitions from W to N1 compared with the average agreement corresponding

to N1. Similarly, the agreements reduce 17.5% and 35% during N1 to N2 and N2 to N3 transi-

tions compared with the average agreements corresponding to N2 and N3, respectively. M.

Younes et al. also reported large disagreements between transition from N1 to N2 and N2 to

N3 [29]. Interscorer variability is mostly due to epochs that are difficult to identify. The avail-

ability of digitally identified events (e.g., spindles) or calculated variables (e.g., depth of sleep,

delta wave duration) during scoring may greatly reduce scoring variability.

Dimitriadis SI et al. proposed a single-EEG-sensor automatic sleep stage classification tech-

nique based on the dynamic reconfiguration of different aspects of cross-frequency coupling

[30]. A high classification performance was achieved (accuracy was 94.4% across 20 folds), the

recordings for evaluating classification performance were taken from 20 healthy young adults.

The results can be replicated in an external dataset of 77 subjects. Aboalayon K. et al. proposed

a novel and efficient technique to identify sleep stages using new statistical features applied to

the single-channel EEG signal [31]. They used the same dataset in Dimitriadis et al. [30], but

less data were included. Zhang et al. proposed an automatic sleep stage method that combined

a sparse deep belief net with multiple classifiers [32]. However, again the data used for develop-

ing the system included only ten subjects (eight of which did not have sleep disorders). As the

study in [30], the data from a larger patient pool and evaluation with multiple datasets is the

trend for the development of automatic sleep scoring methods, how to cooperate with the

scorer is the next challenge for clinical applicability.

Taking into account the above limitations, we developed a sleep scoring system that experts

would be willing to use, a human-computer collaborative sleep scoring (HCSS) system. The

goals of the HCSS system are as follows: 1) to provide a reliability score for each result, so

experts can assess the automatic scoring method; 2) to reduce manual scoring time, where

experts only need to rescore epochs with a low reliability score; and 3) to ensure the final scor-

ing results reliable and accepted by experts. To achieve these goals, a rule-based automatic

sleep scoring method [5] following AASM guidelines was utilized as the foundation of the sys-

tem to perform the initial scoring. Next, a reliability analysis strategy was developed to com-

pare the sleep features, stage change distance, and stage change frequency of the initial scoring

results. Finally, experts rescored epochs with low levels of reliability to fine-tune the results.

The overnight PSG recordings from 30 subjects were used in the experiment to evaluate the

performance of the proposed system including the agreement between manual scorings and
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the proposed HCSS system. The reduction in time spent manually scoring through use of the

HCSS system is also reported.

Materials and methods

Subjects and recordings

The experimental procedures in this paper were reviewed and approved by the Institutional

Review Board of Human Experiment and Ethics Committee, National Cheng Kung University

Hospital, Taiwan. Overnight polysomnographic (PSG) sleep recordings from 30 subjects (17

males and 13 females) ranging from 18 to 24 years in age were utilized in the experiments. The

recordings included 2 EEG channels (C3-M2 and C4-M1), according to the international 10–

20 standard system, two EOG channels (the above right and lower left outer canthus), and a

chin EMG channel which was acquired through a Siesta 802 PSG (Compumedics, Inc.). The

sample rate was 256 Hz with a 16-bit resolution. The filter settings of the cut-off frequencies

were 0.5–30 Hz for EEG/EOG and 5–100 Hz for EMG. All PSG recordings were scored by a

sleep expert (gold standard) according to the AASM rules with a 30-s epoch; the scoring results

were utilized as the gold standard. The manually scored epochs were each classified into one of

the sleep stages, stage W, stage N1, stage N2, stage N3, and stage R. The range of the subjects’

sleep efficiency (SE), the ratio of time spent asleep (total sleep time) to the amount of time

spent in bed, ranged from 56% to 97%. Subjects with good (N = 15) and poor (N = 15) SE were

included to evaluate the robustness and reliability of our system. Two scorers (who have over

800 hours of experience in PSG recording and scoring), scorers 1 and 2, were invited to partici-

pate in the experiments for performance evaluation.

System

Fig 1 shows a flow chart of the human-computer collaborative sleep scoring system. The sys-

tem includes three parts: (A) fully automatic scoring, (B) reliability analysis, and (C) human-

computer collaboration. Details of the scoring system are described below.

Fully automatic scoring

In this study, for the initial step, we employed a rule-based sleep scoring method [5, 33] based

on a decision tree to automatically identify the sleep stages. Stages that are easier to identify

were processed at nodes in the upper layers, while stages that are more difficult to distinguish

were processed at nodes in the lower ones. A distribution distance measure of the feature is

used to select the effective features of the nodes in the decision tree. There is a total of 13 deci-

sion nodes in the decision tree and 12 features for automatic sleep scoring. After classifying the

sleep stage using the decision tree, a smoothing process, that considers the temporal context

information, was applied for continuity. These rules refer to the relationship between epochs

before and after the current epoch.

Table 1 shows the relationship between the features and the R&K rules. The feature “Alpha

E” correspond to the duration of the epoch and consists of alpha (8–13 Hz) activity for stage

Wake. The “Spindle E” feature corresponds to the duration of spindle activity for stage S2. The

“0–4 E” and “SWS E” features correspond to the magnitude and duration of delta activity for

stage SWS. The “Amp M” feature corresponds to the magnitude of EMG for stage REM. Fig 2

shows a histogram of the 12 sleep features in Wake, N1, N2, N3, and REM stages from 30 PSG

recordings.

Human-computer collaborative sleep scoring system and polysomnography recordings
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Reliability analysis

After the fully automatic processing of the PSG recordings, we obtained data for the 12 features

used in the automatic staging as well as the initial scoring results. Three of these features and

the initial scoring results were used to analyze the staging reliability of each epoch. The reliabil-

ity analysis is based on the sleep features and the stage information is described as follows.

Slow wave related (SWR) features

After analysis by the decision tree, the stage change between stages N2 and N3 had high dis-

agreement with the AASM Interscorer Reliability Program [27]. The slow wave is the main

Fig 1. The flow chart of the human-computer collaborative sleep scoring system. The system consists of (A) fully automatic scoring, (B) reliability analysis,

and (C) human-computer collaboration.

https://doi.org/10.1371/journal.pone.0218948.g001

Table 1. Features for automatic sleep scoring.

No. Type Feature Source Label

1 PS Total power of 0–30 Hz EEG 0–30 E

2 PS Total power of 0–30 Hz EMG 0–30 M

3 PR 0–4 Hz/0–30 Hz EEG 0–4 E

4 PR 8–13 Hz/0–30 Hz EEG 8–13 E

5 PR 22–30 Hz/0–30 Hz EEG 22–30 E

6 PR 0–4 Hz/0–30 Hz EOG 0–4 O

7 SF Mean frequency of 0–30 Hz EEG Mean(fre.) E

8 SF Mean frequency of 0–30 Hz EMG Mean(fre.) M

9 DR Alpha ratio EEG Alpha E

10 DR Spindle ratio EEG Spindle E

11 DR SWS ratio EEG SWS E

12 EMG energy Mean amplitude EMG Amp M

PS, power spectrum; PR, power ratio; SF, spectral frequency; DR, duration ratio.

https://doi.org/10.1371/journal.pone.0218948.t001
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feature in N3, and we observed that the values of the slow wave features were close to the

threshold when the sleep stage changes to N3 from N2 or to N2 from N3. Therefore, we calcu-

lated the average and standard deviation (STD) of three slow wave related (SWR) features

including the EEG total power of 0–30 Hz (0–30 E), slow wave ratio (SWS E), and the EOG

power ratio of 0-4/0-30 Hz (0–4 O) in the N2 and N3 stages of the training data from a private

database [5]. The mean values of the features in N3 are higher than those in N2, so we set the

range between mean + 1�STD of N2 and mean– 1�STD of N3 for each feature as the boundary

range with a high possibility of misclassification. If more than one SWR features are in the

boundary range, an epoch identified as N2 or N3 stage by the automatic scoring system is

annotated with a low reliability score and is flagged to be rescored by an expert.

Fig 3 illustrate the SWR features in the boundary ranges for the epochs close to the start or

end of stage N3. Fig 3(A) and 3(B) are the hypnograms scored by gold standard and the auto-

matic staging system, respectively. Fig 3(C)–3(E) show the values of features 0–30 E, SWS E,

and 0–4 O, respectively. The red lines in Fig 3(A) and 3(B) indicate the epochs where the scor-

ings results of the expert and the computer are different. The red lines in Fig 3(C)–3(E) indi-

cate the disagreements during the start or end of stage N3.

Fig 2. Histogram of 12 sleep features in Wake, N1, N2, N3, and REM stages of 30 PSG data. The X-axis represents

the normalized feature values and the Y-axis represents the number of epochs. Features are power: (A) 0–30 Hz EEG,

(B) 0–30 Hz EMG; power ratio: (C) 0–4 Hz / 0–30 Hz EEG, (D) 8–13 Hz / 0–30 Hz EEG, (E) 22–30 Hz / 0–30 Hz EEG;

power (F) 0–4 Hz EOG; spectral frequency: (G) 0–30 Hz mean frequency EEG, (H) 0–30 Hz mean frequency EMG;

duration ratio: (I) alpha ratio EEG, (J) Spindle ratio EEG, (K) SWS ratio EEG; amplitude: (L) mean amplitude EMG.

https://doi.org/10.1371/journal.pone.0218948.g002
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Stage change distance (SCD)

The disagreements of sleep scoring mostly occurred in epochs identification during stage

changes and epochs separated from the stage changes that are relatively easy to identify. There-

fore, we calculated the minimum distance from the current epoch to the epoch belongings to

other stages and the distance (number of epochs) was defined as stage change distance (SCD).

Fig 4 shows the hypnogram and SCD values of the PSG from subject no. 3. The red lines in Fig

4 indicate the epochs where the scorings results of the expert and the computer are different.

The green dash line is the threshold between high and low reliability score of SCD. It can be

observed that most of the disagreements occur in epochs with a low SCD value. According to

our experiments, approximate 95% of disagreements occur in the epochs whose SCD values

are greater than or equal to 6. As a result, the epoch is labeled as low reliability if the SCD value

is less than 6.

Stage change frequency (SCF)

When a sleep stage is sustained for a long period of time, it is relatively stable. In contrast, the

periods with frequent stage changes cause high disagreement. Therefore, the number of stage

changes in a given window, called the stage change frequency (SCF), was also calculated as a

feature to quantify the stability of an epoch. When scoring the current epoch, an expert usually

refers to the adjacent 3–4 epochs, therefore, we set 11 adjacent epochs (the current epoch, and

its previous and succeeding five consecutive epochs) as the windows size to calculate a SCF

value. According to statistical analysis 73% of disagreements occurred in the epochs with a

SCF value above 2, and 67% of agreements occurred in the epochs with SCF values equal to or

less than 2. Therefore, if the change times in the window is less than or equal to 2, the epoch is

labeled as high reliability. Otherwise, the epoch is labeled as low reliability. Fig 5 shows the

hypnogram and SCF values from PSG of subject no. 5, and it can be observed that most dis-

agreements are within epochs with SCF values higher than 2 (green dashed line).

Fig 3. The hypnogram and SWR features of subject no. 1. The hypnograms scored by gold standard (A) and the automatic staging system (B). The

values of features 0–30 E (C), SWS E (D), and 0–4 O (E).

https://doi.org/10.1371/journal.pone.0218948.g003
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Voting process and human-computer collaboration

As shown in Fig 6, the majority of disagreements occur in epochs during the transition from

one stage to another, which can be detected by using three features, SWR, SCD and SCF.

Fig 4. The hypnogram and SCD value of PSG from subject no. 3. The hypnograms scored by gold standard (A) and the

automatic staging system (B). The value of feature SCD (C). The red lines indicate disagreement between the expert and the

automatic scoring system.

https://doi.org/10.1371/journal.pone.0218948.g004

Fig 5. The hypnogram and SCF values of subject no. 5. The hypnograms scored by gold standard (A) and the automatic

staging system (B). The value of feature SCF (C). The red lines indicate disagreement between the expert and the automatic

scoring system.

https://doi.org/10.1371/journal.pone.0218948.g005

Human-computer collaborative sleep scoring system and polysomnography recordings
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To enhance the reliability analysis to detect epochs with low reliability, we first calculated

the SWR, SCD and SCF features. Next, a voting process was applied, as shown in Fig 7, to

determine the level of reliability for each epoch. Finally, an expert only needs to rescore epochs

with a low level of reliability.

Fig 6. Reliability analysis examples. Disagreements can be detected by using the SWR (A), SCD (B) and SCF (C)

features.

https://doi.org/10.1371/journal.pone.0218948.g006

Fig 7. The architecture of the voting process. According to the value of the SWR, SCD, and SCF features, the voting

process determines a scored epoch as a high reliability or low reliability.

https://doi.org/10.1371/journal.pone.0218948.g007
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As presented in Session 2.1, the three SWR features, 0–30 E, SWS E, and 0–4 O, were calcu-

lated. If one SWR feature is within the boundary ranges, the output of the SWR feature is set to

0 representing a low reliability. Otherwise, this SWR feature is set to 1 representing a high reli-

ability. If two or more SWR features are 1 (�2), the vote for the overall SWR feature is set to 1

(high-reliability). Otherwise, the vote is 0.

According to Sessions 2.2 and 2.3, the vote of SCD is 1 (high-reliability) if the SCD value of

an epoch is higher than 6. Otherwise, the vote of SCD is 0. Similarly, the vote of SCF is 1 if the

SCF value of an epoch is equal to or less than 2. Otherwise, the vote of SCD is 0.

Finally, we sum the total value of the votes. If the number of total votes is higher than 1

(�2), the epoch is identified as high reliability. Otherwise, the epoch is identified as low-reli-

ability and an expert should rescore the epoch.

Experimental results

Two sleep experts, scorer 1 and scorer 2, participated in our experiments to test the perfor-

mance of our system. Each scorer scored the 30 subjects’ PSG data with (HCSS group) and

without the assistance of the HCSS system (Manual Group) separately. The PSG data was

given to the scorers in a random order and the scoring agreement was assessed between the

fully manual scoring and the scoring collaborated with the HCSS for each scorer. The manual

scoring time spent on fully manual scoring and HCSS scoring was also evaluated and com-

pared in the experiment.

Fig 8A shows the agreements between fully manual and HCSS scorings for scorer 1 and

scorer 2, including overall epochs, epochs of high-reliability and epochs of low reliability. The

overall agreement for scorer 1 and scorer 2 are 89.74% and 91.1%, respectively. The average

agreements are 92.37% and 92.77% in the high-reliability epochs and are 82.12% and 86.23%

in the low reliability epochs, respectively. The kappa coefficients [34] between each scorer’s

manual scorings and the results collaborated with the HCSS system are 0.84 and 0.86, respec-

tively. This indicates excellent agreement (>0.8). These experimental results show that a

human-computer collaborative sleep scoring method can perform well during stage transi-

tions. Fig 8B shows the cost in time for manual scoring with and without the assistance of the

HCSS system. Since the required scoring time is different for PSG data with different sleep

quality, the percent reduction in manual scoring time with the assistance of the HCSS com-

pared with fully manual scoring for the two scorers is also presented. The average manual scor-

ing time spent on an overnight PSG data for scorers 1 and 2 without the assistance of HCSS

system are1360 and 1090 seconds, respectively. The manual scoring time using the HCSS sys-

tem are reduced to 636 and 446 seconds for scorer 1 and scorer 2, respectively. The scorer

needed approximately 0.5 seconds and 1 second to identify epochs with high-reliability and

low reliability, respectively. The experimental results show that the proposed HCSS system can

enable an approximately 55.12% reduction in manual scoring time (52.03% for scorer 1 and

58.21% for scorer 2).

A 10-fold cross-validation was used to compute the misclassification error for the reliability

analysis of 30 PSG data. The misclassification error was 0.2824 and 0.276 for scorer 1 and

scorer 2 using our method.

Table 2 shows the agreement of scoring between the scorers and automatic scoring or

HCSS collaborative scoring with respect to the patients with good and poor sleep efficiency

(SE). SE higher than or equal to 85% is considered good sleep quality and SE lower than 85% is

considered poor sleep quality. The agreement of fully automatic sleep scoring decrease 5%

when SE is lower than 85%, however, the agreement can be higher than 87.27% for data char-

acterized as low sleep efficiency when the HCSS system is adopted. The results suggest that

Human-computer collaborative sleep scoring system and polysomnography recordings
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cooperative scoring between humans and machines is superior to fully automatic scoring

systems.

Table 3 shows the comparison of agreement of the gold standard, scorer 1 and scorer 2 in

terms of manual scoring and using our method. Compared with the gold standard, the agree-

ment of scorer 1 and scorer 2 are both higher than 85%, improving approximately 1% when

using our method. Compared to a purely automatic method [5] with the same PSG data as

shown in Table 2, our method has a higher agreement in both scorers.

Discussion

In this paper, a human-computer collaborative sleep scoring system is proposed. A rule-based

automatic sleep scoring method is utilized to perform the first-run scoring and the level of reli-

ability for each epoch is also analyzed based on the sleep features and the stage change observa-

tions. The percentage of low-reliability epochs where sleep experts must rescores is shown in

Table 4.

Table 2. Agreement comparison with respect to data with good and poor sleep efficiency.

Agreement

Sleep Efficiency Gold Standard Vs. Automatic Scorer 1 Vs. HCSS Scorer 2 Vs. HCSS

�85% 84.74% 88.88% 89.53%

< 85% 79.02% 88.44% 87.27%

https://doi.org/10.1371/journal.pone.0218948.t002

Fig 8. Evaluation of the HCSS system. (A) The agreement in overall, high-reliability and low-reliability epochs, along

with the kappa coefficient between the manual scorings and the HCSS system collaborated scorings. (B) The average of

the scoring time for one subject spent in manual and HCSS groups. Percentage of reduced manual scoring time with

the assistance of the HCSS system; OA: overall, HR: high-reliability, LR: low-reliability.

https://doi.org/10.1371/journal.pone.0218948.g008

Human-computer collaborative sleep scoring system and polysomnography recordings
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The average overall agreement, kappa coefficient, and percentage of scoring time reduced

between the complete manual scorings and our HCSS system are 88.47%, 0.825, and 55.28%,

respectively. Table 5 shows a comparison of agreement between the different automatic scor-

ing methods [5, 35]. By using our method, sleep experts only need to score 26.8% of the epochs

that are labeled as low-reliability and the agreement of gold standard both in good sleepers and

bad sleepers can reach 86.97%.

A good sleeper’s sleep efficiency is equal to or higher than 85%, and a bad sleeper’s sleep

efficiency is lower than 85%.

Similar to the AASM interscorer program report, most of the scoring disagreements occur

during stage transitions where sleep stage changes frequently within a short period of time.

Therefore, stage change frequency (SCF) and stage change distance (SCD) are proposed in this

paper to be used to estimate the reliability level of scoring in each epoch. The epochs would be

appropriately assigned to an expert or a computer to score according to the reliability analysis.

The experimental results demonstrate that the proposed strategy can tremendously reduce

manual scoring time while maintaining high scoring quality. Fig 9 shows the hypnograms of

subject no. 4 (SE: 82.98%), including the manual scoring by the scorer, the 1st stage fully auto-

matic staging, and the proposed HCSS system. It was observed that the hypnogram of the

Table 3. Comparison of agreement between the gold standard, scorer 1 and scorer 2 for manual scoring and the HCSS method.

Agreement Epoch Scorer 1 Scorer 1+HCSS Scorer 2 Scorer 2+HCSS

Gold Standard OA 85.76% 86.46% 85.99% 86.97%

HR 89.96% 90.62% 90.21% 91.29%

LR 74.02% 74.47% 74.07% 74.67%

Scorer 1 OA 91.41% 86.83% 87.83%

HR 93.08% 90.21% 91.60%

LR 86.60% 77.30% 76.81%

Scorer 1+HCSS OA 87.93% 92.09%

HR 91.20% 95.67%

LR 78.68% 81.70%

Scorer 2 OA 89.74%

HR 92.38%

LR 82.12%

OA: overall; HR: high-reliability; LR: low-reliability.

https://doi.org/10.1371/journal.pone.0218948.t003

Table 4. Percentage of low-reliability epochs across sleep stages where sleep experts have to examine.

Subject No. LR (%) Subject No. LR (%) Subject No. LR (%)

1 24.36% 11 25.69% 21 27.11%

2 31.07% 12 30.71% 22 29.48%

3 18.24% 13 31.20% 23 17.81%

4 25.96% 14 14.78% 24 39.17%

5 25.43% 15 20.10% 25 24.22%

6 30.98% 16 15.54% 26 16.50%

7 25.95% 17 23.93% 27 40.30%

8 26.12% 18 28.72% 28 38.08%

9 25.89% 19 46.09% 29 25.91%

10 27.73% 20 23.24% 30 23.70%

Low Reliability Epoch Percentage: 26.8%±1.33% S.E.M.

https://doi.org/10.1371/journal.pone.0218948.t004
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HCSS system is closer to the hypnogram scored by the expert in the stage transitions compared

with the fully automatic staging.

For flexibility, we propose two operational modes for the reliability analysis as summarized

in Table 6. An epoch with SCD > 5 or SCF < 3 is identified as high-reliability under the nor-

mal mode (level 1). The less stringent mode (level 2) identifies more epochs as high-reliability

by loosening the criteria, using SCD > 4 or SCF < 4. Reliability analysis for overnight PSG

recordings from 30 subjects shows that 73.21% and 82.07% of the epochs were flagged as high-

reliability for automatic staging by level 1 and level 2, respectively. The agreements were

Table 5. Comparison of agreement between different automatic scoring methods.

Method Private Database Gold Standard Agreement

Rule-Based [5] 16 Good Sleepers 85.85%

GA-fuzzy [35] 16 Good Sleepers 87.93%

HCSS 15 Good+15 Bad Sleepers 86.97%

https://doi.org/10.1371/journal.pone.0218948.t005

Fig 9. Hypnograms of the subject no. 4. The hypnograms scored by fully manual scoring (scorer 2) (A), fully

automatic staging (B) and the HCSS system (C).

https://doi.org/10.1371/journal.pone.0218948.g009

Table 6. Agreement comparisons with respect to different threshold levels in the reliability analysis.

Level 1: SCD > 5, SCF < 3

High reliability (%)

73.21%

Agreement

88.66%

Level 2: SCD > 4, SCF < 4

High reliability (%)

82.07%

Agreement

86.22%

https://doi.org/10.1371/journal.pone.0218948.t006
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88.66% and 86.22% under the normal and less stringent mode, respectively. These agreements

are higher than the interscore standard (82.6%) from AASM’s reliability program [16] and sug-

gest that the rule-based automatic sleep scoring method perform well in scoring high-reliabil-

ity epochs. The scorers can choose different operation modes depending on how much they

trust the HCSS system or how many low-reliability epochs they are willing to rescore.

Conclusion

Automatic sleep staging methods based on multi-channel signals and single-channel record-

ings as well as various deep neural networks such as DBNs, CNNs, and LSTM have been devel-

oped to efficiently reduce the amount of time and effort for sleep scoring. However, the

methods employed are not often published. Thus, the unexplained results from an uninter-

pretable black box limit the applicability of these methods in clinical diagnosis. Instead of fully

automatic or fully manual scoring, this paper proposes a human-computer collaborative

approach for sleep analysis. The experimental results demonstrate feasibility, and the proposed

approach can also be included with other various methods.

In the future, more PSG data with various sleep quality and more sleep scorers will be

included in experiments to evaluate the applicability of the HCSS system. A user-friendly

interface with complete assistant functions will also be designed to provide a high level of

usability for the scorers to achieve efficient sleep diagnosis.
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