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Abstract

The temporal dynamics of stride-to-stride fluctuations in steady-state walking reveal impor-

tant information about locomotor control and can be quantified using so-called fractal analy-

ses, notably the detrended fluctuation analysis (DFA). Gait dynamics are often collected

during treadmill walking using 3-D motion capture to identify gait events from kinematic

data. The sampling frequency of motion capture systems may impact the precision of event

detection and consequently impact the quantification of stride-to-stride variability. This study

aimed i) to determine if collecting multiple walking trials with different sampling frequency

affects DFA values of spatiotemporal parameters during treadmill walking, and ii) to deter-

mine the reliability of DFA values across downsampled conditions. Seventeen healthy

young adults walked on a treadmill while their gait dynamics was captured using different

sampling frequency (60, 120 and 240 Hz) in each condition. We also compared data from

the highest sampling frequency to downsampled versions of itself. We applied DFA to the

following time series: step length, time and speed, and stride length, time and speed. Reli-

ability between experimental conditions and between downsampled conditions were mea-

sured with 1) intraclass correlation estimates and their 95% confident intervals, calculated

based on a single-measurement, absolute-agreement, two-way mixed-effects model (ICC

3,1), and 2) Bland-Altman bias and limits of agreement. Both analyses revealed a poor reli-

ability of DFA results between conditions using different sampling frequencies, but a rela-

tively good reliability between original and downsampled spatiotemporal variables.

Collectively, our results suggest that using sampling frequencies of 120 Hz or 240 Hz pro-

vide similar results, but that using 60 Hz may alter DFA values. We recommend that gait

kinematics should be collected at around 120 Hz, which provides a compromise between

event detection accuracy and processing time.

Introduction

The temporal organization of stride-to-stride fluctuations during steady-state walking can

reveal important information about locomotor control [1–6]. With aging and neurodegenera-

tive diseases, gait variability become more random [7–8], compared to the persistent, fractal-

like pattern of fluctuations observed in healthy young adults, where large fluctuations are likely
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to be followed by larger fluctuations, and vice-versa [4,9]. In healthy adults, the temporal orga-

nization of fluctuations may also change under different conditions: during metronomic walk-

ing (i.e., stepping in time with an auditory metronome), stride time fluctuations become anti-

persistent, i.e., large fluctuations are likely to be followed by smaller fluctuations, and vice-

versa [1,9]. Similarly, stride length and stride speed become anti-persistent when healthy

young adults step on visual targets or walk on a treadmill, respectively [3,10]. More recent

studies also evidenced that stride time fluctuations can become more persistent when gait is

paced by visual or auditory cues [9–14].

A dominating method to analyze stride-to-stride fluctuations is the detrended fluctuation

analysis (DFA) [14], because it provides more accurate results for ‘short’ time series (<1000

data points) compared to other techniques such as power spectral analysis or rescaled range

analysis [15–17]. DFA partitions a time series (e.g., stride time intervals) of length N into non-

overlapping windows and calculates the average root mean square (RMS) at each window size.

The average RMS at every window size is then plotted against the corresponding window size

on a log-log plot. The slope resulting from the line of best fit produces the scaling exponent α-

DFA. In an effort to standardize DFA processing, researchers determined some gait-specific

parameters required to produce accurate DFA results. Based on both experimental and artifi-

cial time series, it is recommended to consider time series of at least 500 data points [16,18–

20]. The recommended range of window sizes is 16 to N/9 stride (or step) intervals [21],

although for shorter time series a range of 10 to N/4 may be preferred [18,22]. Recent investi-

gations also recommended to use a modified version of the original DFA algorithm, namely

the evenly spaced average DFA, to increase the precision of the estimation of the scaling expo-

nent [22–23].

In the context of locomotion, it is also important to consider the parameters underlying

data acquisition and pre-processing before applying DFA. In particular, motion capture sys-

tems are typically used to record gait kinematics during treadmill walking, but there is no con-

sensus on the most appropriate sampling frequency to reliability apply DFA [24]. While

sampling frequency may not have a significant effect on linear measures of gait (e.g., mean and

coefficient of variation), it is more likely to influence DFA, because this technique directly

depends on the accuracy and precision of gait event detections. In the context of postural

control, Rhea et al. [25] found that downsampling linearly decreased the α-DFA scaling expo-

nent of center of pressure (CoP) displacement and CoP velocity. On the other hand, higher

sampling frequencies are more likely to introduce artificial white noise (i.e., to decrease

α-DFA toward more randomness) [26], and may increase the processing time for little or no

benefits.

The goal of this study was to provide guidelines regarding the best sampling frequency to

capture fractal dynamics of gait during treadmill walking. We calculated α-DFA values from

spatiotemporal variables in different conditions where motion was captured at different sam-

pling frequencies. We compared the average values between conditions, but also the reliability

of α-DFA between conditions, using intraclass correlation (ICC) coefficients. Low ICC

between different conditions may be due to low between-trial consistency, independently

from the sampling frequency. Therefore, we also compared data from a high sampling fre-

quency condition to downsampled data from the same condition.

In summary, this study addressed the following research questions: does motion capture

sampling frequency affect α-DFA of spatiotemporal parameters during treadmill walking?

What is the reliability of α-DFA values across downsampled conditions? Our central hypothe-

sis was that lower sampling frequency and downsampling will shift α-DFA values toward 0.5,

i.e., more randomness due to lower precision in the estimation of gait events.

Sampling frequency and gait variability
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Materials and methods

Participants

Seventeen young adults (Age 23.9 ± 2.7 years, 7 females) were recruited through convenience

sampling to participate in the study. All participants self-reported no cognitive, neurological,

muscular, or orthopedic impairments. All participants provided written informed consent

according to the procedures approved by the local Institutional Review Board at the University

of Nebraska Medical Center.

Equipment

All participants wore their preferred walking shoes and wore a tight-fitting suit. Participants

were affixed with 11 retroreflective markers on the following anatomical landmarks to track

their motion while walking on a motorized treadmill (Bertec, Columbus, OH): left and right

anterior iliac spines, left and right posterior iliac spines, sacrum, dorsal region of the left and

right foot between the great toe and long toe, left and right heels, and left and right lateral mal-

leoli. Marker motion was captured through 8 infrared cameras (Vicon, Centennial, CO) at dif-

ferent sampling frequencies in each condition (cf. below).

Protocol

Participants completed three 15-minute walking trials at their preferred speed. Prior to the tri-

als, individual preferred speed was determined by gradually increasing and decreasing the

treadmill speed. The speed at which participants reported being comfortable walking for 15

minutes was selected as their preferred walking speed. Participants were given two minutes to

walk at their preferred speed for familiarization before the experimental trials begins. Each

trial was collected at a different sampling frequency—60 Hz, 120 Hz, and 240 Hz—in a ran-

domized order. Experimental conditions are described later in this paper by the sampling fre-

quency number (i.e., conditions 60, 120, 240).

Data processing

Gait events were automatically identified with a custom Matlab function based on the heel,

toe, and the average antero-posterior position of hip markers to find the heel strikes and toe

offs [27]. We also downsampled the kinematic data from the 240 condition to 120 Hz and 60

Hz (i.e., further referred as DS120 and DS60 conditions, respectively), using Matlab downsam-
ple function. In this study, we focused on the following spatiotemporal variables from each of

the five conditions (three experimental conditions: 60, 120 and 240; two downsampled condi-

tions: DS60 and DS120): step length, stride length, step time, stride time, step speed and stride

speed.

Each time series were reduced to the length of the shortest time series (i.e., 740 intervals)

for reliable comparisons across participants and conditions. The first 60 step or stride intervals

in each time series were removed to reduce the potential confounding effect of gait initiation.

Therefore, further analyses considered only 679 step or stride intervals (Fig 1). We calculated

the mean, coefficient of variation (CV) and scaling exponent (α-DFA) from each spatiotempo-

ral variable. The scaling exponent was calculated using the evenly spaced average DFA, which

was briefly described in the Introduction. We used a range of window from 10 to N/8, where

N is the time series length. We selected 18 points in the diffusion plot for the evenly spaced

average DFA [24]. An α-DFA value between 0.5 and 1 indicates persistent fluctuations,

whereas 0.5 indicates random fluctuations.

Sampling frequency and gait variability
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Statistical analysis

One-way repeated measure ANOVAs were performed 1) between conditions 240, 120, and 60,

and 2) between conditions 240, DS120, and DS60 (mean, CV and α-DFA) for each of the six

spatiotemporal variables. Post-hoc analysis entailed Tukey’s multiple comparison’s tests, and

the level of statistical significance was set at a p-value < 0.05.

For each spatiotemporal variable, intraclass correlation (ICC) estimates and their 95% con-

fident intervals were calculated using SPSS statistical package version 23 (SPSS Inc, Chicago,

IL) based on a single-measurement, absolute-agreement, two-way mixed-effects model (ICC

3,1) to determine the reliability of mean, CV and α-DFA [28–29]. We compared 1) conditions

240, 120 and 60, and 2) conditions 240, DS120 and DS60. The reliability was graded based on

the lower 95% CI values [29], with values less than 0.50 indicating poor reliability, values

between 0.50 and 0.75 indicating moderate reliability, values between 0.75 and 0.90 indicating

good reliability and values above 0.90 indicating excellent reliability [28].

We also computed Bland-Altman bias and limits of agreement (LoA) on α-DFA for all pos-

sible pairs of conditions, for all spatiotemporal variables. Bland-Altman bias and 95% LoA

basically assess agreement between two methods [30–31], by studying the mean difference

between paired measured (bias), and the agreement interval, within which 95% of the differ-

ences of the second method, compared to the first one, fall. The 95% LoA is typically defined
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Fig 1. Time series. Representative time series from a participant in the three experimental conditions (top three) and the two downsampled conditions (bottom two).

https://doi.org/10.1371/journal.pone.0218908.g001
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as the bias plus or minus 1.96 the standard deviation of the paired differences for two methods.

In this study, we will report LoA, defined as 1.96 the standard deviation of the paired differ-

ences for two methods (i.e., to find 95% LoA, simply add or subtract LoA from bias). It is rec-

ommended that acceptable limits of agreement should be defined a priori [31]. In the present

study, values of LoA equal or below 0.05 for α-DFA were defined as acceptable, based on previ-

ous studies using artificial time series to evaluate the proportion of variance due to the compu-

tational technique in estimating α-DFA values [16].

Results

Data from three participants were excluded due to technical difficulties. Data from the remain-

ing 14 participants (Age 23.9 ± 2.8 years, 5 females) were further processed. There was no sta-

tistically significant difference between sides for any analyses, so we only report results from

the right side in further analyses for the sake of clarity. The spatiotemporal time series from

both sides are available in S1 Dataset.

Effect of sampling frequency

There was no statistically significant difference between any conditions for any measures of

any spatiotemporal variables (p>0.05). The ICCs revealed good to excellent reliability for

mean of step length and step speed, and excellent reliability for all other spatiotemporal vari-

ables (Table 1). Based on the 95% confidence interval, the reliability of CV was poor to good

for stride length, step time, stride time and stride speed, and moderate to excellent for step

length and step speed. In contrast, for α-DFA the ICC coefficients were poor to good, and the

95% confidence interval revealed poor to moderate reliability for step length, step time, step

speed and stride speed, and poor to good reliability for stride length and stride time (Fig 2).

Table 1. Mean and standard deviation (SD) of time series mean, coefficient of variation (CV) and α-DFA from

condition 240, condition 120 and condition 60, and corresponding intraclass correlations and 95% confidence

intervals.

Mean (SD) for conditions

240 120 60 ICC [95% CI]

Step length Mean (m) 0.63 (0.06) 0.62 (0.06) 0.62 (0.07) 0.915 [0.811–0.969]

CV (%) 1.75 (0.64) 1.81 (0.57) 2.00 (0.58) 0.804 [0.585–0.929]

α-DFA 0.72 (0.13) 0.68 (0.09) 0.67 (0.08) 0.309 [-0.004–0.652]

Stride length Mean (m) 1.26 (0.11) 1.26 (0.11) 1.26 (0.11) 0.991 [0.979–0.997]

CV (%) 1.30 (0.43) 1.41 (0.51) 1.45 (0.32) 0.620 [0.326–0.840]

α-DFA 0.77 (0.13) 0.75 (0.12) 0.73 (0.11) 0.536 [0.214–0.797]

Step time Mean (s) 0.54 (0.04) 0.53 (0.04) 0.54 (0.04) 0.992 [0.981–0.997]

CV (%) 1.55 (0.47) 1.67 (0.46) 1.93 (0.33) 0.509 [0.175–0.783]

α-DFA 0.73 (0.11) 0.68 (0.09) 0.65 (0.09) 0.382 [0.079–0.697]

Stride time Mean (s) 1.07 (0.07) 1.07 (0.07) 1.07 (0.07) 0.993 [0.984–0.998]

CV (%) 1.25 (0.54) 1.28 (0.48) 1.32 (0.30) 0.542 [0.222–0.801]

α-DFA 0.79 (0.14) 0.77 (0.10) 0.77 (0.11) 0.546 [0.227–0.803]

Step speed Mean (m/s) 1.17 (0.12) 1.17 (0.12) 1.15 (0.14) 0.911 [0.801–0.968]

CV (%) 1.74 (0.57) 1.71 (0.42) 1.88 (0.39) 0.861 [0.680–0.950]

α-DFA 0.55 (0.06) 0.56 (0.06) 0.54 (0.05) -0.072 [-0.290–0.301]

Stride speed Mean (m/s) 1.18 (0.12) 1.18 (0.12) 1.18 (0.12) 0.998 [0.995–0.999]

CV (%) 1.34 (0.84) 1.17 (0.25) 1.39 (0.32) 0.370 [0.040–0.698]

α-DFA 0.43 (0.07) 0.50 (0.20) 0.53 (0.26) 0.382 [0.052–0.706]

https://doi.org/10.1371/journal.pone.0218908.t001
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Bland-Altman bias and LoA showed similar results (Table 2): for all spatiotemporal variables,

there was no consistent bias between conditions 240 and 120, but there was a negative bias

between conditions 240 and 60 for step length and stride length α-DFA, indicating lower val-

ues in condition 60. Similarly, a small negative bias was observed for most spatiotemporal vari-

ables between conditions 120 and 60. In addition, for every pair of conditions, the LoAs

ranged from 0.120 to 0.289, well above the acceptable limits of agreement defined at 0.05.

Effect of downsampling

There was no statistically significant difference between any conditions for any measures of

any spatiotemporal variables (p>0.05), except for CV of step time (F(2,39) = 3.917, p = 0.028).

The ICCs revealed excellent absolute agreement of means for all spatiotemporal variables

(Table 3). For CV, while ICC coefficients were above 0.9 for all spatiotemporal variables, based

on the 95% confidence interval the reliability was poor to excellent for step length, moderate to

excellent stride length, stride time and step speed, good to excellent for stride speed and excel-

lent for step time. For α-DFA, the 95% confidence interval revealed moderate to excellent

Fig 2. DFA results. Individual α-DFA values for stride length (left), stride time (middle) and stride speed (right) in the three experimental conditions and the two

downsampled conditions.

https://doi.org/10.1371/journal.pone.0218908.g002

Table 2. Bland-Altman bias and limits of agreement [LoA], defined as 1.96 standard deviation of the differences, of α-DFA values for each pair of conditions, for

all spatiotemporal variables (right side only). A negative bias indicates that the condition in the top row produced higher α-DFA estimates on average than the condition

in the corresponding row.

Conditions 240 120 60 DS120

Spatiotemporal

variable

Step Stride Step Stride Step Stride Step Stride

120 Length -0.035 [0.268] -0.016 [0.289]

Time 0.013 [0.165] -0.016 [0.276]

Speed 0.008 [0.182] 0.013 [0.165]

60 Length -0.052 [0.241] -0.062 [0.175] -0.017 [0.173] -0.046 [0.205]

Time 0.017 [0.161] -0.020 [0.158] -0.030 [0.157] -0.004 [0.208]

Speed -0.011 [0.167] 0.017 [0.161] -0.020 [0.132] 0.004 [0.120]

DS120 Length -0.007 [0.035] -0.019 [0.048] 0.028 [0.257] -0.002 [0.273] 0.045 [0.232] 0.044 [0.162]

Time -0.004 [0.054] -0.010 [0.015] 0.034 [0.256] 0.006 [0.276] 0.064 [0.197] 0.011 [0.156]

Speed -0.005 [0.044] -0.004 [0.054] -0.014 [0.173] -0.017 [0.138] 0.006 [0.155] -0.021 [0.133]

DS60 Length -0.040 [0.109] -0.042 [0.090] -0.005 [0.253] -0.025 [0.271] 0.012 [0.221] 0.021 [0.162] -0.033 [0.088] -0.023 [0.080]

Time 0.014 [0.084] -0.052 [0.068] -0.026 [0.262] -0.036 [0.280] 0.004 [0.180] -0.032 [0.159] -0.059 [0.088] -0.042 [0.058]

Speed -0.011 [0.086] 0.014 [0.084] -0.020 [0.151] 0.001 [0.142] 0.000 [0.149] -0.003 [0.143] -0.006 [0.078] 0.018 [0.091]

https://doi.org/10.1371/journal.pone.0218908.t002
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reliability for step length, step time, stride time, step speed and stride speed, and good to excel-

lent for stride length (Fig 2). Bland-Altman bias and LoA showed different results for condi-

tions DS120 and DS60 when compared to condition 240. Condition DS120 showed very little

bias for every spatiotemporal variable, and the LoAs were all within the acceptable limits of

0.05 (step time and stride speed showed LoA of 0.054, which was still deemed acceptable). In

contrast, condition DS60 showed a negative bias, in particular for step length, stride length

and stride time. In addition, all the LoA values were above 0.05. Similar results were also found

when comparing conditions DS120 to DS60: a negative bias for step length, stride length, step

time and stride time, and LoA values above 0.05 for all spatiotemporal variables.

Discussion

The goal of this study was to determine how motion capture sampling frequency and down-

sampling procedures affect DFA during treadmill walking. Our four main findings are that i)

in general, mean, CV and α-DFA values of all spatiotemporal variables were similar between

conditions, as revealed by ANOVAs, whether the data was collected at different sampling fre-

quencies or downsampled, ii) α-DFA values were not reliable between conditions using differ-

ent sampling frequencies, as revealed by ICCs, iii) α-DFA values were reliable between original

and downsampled spatiotemporal variables, in particular between 240 Hz and 120 Hz, as

revealed by ICCs and Bland-Altman analyses, and iv) α-DFA from stride intervals were more

reliable than α-DFA from step intervals.

Our original hypothesis that lower sampling frequency shift α-DFA values toward more

randomness was not supported. We observed a small, non-significant trend toward a reduc-

tion in the scaling exponent α-DFA for step length, stride length, step time and stride time, for

data originally sampled at 60 Hz or downsampled at 60 Hz. Previous studies have used a range

Table 3. Mean and standard deviation (SD) of time series mean, coefficient of variation (CV) and α-DFA from

condition 240, condition DS120 and condition DS60, and corresponding intraclass correlations and 95% confi-

dence intervals.

Mean (SD) for conditions

240 DS120 DS60 ICC [95% CI]

Step length Mean (m) 0.63 (0.06) 0.63 (0.06) 0.63 (0.06) 0.999 [0.998–1]

CV (%) 1.75 (0.64) 1.80 (0.61) 1.98 (0.59) 0.958 [0.475–0.991]

α-DFA 0.72 (0.13) 0.71 (0.11) 0.68 (0.11) 0.906 [0.747–0.968]

Stride length Mean (m) 1.26 (0.11) 1.26 (0.11) 1.26 (0.11) 1 [1–1]

CV (%) 1.30 (0.43) 1.34 (0.41) 1.45 (0.39) 0.959 [0.501–0.991]

α-DFA 0.77 (0.13) 0.75 (012) 0.73 (0.11) 0.952 [0.888–0.983]

Step time Mean (s) 0.54 (0.04) 0.54 (0.04) 0.54 (0.04) 1 [1–1]

CV (%) 1.55 (0.47) 1.65 (0.77) 1.98 (0.37) 0.978 [0.946–0.992]

α-DFA 0.73 (0.11) 0.72 (0.10) 0.66 (0.10) 0.88 [0.736–0.956]

Stride time Mean (s) 1.07 (0.07) 1.07 (0.07) 1.07 (0.07) 1 [1–1]

CV (%) 1.25 (0.54) 1.28 (0.53) 1.41 (0.50) 0.97 [0.594–0.993]

α-DFA 0.79 (.14) 0.78 (0.14) 0.74 (0.14) 0.945 [0.662–0.986]

Step speed Mean (m/s) 1.17 (0.12) 1.17 (0.12) 1.17 (0.12) 1 [1–1]

CV (%) 1.74 (0.57) 1.79 (0.56) 1.95 (0.49) 0.952 [0.532–0.989]

α-DFA 0.55 (0.06) 0.54 (0.06) 0.54 (0.04) 0.767 [0.537–0.909]

Stride speed Mean (m/s) 1.18 (0.12) 1.18 (0.12) 1.18 (0.12) 1 [1–1]

CV (%) 1.34 (0.84) 1.38 (0.83) 1.58 (0.83) 0.964 [0.768–0.991]

α-DFA 0.43 (0.07) 0.43 (0.06) 0.45 (0.06) 0.820 [0.624–0.932]

https://doi.org/10.1371/journal.pone.0218908.t003
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of sampling frequencies to study gait dynamics during treadmill or overground walking

[2,5,21,32–34]. Our results suggest that when the research question focuses on within-group

or between-group comparisons, a sampling frequency as low as 60 Hz may be able to capture

differences. While the reductions in α-DFA were not significant, 120 Hz may allow for more

precise event detection. In addition, walking speed may also play a role: as lower limbs move

faster, a greater sampling frequency is needed to capture gait events with the same precision.

While this question was beyond the scope of this study and will need to be addressed later, it is

an important factor to consider when selecting motion capture sampling frequency. It is also

important to note that the number of potential individual values present in a time series

depends not only from the sampling frequency, but also from the coefficient of variation (or

the range) in that time series. As an illustration, for a stride time series centered around 1-sec

with a CV of 5% (i.e., a range of [0.95–1.05]), sampling at 100 Hz would lead to 11 potential

values (i.e. 0.95, 0.96, 0.97, etc.). In contrast, a CV of 2% (i.e., a range of [0.98–1.02]) would

lead to only 5 potential values and a much more ‘squared’ signal.

While α-DFA values were not significantly different between conditions, they were not

very reliable. Based on the lower 95% confidence intervals, the reliability was graded as poor

for all spatiotemporal variables (Table 1). Bland-Altman analyses indicated a similar trend,

with limited biases but high limits of agreement, above the a priori defined threshold of 0.05

(Table 2). This is an important finding, as it suggests that collecting data from the same partici-

pant using different sampling frequencies would lead to very different scaling exponents in

each condition. However, as stressed in the Introduction, a low reliability between conditions

may also arise independently from sampling frequencies. While previous studies have shown

that α-DFA presented relatively high within-day reliability [33,35–36], it is possible to observe

within-subject differences in gait dynamics between conditions. This may arise from different

factors such as fluctuations in attention levels, fatigue or habituation to treadmill walking. We

anticipated such potential confounding effects, and therefore studied the effect of downsam-

pling (from the highest sampling frequency).

We found that the reliability of α-DFA values graded as moderate and good between origi-

nal and downsampled spatiotemporal variables (Table 3). Bland-Altman analyses further

showed that the data downsampled at 120 Hz provided very similar results as the original data

sampled at 240 Hz, with no consistent bias and limits of agreement below the threshold of

0.05. This suggests that using a sampling frequency of 240 Hz does not provide more benefit

than 120 Hz to capture the ‘true’ α-DFA values. In contrast, the Bland-Altman bias was higher

between conditions 240 and DS60, and the limits of agreement were above 0.05 for all spatio-

temporal variables. This suggests that sampling motion capture at 60 Hz (i.e., as in condition

DS60) may lead to less accurate α-DFA values, assuming condition 240 as the gold-standard.

These results contrast with our previous finding (comparing different conditions), and sug-

gests that the low reliability observed between conditions sampled at different frequencies

originated from within-subject differences more than reflecting a true effect of sampling

frequency.

It should also be stressed that α-DFA from stride intervals were more reliable than step

intervals. This may be because a single stride interval ‘encompasses’ two step intervals (i.e., one

from each side). Therefore, small corrections occurring at the step level may not be reflected in

a more global stride interval.

Our study presents several limitations. First, our final sample size (N = 14) may be relatively

small, considering that each participant underwent three conditions [37]. While the results

from intraclass correlations and Bland-Altman analyses lead to similar conclusions, the small

sample size remains a major limitation of the present study. We also collected only healthy

young adults, as in previous methodological studies, because healthy gait patterns are often
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used as a reference [21,32–33,35–36]. We cannot exclude the possibility that the results would

be different with other populations such as older adults or people with gait disorders. Another

limitation of our study is that we only considered three different sampling frequencies. While

technically motion can be captured at any sampling frequency (i.e., on a continuous scale), we

chose to focus on the most representative values reported in previous literature. In addition,

collecting human gait below 50 Hz would certainly alter not only DFA results but also mean

and CV, and collecting above 240 Hz would increase processing time. Finally, there is little rea-

son to think that DFA results from data sampled at 120 Hz would significantly differ from data

sampled at a slightly lower frequency (e.g., 100 Hz), because our results at 240 Hz or 120 Hz

were very similar. As mentioned earlier, walking speed and the coefficient of variation of time

series may also play a role. Future studies should investigate the reliability of DFA results at dif-

ferent walking velocity. Another limitation is that we only considered treadmill walking, but

our conclusions may not hold true for overground walking. Note that the study of fractal

dynamics during overground walking is often performed on data captured with small acceler-

ometers or footswitches [1,4,7,10,18–20]. Footswitches in particular–while limited in captur-

ing only temporal variables such as stride time intervals–are often capable of higher sampling

frequency (e.g., data is often collected at 1000 Hz or more). A final limitation of this study was

that we focused solely on the scaling exponent α-DFA, and did not test other techniques.

While this may be considered a limitation, our goal in this paper was to provide guidelines spe-

cifically related to the application of DFA to spatiotemporal variables. Previous studies have

already compared the effect of sampling frequency on other measures of gait [38], and future

studies may use our data (S1 Dataset) to ask other questions related to the reliability of gait

parameters during treadmill walking.

In conclusion, sampling frequency seems to have little effect on α-DFA applied to spatio-

temporal variables during treadmill walking. Overall, stride intervals seem to provide more

reliable results than step intervals. While no significant differences were observed between

conditions, a small trend toward lower α-DFA values with lower sampling frequencies lead us

to recommend that data should be collected at around 120 Hz. This seems to be the best com-

promise between precise event detection and reduced processing time.

Supporting information

S1 Dataset. Raw data. Spatiotemporal time series from 14 healthy young adults walking on a

treadmill at their self-selected speed, in different conditions characterized by different sam-

pling frequency of the 3D motion capture system. Conditions ’240ds120’ and ’240ds60’ corre-

spond to the downsampled data from 240 Hz to 120 Hz and 60 Hz, respectively.
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