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Abstract

Neighborhood relationship plays an important role in spatial analysis, map generalization,

co-location data mining and other applications. From the perspective of computation, the

formal model of neighborhood representation is a challenging question. This study presents

a formal spatial data model for representing the planar spatial field with the support of Delau-

nay triangulation. Based on the three geometric elements in a triangle of the vertex, edge,

and triangle area, the constructed data model describes the spatial objects of a point, line,

and region respectively, as well as the neighborhood relationships among them. Three

types of operators based on the model are formally defined, expanding, compressing and

skeletonizing. For practical applications, three complex operators are extended by continu-

ous and conditional operation. Through the application example of urban building generali-

zation, this study illustrates the analysis of a neighborhood relationship and the detection of

spatial conflicts, which is a crucial pre-process during map generalization. With the support

of the proposed formal model of neighborhood representation, the generalization method

uses the three basic operations of grouping, displacement and aggregation to perform deci-

sion making and detailed operation. The generalized result can retain the balance of built-up

area better than that of other similar building generalization methods.

1. Introduction

Objects and phenomena in reality are represented as spatial entities and spatial relationships

in a geographic information systems (GIS) conceptual world and are organized in spatial data

models. Two spatial data models are commonly used: the object-oriented and field-oriented

models. The object-oriented model emphasizes the integrity of entities in which the identified

unit corresponds with the object in the real world, but it lacks an effective strategy for repre-

senting the inter-association or spatial relations, thus resulting in the requirement for complex

vector computations. The field-oriented model focuses on the spatial correlation and continu-

ity of the objects throughout the entire representing space. The surface is tessellated into sets
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of units with the attribute description of each unit, and the relations between the entities can

be obtained through set-based map algebra computation, such as the expanding of the raster.

With respect to which is better in spatial representation, the corresponding argument between

these two models is similar to that regarding waves and particles in the physics domain in the

20th century [1]. In the case of the field model, it is relatively easier to compute the spatial rela-

tionship and to conduct the spatial association processes. The map algebra method based on

the raster data structure gives the field model advantage. Spatial associations, such as the

neighborhood relationship, play an important role in spatial analysis, map generalization, co-

location detection, and other applications. In map generalization, for example, the analysis of

neighborhood relationships and detection of spatial conflicts usually comprises a significant

pre-process. As the generalization attempts made to handle the spatial transformation from a

large space to a small space, the spatial conflict detection within some neighboring areas is an

important process. The neighborhood processing in the field model depends on the form of

the data structure. For the regular data structure, such as the grid structure based on rectangles,

equilateral triangle, and regular hexagons, we often use buffer operations to find the neighbor-

ing object within a certain distance. For an irregular data structure, such as the triangulated

irregular network (TIN) structure, we can use the connection based on the Delaunay triangu-

lation to find the neighboring objects. In this study, we attempt to explore the latter option by

constructing a formal neighborhood model using the Delaunay triangulation and applying

this in urban building generalization. In contrast to the application of TIN in the representa-

tion of the terrain surface in digital elevation model (DEM) studies, these models are applied

to a planar condition with a focus on the neighborhood relation between buildings and, fur-

thermore, on identifying spatial conflicts. However, these applications aim at different situa-

tions presenting concrete models associated with Delaunay triangulation without a unified

formal model to represent neighborhood relationship. From the perspective of computation,

the formal model is significant for describing the logical computation process. The formal defi-

nition and operators can be used to represent the neighborhood question in a normal and uni-

versal manner to support the algorithm design. In this study, we attempt to establish a formal

model to represent a neighborhood relation based on the Delaunay triangulation to formally

define spatial objects and present neighborhood-related operators.

We also attempt to apply the new model to the automatic generalization of an urban build-

ing cluster, which is associated with the neighborhood analysis. Automatic generalization of

building clusters comprises different types of operations and analyses. First, it is necessary to

group the buildings using different rules such as the Gestalt nature cognition or recognition of

a distribution pattern. The displacement step is then used to identify how far and in which

direction the objects should move. Third, the geometrical simplification and aggregation is

conducted to abstract the building shape. The three steps require a model related to the neigh-

borhood analysis to derive such descriptive indices for the distribution pattern, distribution

density, adjacency direction, adjacency distance, etc.

In building data generalization, the operation can be classified into two types according to

the object type, that is individual building generalization and cluster building generalization.

Several works have developed algorithms and methods for independent building simplifica-

tion [2–18]. Regnauld and Edwardes [2] proposed three typical operations for the simplifica-

tion of buildings from the perspective of the readable view: squaring, detail removal, and local

enlargement. By separating a building into some hierarchical rectangle elements, Guo and Ai

[4] presented a method to simplify the building polygon based on an idea of divide-and-con-

quer. By treating the four continuous adjacent points as an overall unit, Xu et al. [7] proposed

an approach for building simplification based on the improvement of local simplification algo-

rithms. In this method, the bend structures can be analyzed and the short edges can be
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removed. Sester [13] proposed an approach of building simplification comprising the use of a

set of rules and adjusted the simplified building optimally based on the theory of least squares

adjustment. In this method, the short edges can be eliminated using an optimization solution.

In terms of artificial intelligence, Cheng et al. [17] presented a model of back-propagation neu-

ral network model for learning cartographers’ knowledge for the realization of building simpli-

fication. However, these studies usually only took into consideration the geometric features

and ignored the neighborhood relationships of the building during the generalization.

As compared with the individual building simplification, the building cluster generalization

is more complex and requires the consideration of a greater number of aspects, such as the

group pattern detection, context analysis, and spatial conflict judgment. An efficient model is

thus required for the neighborhood analysis. Regnauld [19] presented an approach for classify-

ing building groups using the multiple spanning tree model in graph theory. Li et al. [20] pro-

posed an approach for group building cluster that combined the Gestalt theory and urban

morphology. Chaudhry and Mackaness [21] combined the buffer of building objects and the

derivation of the single building object surrounding clusters for the generalization of city

boundaries. Shen [22] et al. applied the superpixel segmentation technologies for building

aggregation. Proximity analysis plays a very important role in building generalization because

displacement conflicts or topology errors may be produced during the generalization. Thus,

we attempt to apply the proposed neighborhood representation model to the automatic gener-

alization of urban building clusters. An outstanding property exists in our neighborhood anal-

ysis model, in that, it can simultaneously support several operations including grouping

detection, displacement, and aggregation. The minimum spanning tree (MST) model in

Regnauld’s method [19] and the urban morphology model in [20] can be used to conduct only

one operation aggregation. The difference between our method and the others is the change in

the built-up area after the map generalization. Our proposed method is effective in balancing

the built-up area as the displacement prevents the gap area from being absorbed into built-up

area.

This paper is organized as follows: the neighborhood representation model of the spatial

field is discussed in Section 2. Section 3 presents the expanding and compressing operation

based on the proposed formal triangulation data model (FTDM). A progressive algorithm of

building cluster aggregation based on FTDM is presented in Section 4 with experiment illus-

trations, and some future improvements are discussed in the conclusion in Section 5.

2. Neighborhood representation model based on Delaunay

triangulation

In the field-oriented model, the TIN structure covers the whole region without overlaps or

gaps between the tessellated triangles. The relations among spatial entities are represented by

the connection of triangles. As a special geometrical construction to support the TIN establish-

ment, the Delaunay triangulation has the characteristics of “circumcircle rule” and “maximum

rule of the smallest angle,” and these properties make it an efficient model for representing the

spatial neighborhood relationship [23, 24]. In the domain of map generalization, the Delaunay

triangulation and its dual Voronoi diagram are widely used in the detection of conflict and

neighbor relationships between objects, thus generating various data models aimed at different

purposes. For example, Jones and Ware [25, 26] built the simplicial data structure (SDS)

model for searching for area cluster targets and merging the adjacent objectives; the enhanced

formal data structure (EFDS) model developed by Peng [27] was an improved model of the

formal data structure (FDS) model developed by Molenaar, is which focused on the extraction

of a “safe area” and “non-safe area” in the target generation space. Other works in which the
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Delaunay triangulation was applied to map generalization include the building pattern recog-

nition before generalization [28], the displacement of crowded building and conflicted point

symbol [29, 30, 31], line simplification [32–35], polygon decomposition during land-use data

generalization [36], and watershed area computation in hydrographic network generalization

[37]. These properties make the Delaunay triangulation an efficient tool in GIS modelling

applications. One such typical application is the representation of the terrain surface by TIN

model. However, the aforementioned property of the Delaunay triangulation also makes it an

efficient tool for neighborhood representation in a planar space, as shown in Fig 1. Through

the triangle connection, the neighborhood relation among the spatial objects in the two-

dimensional space can be detected. In this section, we attempt to build a formal model of

neighborhood representation using the Delaunay triangulation.

2.1. Formal definitions

The spatial objects including points, lines, and polygons must be embedded in the Delaunay

triangulation and then through the triangle edges to detect the neighborhood relation. We

build a model to involve all the spatial objects to be studied and use the vertices of linear

objects and area objects be a point set for the triangulation construction.

We first determine the geographical extent of the spatial representation. We then add three

points Q1, Q2, and Q3 to ensure that all the spatial objects are within the triangle identified by

the three added points. The Euclidean space containing ΔQ1Q2Q3 is denoted as Δ. We use the

planar points to construct the constrained Delaunay triangulation, which is expressed as WhV,

E,Ti, where V = {v1,v2,� � �,vm} is a non-empty point set, E = {e1,e2,� � �,en} is a non-empty edge

set, and T = {t1,t2,� � �,tn} is a non-empty triangle set.

Obviously, W is a graph GhV, Ei with V as the vertex set and E as the edge set. The edge

ei2E, is represented by a point pair comprising the points of set V as ei(vi0,vi1). The triangle

ti2T, comprises the three edges of set E and is represented as ti(ei1,ei2,ei3). The triangle set T
covers the entire domain space. For any ti,tj2T, there is ti\tj = Null or DIM (ti\tj) = 1, where

the latter means that the two triangles are adjacent and the dimension of the intersect region is

1, i.e., a line. When there is a unique sharing edge between triangles ti and tj, namely, 9u,v:eiu =

ejv, triangles ti and tj are called adjacent.

Fig 1. Detecting the neighboring region among building cluster using Delaunay triangulation.

https://doi.org/10.1371/journal.pone.0218877.g001
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We define the functions related to the neighborhood analysis as follows:

Neighbor(ti,eij): T×E!T returns the triangle tj that is adjacent to triangle ti and the sharing

edge is eij. As shown in Fig 2, the triangle ti and tj has the sharing edge eij.

Neighbors(ti): T!T returns the set of triangles that are adjacent to ti, and:

Neighbors(ti) = {Neighbor(ti, ei1), Neighbor(ti, ei2), Neighbor(ti, ei3)}. As shown in Fig 2, the

neighboring triangles of ti are Neighbors(ti) = {tj,to,ts}.

Joins(vi): V!T returns the set of triangles that shares the vertex vi. In Fig 2, Joins(vi) = {ti,tj,tp,
tq,to}.

Condition(c): {logic expression c}!T returns the triangle set Tc that satisfies condition c.

Access(ti,tj): T×T!{TRUE, FALSE}, when there exists one set of edges between any vertex of ti
and vertex of tj in graph GhV, Ei, returns TRUE or else returns FALSE. In Fig 2, Access (tp,
ts) = true, as there is path connecting triangle tp and ts.

Begin(e): E!V returns the start point vb of edge e.

End(e): E!V returns the end point ve of edge e.

2.2. Representation of spatial objects

We denote the set including all the objects within the space as FΔ, which includes all the point

objects PΔ, all linear objects LΔ, and all area objects AΔ. We then have FΔ = PΔ[LΔ[AΔ. We

now define the triangulation model representing space objects called FTDM for short.

Point object: p2PΔ is defined such that if the element vi belongs to V, then for any point p
belonging to WhV,E,Ti there is p2V.

Line object: l2LΔ comprises a series of line segments. In WhV,E,Ti, these segments must

belong to E. l can be defined as: the ordered subset {e0,e1,� � �,en} in E that satisfies the condition

end(ei) = begin(ei+1) for any i2[0,n−1].

Fig 2. Formal definitions of the functions related to neighborhood analysis.

https://doi.org/10.1371/journal.pone.0218877.g002
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Area object: a2AΔ can be defined as the subset {t0,t1,� � �,tm} that satisfies the condition

Access (ti,tj) = TRUE for any i,j2[0,m].

Fig 3 shows that the representation of various spatial objects in the FTDM model, which is

obviously different from that in the raster model, which uses a regular grid unit to represent a

point, line, and region. The FTDM model comprises three elements: a point unit, boundary

unit, and triangle unit, while there is only one structural unit in the raster model. Triangles in

the FTDM model play two roles: the component of area object and the connection between

objects. The triangles playing the connecting role can connect objects according to "visibility"

between the objects and "the nearest link" based on the Delaunay triangulation, irrespective of

the geometric distance between the objects. However, in the raster model, the connection

between objects is usually formed by the ordinal linkage of a number of structural units. When

searching for the neighboring object, the raster calculation is necessary for obtaining the

results, and the four- or eight-direction expansion in the raster calculation is not only blind,

but also has no neighboring connecting properties of triangulation.

3. Neighborhood operators based on the FTDM model

3.1. Simple operators

For simulating the operation of the raster model, two types of operators of FTDM are defined

based on the constrained Delaunay triangulation WhV,E,Ti: expanding and compressing.

Firstly, we define the region of the triangle set and related concepts. Region r is defined as the

subset of T that satisfies certain conditions, and we let r be the single connected region, i.e., r =

Condition(c)�T. The boundary b of region r is represented as follows:

b ¼ BoudaryðrÞ ¼ feij9t : t 2 ConditionðcÞ ^ Neighborðt; eiÞ=2ConditionðcÞg

The boundary defined here is the set of the edges of the triangles, without considering the

situation that organized them in an orderly manner to form a closed ring.

Based on boundary b, we denote the outside neighbor of the boundary bout and the inside

neighbor of the boundary bin as follows:

bin ¼ ftijti 2 r ^ ð9e : e 2 b ^ ðti 2 JoinsðbeginðeÞÞ _ ti 2 JoinsðEndðeÞÞÞÞg

bout ¼ ftijti=2r ^ ð9e : e 2 b ^ ðti 2 JoinsðbeginðeÞÞ _ ti 2 JoinsðEndðeÞÞÞÞg

Based on bin and bout, we define the regional expanding operator Expand() and regional

compressing operator Compress() as follows:

Fig 3. The representation of spatial objects in three data models.

https://doi.org/10.1371/journal.pone.0218877.g003
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Expand(r):T!T, the transformation of region r that meets condition c, the return value is

r[bout.

Compress(r):T!T, the transformation of region r that meets condition c, and the return value

is r−bin.

The transformation result of the two operators is presented in Fig 4.

3.2. Complex operators

The expanding and compressing operations can be applied to the region iteratively. We intro-

duce the continuously expanding operator denoted as Expand(n)(r), and the continuously

compressing operator denoted as Compress(n)(r). The recursive definition for Expand(n)(r) is

Expandð0Þ ðrÞ ¼ r;

ExpandðnÞ ðrÞ ¼ Expand ðExpandðn� 1Þ ðrÞÞ:

The recursive definition for Compress(n)(r) is

Compressð0Þ ðrÞ ¼ r

CompressðnÞ ðrÞ ¼ CompressðCompressðn� 1Þ ðrÞÞ;

Compress(n)(r) results in the repetitive peeling of the region, and Expand(n)(r) results in the

gradual expansion of the region.

The operator Expand(r) and Compress(r) for the region r2T is non-conditional, but for

some operation in the real application, it is necessary to perform conditional filtering for the

expanded triangular set bout and the eliminated triangular set bin of Expand and Compress,
respectively. Therefore, we further define the conditional expanding operator Expandc(r) and

the conditional compressing operator Compressc(r).
Let us suppose the condition is c0, then

ExpandcðrÞ : T ! T; return r [ ðbout \ Conditionðc0ÞÞ;

CompresscðrÞ : T ! T; return r � ðbin \ Conditionðc0ÞÞ;

The return value can be several non-connected subsets of triangles.

Fig 4. The illustrations of region expanding and compressing. r denotes the region, b the boundary, bin the inside

neighbor, and bout the outside neighbor.

https://doi.org/10.1371/journal.pone.0218877.g004
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The introduction of conditional restriction in the continuous operator results in a condi-

tional continuous operator, which is denoted as Expandc(n)(r) and Compressc(n)(r), respectively.

The conditions for Expandc(n)(r) and Compressc(n)(r) can be classified as follows.

(1) Target achieved condition

In the expanding or compressing operation, when the expanded or eliminated triangle has

a certain relation with the spatial target, then the operation is stopped. This relation includes

when the vertex of the triangle reaches the appointed point target, the edge of the triangle is

attached to any edge of the line target or area target, or the polygon is attached to any area tar-

get. Under this condition, the neighbor relationship between objects can be determined via

two operations.

(2) Geometric feature condition

When the perimeter of the triangle, area of the triangle, length of the arc, or area of the

closed ring clipped by the edge of the triangle on the edge of the polygon meet the threshold

conditions, then the operation is stopped. The triangles in the triangulation WhV,E,Ti are

merely connected based on the visibility between targets. The spatial distance should be con-

sidered when judging the contiguity of the triangles, and there should be some restrictions on

the length of their edges.

(3) Spatial measurement condition

During the procedure of expanding or compressing, we consider the distance or orientation

from the edge of the region, center of the region, or other reference locations as the restric-

tions. This is suitable for the operation on the anisotropy spatial field. Weights should be

added to the expanse of the operation in different directions.

(4) Neighboring freedom condition

The neighboring expanding in a raster model comprises two cases: eight-direction and

four-direction expansion. Similarly, the operation in the FTDM model has edge neighboring

expanding and point neighboring expanding. In the above research, the application of func-

tion Joins(vi) is point neighboring muti-direction freedom. When the adjacent connection for

triangles is restricted, the freedom is three.

From the practical judgment point of view, the above conditions can be determined using

two classes. One class is based on qualitative judgment for selecting the conditional region in

which the triangle touches certain types of objects or with a connection relation to certain

object. The other class is based on quantitative measurement for selecting the conditional

region in which the triangle area, edge length, and movement angle exceed a pre-defined toler-

ance, such as the area of 4 mm2, distance of 2 mm, and the angle of 0.5 π. In the following sec-

tion 4, an example will be presented to illustrate the continuous conditional operator

Expandc(n)(r) through a distance measure to determine how to expand and then finally stop.

It is worth noting that although the operators of Expand(r) and Compress(r) have opposite

effects on the change in the region extending range, they do not generally satisfy the equation:

r = Compress(Exprend(r)) or r = Expand(Compress(r)). This is because the restrictions in the

expansion and compression procedure vary in different directions, and it thus is impossible to

achieve an isotropic effect.

3.3. Skeletonizing operator

The use of a refinement operator in the raster model is one method for converting the raster

into the vector skeleton. In the FTDM model, we can also define the skeletonizing operator

Skeleton(r), which is a function that converts region r into the graph structure related to a skel-

eton structure.
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We first classify the triangles in the conditional region r = Condition(c) into three types. We

define function f(t) as Condition(c)!{0,1,2,3}. The return value is the number of elements in

the set of Neighbors(t)\Condition(c), which is denoted as f(t) = kNeighbors(t)\Condition(c)k.
We classify the triangles in r into three types: if f(t) = 1, then t belongs to Type I; if f(t) = 2, then

t belongs to Type II; if f(t) = 3, then t belongs to Type III; and if f(t) = 0, then t is isolated trian-

gle, out of consideration. To facilitate the narrative, we call the shared edge between t and

Neighbors(t) as the neighbor edge.

We now define the regional skeletonizing operator Skeleton(r). Let us suppose that the set

of all graphs is GΔ, then Skeleton(r): T!GΔ, the return value is GhE’,V’i, where E’ and V’ are

the generated set of edges and the set of vertices, using the skeletonizing method, respectively.

As shown in Fig 5, for Type I triangles, we connect the mid-point of the unique neighbor

edge with the corresponding vertex; for Type II triangles, we connect the mid-points of the

neighbor edges; while for Type III triangles, we connect the center of gravity with the mid-

points of all the edges.

Type I : A! P1 or P1 ! A;

Type II : P1 ! P2or P2 ! P1;

Type III : O! Pi or Pi ! O; i ¼ 1; 2; 3:

Starting from Type I or Type III triangles, searching along the neighbor relationship across

Type II triangles and ending with Type I or Type III triangles, we can obtain one edge of the

graph formed by a series of points {Qi}.The construction of the graph is finished when all the

Type I triangles have been searched once, and all the Type III triangles have been searched

three times.

For the extracted graph structure, as shown in Fig 6, each edge (indicated by a red line) cor-

responds to a skeleton between two boundaries of two objects B1 and B2 on two sides. This rep-

resents the skeleton across a set of triangles (indicated in green) connects two objects (B1 and

B2 in Fig 6).

We can compute the distance between two objects based on the average height of the trian-

gles crossed by skeletons. As shown in Fig 7, we scan all the triangles across the skeleton. We

compute the local distance for each triangle and then integrate the weighted distance as the

average distance between two objects. For three types of triangles, the corresponding local

Fig 5. The three types of triangle and the skeleton line connection for each one.

https://doi.org/10.1371/journal.pone.0218877.g005
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distance W1W2 is presented in Fig 7. The computation function of the average distance ŵ is

ŵ ¼
Xk

i¼0

kQiQiþ1k

l
kWi1Wi2k

where l is the length of the entire skeleton, and k is the number of triangle involved. ŵ is also

called the skeleton width. This weighted distance computation based on the skeleton takes into

consideration the building shape structure, spatial distribution, and other building’s influence.

The skeleton operator can obtain the main central line of a region, such as a polygon. In the

field of geometric shape analysis, there also exist other methods for extracting the polygon cen-

tral line, for example, the medial axis transportation (MAT) based on the angular bisector

operation [38], the superpixel segmentation method [39]. We use the same polygon data with

a complex shape for conducting the comparison between the MAT-based method and the

Delaunay-triangulation-based method. From the result of the example that is presented in Fig

8, it can be observed that the Delaunay-triangulation-based method has fewer hair segments,

and the skeleton shape is smoother than that of the MAT-based method. An in-depth compar-

ison of these two methods is outside the scope of this study, while a detailed discussion of the

different methods can be referred to in [4] and [38].

The operator skeletonizing is performed on the region covered by the triangle set. We use

different condition c to extract a subset of triangles, and the skeletonizing results in different

graphs for representing the corresponding geometric structures. For a polygon cluster, if we

extract the triangle region within the polygon, the skeletonizing will obtain the medial struc-

ture line as shown in Fig 9 (left). This process can be used to simplify the hydrographic features

Fig 6. The extraction of the skeleton from the triangle region.

https://doi.org/10.1371/journal.pone.0218877.g006

Fig 7. The local distance representation of Wi1Wi2 for three types of triangles.

https://doi.org/10.1371/journal.pone.0218877.g007
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by collapsing narrow polygons into a line representation. If we extract the triangle region of

the street roads (outside a street block), the skeletonizing provides the medial line of the street

features for supporting applications such as navigation. If we extract the triangulated region

outside the building polygons, the skeletonizing provides a similar Voronoi diagram to tessel-

late the polygon cluster, in which the neighboring polygon is separated by the connected skele-

ton line, as shown in Fig 9 (right).

4. Application of FTDM model in building cluster generalization

The building or built-up area in an urban region has special properties with respect to distribu-

tion structure, cluster pattern, and alignment shape. In spatial data scaling, the generalization

of building data within street block is an attractive question requiring special strategies to con-

sider the aforementioned properties [40]. Some methods have been developed to settle the

abstraction of a building within a street block, such as the aggregation under the control of

Gestalt principles and urban morphology [20], the application of an optimization method in

building cluster abstraction [12], and using the MST model to group building clusters [19].

These methods can be used to conduct only one operation: either building group detection or

neighbor building aggregation. The resulting issue is that the aggregated building will greatly

Fig 8. A comparison between the MAT-based skeleton (left) and Delaunay-triangulation-network-based (DTN-

based) skeleton (right) using the same complex polygon data.

https://doi.org/10.1371/journal.pone.0218877.g008

Fig 9. (Left) performing skeletonizing outside street blocks results in the medial street line, (Right) performing

skeletonizing on building clusters within a street block.

https://doi.org/10.1371/journal.pone.0218877.g009
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increase the built-up area as the gap area between the neighbors has been included in the built-

up region. With the objective of resolving this issue, we develop a method based on the FTDM

model to perform building generalization to maintain the balance of the built-up area as well

as possible. We use the FTDM model to detect the competition area and perform displacement

and aggregation together to prevent the gap area from becoming absorbed into built-up area.

We define the building cluster generalization such that it includes four steps: grouping, dis-

placement, aggregation, and simplification. The grouping step comprises the detection of the

cluster pattern, which should be preserved after abstraction. The displacement operation

attempts to move buildings within a group closer to avoid increasing the built-up area. The

aggregation operation attempts to combine the closed building group into one block. The final

simplification step is used to make the shape of the built-up area simple with orthogonal char-

acteristics. The proposed FTDM model can be used to support the generalization of urban

building clusters in several aspects. Through triangle tessellation and neighborhood analysis

by triangle expansion, we can detect the building group and conflict area and further through

skeletonizing operations, move closed buildings together. It is the displacement that guaran-

tees the balance of the built-up area after the building data generalization. In this section, we

present the application of the FTDM model in building data generalization and focus on three

operations: grouping, displacement, and aggregation.

The entire process of the building data generalization is based on the FTDM model, com-

prises nine steps, and is illustrated in Fig 10. The first constructed triangle set covers the whole

building area and obtains the tessellation as the FTDM model to support the next neighbor-

hood analysis. We then use the formal operations Expand(r) and Skeleton(r) in the FTDM

model to extract the building group and further to move the closed building together. Finally,

the aggregation of the moved neighbors provides the generalization result. In the nine steps of

the building generalization, the formal operator Expand(r) and Skeleton(r) in the FTDM

model plays an important role.

4.1 Grouping and conflict detection

As shown in Fig 10 (from step 1 to 5), after the construction of the building cluster triangula-

tion we obtain the FTDM model. For any building object, we select one triangle (indicated in

red or green in Fig 10) touching it as the expansion seed. Then, we perform Expandc(n)(r). This

is a continuous and conditional expansion operation (see its definition and performing func-

tion in section 3). The condition here is that the triangle should be located outside the building

polygon, and the length of the triangle edge between the neighboring buildings should be less

than the pre-defined tolerance d. The value of d depends on the neighbor length according to

the aggregation gap distance, such as 2 mm in paper space. In Fig 10, steps 2-4 complete the

continuous and conditional expansion, and the operation is stopped when no boundary trian-

gle satisfies the expansion conditions. After performing step 4, we obtain two regions of the tri-

angle set indicated by light red and light green, respectively. The building object associated

with the triangle set can be assigned to one group.

Before step 5 in Fig 10, we observe that one building group is connected by a set of triangles

locating in the gap area. The narrow region with a gap distance of less than tolerance d has

been detected. For each set of triangles connecting gap area, we perform the operation skeleton
(r) and obtain the skeleton central line between the neighboring buildings as shown in step 5.

We define the skeleton using a gap distance of less than the tolerance d the conflict skeleton.

An example of the detection of the conflict skeleton and conflict building is illustrated in Fig

11.
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4.2 Displacement within one group

The building facing the conflict skeleton is called the conflict building. The neighboring closed

conflict buildings move together before the aggregation as shown in step 6 of Fig 10. The dis-

placement in the building cluster generalization is aimed at keeping built-up area balanced.

The analysis of the conflict buildings offers an answer to the question of which one will be

displaced in later generalization. How far, and in which direction, the conflict building will

move are to be determined next. The normal direction of the line of the conflict skeleton fitted

by the least square method will be the moving direction, as indicated by the arrow symbol in

Fig 11. When the conflict object has only one conflict skeleton, the moving direction is

Fig 10. The illustration of the building aggregation using FTDM and operators Expand(r), Skeleton(r).

https://doi.org/10.1371/journal.pone.0218877.g010
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determined. Else, the integrated moving direction can be calculated by using the vector sum

by the parallelogram rule. It is estimated that neighbor conflict attracts each conflict building

with the same attraction force. One building will stay unchanged if it is attracted by neighbors

from two opposite directions or is surrounded by conflict buildings (i.e., all skeletons related

to one building are conflicted by each other). In a practical application, it can be considered

that no one direction attraction is stronger than any other direction and that the object is fixed

if the length of the sum vector is shorter than a threshold. The movement direction of the con-

flict object is illustrated in Fig 11 by a dark arrow symbol representing the displacement direc-

tion and a dark dot representing the fixed building.

In terms of the offset length of the displacement, it is assumed that the position accuracy is

at least half the conflict distance, which means that the in-face movement and the meeting in

one position of the conflict building are within the position accuracy. We draw extended lines

that are parallel with the displacement direction, from each vertex of the conflict building and

then compute the distance between the start vertex and the intersection point of the extended

line and skeleton. The shortest one is set as the displacement offset length. It can be guaranteed

that the movement does not result in the building crossing the envelope skeleton or its overlap-

ping with other neighboring buildings. No other new conflicts are produced from this type of

displacement; in displacement generalization research, this is essential.

However, generally speaking, after the above displacement, it is not guaranteed that two

buildings will share exactly the same boundary seamlessly. Usually, small gap areas still exist.

One possible solution to this issue is applying a rotation to it, even though it is difficult and

complicated to decide the angle and range of rotation and solve the problem perfectly.

4.3 Aggregation of neighboring buildings

Steps 7 to 9 in Fig 10 illustrate the aggregation of neighboring buildings within one group.

After the displacement of conflict building together, however, there still are small gap areas

among the buildings [41]. It is necessary to construct an envelope polygon to cover all the

buildings within one group. A simple method to achieve this is to use a basic operations buffer

Fig 11. An illustration of the conflict skeletons, conflict OPs (Object Polygon) visualized as red lines, and the

arrows represent the building movement direction.

https://doi.org/10.1371/journal.pone.0218877.g011
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and overlap in common GIS functions. We first use an expansion buffer operation to exagger-

ate each building area, then use union overlap to obtain the coverage polygon, and finally per-

form a compression buffer to shrink back. The obtained result is an aggregated polygon. In

our experiment, we apply the method based on the Delaunay triangulation again. Through the

close connection with the Delaunay triangulation to extract the envelope polygon. This

method has been described in the SDS model by Jones and Ware [25, 26].

4.4. Progressive generalization process

The group detection and detailed geometric operations in building data generalization is dis-

cussed above in Fig 10. The original data can be required from this website: https://pan.baidu.

com/s/1Zr_H9cvdEvX3QzOhK3ASXwv (extracting code: jnxx). For the whole working pro-

cess, it is necessary to organize the operators using some parameter control. Let us consider

the case in which conflicting building object associate with each other. By moving and aggre-

gating one conflict building into its neighbor, the conflict on the neighboring location may be

also eliminated. The conflict among the parts can be solved by the displacement and aggrega-

tion of partly conflicted objects. Thus, we can use a progressive strategy to aggregate the con-

flict buildings. The progressive generalization process is described as follows.

We repeat the following steps until no conflict is found:

1. (1) Construct DTN triangulation, and find conflict skeleton and conflict building object

based on FTDM model.

2. (2) Classify buildings into different groups according to the conflict skeleton connection.

3. (3) Scan the building group and use the method in Fig 10 to aggregate the closed neighbor-

ing buildings.

4. (4) Eliminate the remaining conflicts after the aggregation.

Fig 12 presents some steps of the building cluster generalization and the generalized results

as well as tessellation results. If the building is distributed in a common situation without a

too-crowded distribution, a general appropriate outcome can be obtained using the above

working process. As can be observed from the regions indicated by the red box in Fig 12, the

Fig 12. The progressive generalization of a building cluster based on the FTDM model.

https://doi.org/10.1371/journal.pone.0218877.g012
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original buildings are reasonably aggregated with the increase proximity distance, and the

results are visually satisfactory. However, sometimes the location of the early aggregated build-

ing may produce a slight displacement as the skeleton is changed gradually throughout the

process. In this method, the degree of generalization depends on the definition of the tolerant

conflict distance.

4.5. Experiment discussion

Based on the FTDM model and formal operations Expand(r) and Skeleton(r), we develop the

method of building data generalization, which takes into consideration three operations in

generalization, that is, grouping, displacement, and aggregation (the other operation of simpli-

fication of the building shape is not involved in this study). The advantage of this generaliza-

tion is that the displacement before the aggregation maintain the balance of the built-up area

as well as possible. The property of the remaining built-up area without a large change is an

important requirement in map generalization [42, 43]. In this proposed method, the neighbor-

ing buildings move toward to each other and eliminate the gap area between them as well as

possible. However, this cannot guarantee that two buildings share exactly the same boundary

seamlessly. Small gap areas still exist, but the involved gap area reduces greatly. Some other

aggregation methods, such as those used in [25, 20], aggregate the neighboring objects directly,

thus resulting in a significant increase in the built-up area. We conduct an experiment of

building aggregation based on the same data using the aggregation function in ArcGIS and

our proposed method respectively. The comparison between the two methods can be made

observed in Fig 13 and Table 1.

The left side of in Fig 13 illustrates the aggregation result and the skeleton tessellation

obtained using our method, the middle the aggregated result overlapping with original build-

ing data, and the right the same operation using the ArcGIS function. In Fig 13B, the buildings

after aggregation using the proposed method are not inclined to adhere to the original build-

ings. However, the aggregated buildings using the ArcGIS method are inclined to adhere to

the original buildings, as shown in Fig 13C. In ArcGIS ToolBox, we apply the command

“Aggregate Polygons” the function of which is to aggregate the neighboring polygons. We set

the tolerant gap distance d = 15 m for both the methods. From the comparison, we can observe

that the aggregation performed using the ArcGIS function includes gap areas and greatly

increases the built-up area. In Table 1, we find that the proposed method increases the built-up

area by 5.1%, which is less than 17.4% for the ArcGIS aggregation method.

Fig 13. A comparison of building aggregation between the proposed method (B) and ArcGIS method (C).

https://doi.org/10.1371/journal.pone.0218877.g013
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The building generalization is aimed at resolving the issue of crowded building distribution

in a small space. If the room competition and spatial conflict is serious in the absence of addi-

tional room for displacement, the proposed method then does not work effectively. For such a

situation, the conflict skeletons account for a large rate, and the building group detection is

required to take into consideration a greater number of aspects. One improvement strategy is

to use the graph structure to analyze the building pattern by conflict object connection. A dual

geometric construction and Delaunay triangulation can be reached by connecting the center

points within the tessellated polygon. Accordingly, a number of conjoint networks can be pro-

duced by connecting the geometric central points of the conflicting building on the basis of

the building partitioning model, as is presented in Fig 14. With the combination of other

approaches, the future assignment is to discover building distribution patterns based on the

proposed model of neighborhood representation.

5. Conclusion

In spatial data handling, the neighborhood relationship plays an important role in map gener-

alization, co-location detection, and other applications. In addition to the buffering operation,

the triangulation is also an efficient tool in neighborhood analysis. Delaunay triangulation, as a

Table 1. The quantitative comparison between our proposed method and that of ArcGIS.

Method Original area (m2) Aggregated area (m2) Change rate

ArcGIS method 37596.6 44137.7 17.4%

Proposed method 37596.6 39476.3 5.1%

https://doi.org/10.1371/journal.pone.0218877.t001

Fig 14. The network of a connective conflict building object.

https://doi.org/10.1371/journal.pone.0218877.g014
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special geometric construction, is widely applied in map generalization for detecting neighbor-

ing regions or conflict regions. A large number of concrete applications of Delaunay triangula-

tion in generalization algorithm design and data model development have been explored.

However, the previous application models have not been formally represented. From the com-

putation perspective, it is necessary to establish a formal model based on the Delaunay triangu-

lation for neighborhood representation.

In this study, we build an FTDM data model based on the representation of the spatial field

on the fundamentals of Delaunay triangulation, which combines the basic concept of a regular

grid raster model and the advantage of the Delaunay triangulation on the spatial neighbor rela-

tionship representation. This paper presents the formal definition and operating algorithm of

three types of operators, which correspond with the raster operation of a regular raster. The

three operators play two roles: one takes a triangular vertex, edge, and area as the components

of spatial objects of point, line, and region; the other takes the connection between the triangles

as the components of the spatial neighbor relationship between spatial objects. This model can

be used widely in the map generalization, detection of conflict in spatial data mining, merging

of non-connected objects, and the representation of different spatial neighbor relationship

classes.

To illustrate the application of the FTDM model, we examine the generalization of urban

building clusters, which proves to be reasonable and effective. In this proposed method, we

consider the building generalization through three steps of operations, i.e., grouping, displace-

ment, and aggregation. In the decision-making stage, the grouping is used to detect the cluster

pattern, which has to be preserved after abstraction. In the geometric operation stage, the dis-

placement operation attempts to move buildings within a group together to avoid increasing

the built-up area, and the aggregation operation attempts to combine the closed building

group into one block. The algorithm complexity of the proposed method is O(nlogn), which

satisfies the needs of general map generalization. The proposed FTDM model and the formal

operator Expand(r) and Skeleton(r) can provide for conducting the three aforementioned

operations. Through the triangle tessellation in the FTDM model and the neighborhood analy-

sis by Expand(r), we can detect the building group and conflict area and further, through Skele-
ton(r), move closed buildings together. Using the FTDM-based generalization operations, the

consistency of the overall distribution pattern of buildings can be well maintained. The relative

position relationships of buildings are well considered and the neighborhood topological rela-

tionships of buildings will not be destroyed. However, in this method, it is difficult to establish

one to one relationship of objects before and after building generalization and quantitatively

evaluate the scale relationship change of each object due to the integrated processing of dis-

placement and aggregation. Through the experiment comparison between our method and

that of the ArcGIS function, the built-up area increment by our method is less than one third

of that in the ArcGIS method (5.1% VS 17.4%). In addition to areal features, the FTDM model

can also be applied for map generalization of point, line features, such as line simplification

[33, 34], building displacement [29] and point cluster simplification [44]. As this study focuses

on the establishment of FTDM model and the space is limited, the detailed applications in

map generalization of point, line features will not be described in this paper.

However, some problems are still encountered while applying the proposed data model,

such as that the original distribution pattern of the urban building cluster may be damaged

and the position accuracy of some early aggregated buildings cannot be maintained as they are

displaced in the whole process [28, 45]. In the future, the proposed method should be

improved with respect to the distribution pattern and positional accuracy, especially in the

remaining distribution pattern. In addition, in the process of building generalization, many

aspects such as the geometrical, semantic characteristics and distribution pattern of buildings
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should be considered. A perfect generalization strategy based on the proposed data model

should be further investigated.
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