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Abstract

In the course of recent comparative genomic studies conducted on nervous systems across

the phylogeny, current thinking is leaning in favor of more heterogeneity among nervous

systems than what was initially expected. The isolation and characterization of molecular

components that constitute the cnidarian neuron is not only of interest to the physiologist but

also, on a larger scale, to those who study the evolution of nervous systems. Understanding

the function of those ancient neurons involves the identification of neurotransmitters and

their precursors, the description of nutrients used by neurons for metabolic purposes and

the identification of integral membrane proteins that bind to those compounds. Using a

molecular cloning strategy targeting membrane proteins that are known to be present in all

forms of life, we isolated a member of the solute carrier family 6 from the scyphozoan jelly-

fish Cyanea capillata. The phylogenetic analysis suggested that the new transporter

sequence belongs to an ancestral group of the nutrient amino acid transporter subfamily

and is part of a cluster of cnidarian sequences which may translocate the same substrate.

We found that the jellyfish transporter is expressed in neurons of the motor nerve net of the

animal. To this end, we established an in situ hybridization protocol for the tissues of C.

capillata and developed a specific antibody to the jellyfish transporter. Finally, we showed

that the gene that codes for the jellyfish transporter also expresses a long non-coding RNA.

We hope that this research will contribute to studies that seek to understand what consti-

tutes a neuron in species that belong to an ancient phylum.

Introduction

Modern day cnidarians are descendant of ancient metazoan lineages. They share a common

ancestor with bilateral organisms, and additionally, possess neuronal systems with evident syn-

aptic ultrastructures [1]. Their study provides a unique opportunity to gain a better under-

standing of the early evolutionary stages of cellular, metabolic, and neurochemical integration
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in animals. The annotation of the starlet sea anemone [2] and Hydra genomes [3] revealed that

cnidarians possess many orthologous genes present in the nervous system of the most

advanced bilateral organisms [4, 5]. Nonetheless, the identity of neurotransmitters in cnidari-

ans remains enigmatic. This may be due to the fact that our search for elements involved in

chemical neurotransmission has been based on the premise of a monophyletic origin of ner-

vous systems, a notion that has been recently challenged [6]. In the case of the polyphyletic

hypothesis, wherein nervous systems evolved more than once in different lineages, one would

expect to observe a diversity of neuronal phenotypes. Alternatively, there could still be signifi-

cant differences between nervous systems even if these systems emerged from a single original

source. On this last point, divergent evolutionary histories of a primordial nervous system

could also be conceived as the causal factor behind the heterogeneity of nervous systems and

neuronal networks [7]. In both cases, the identity of molecular components underlying neuro-

nal communication would vary greatly between animals of ancient and recent phyla.

Membrane transporters form a Major Facilitator Superfamily (MFS) of transmembrane

proteins which couple translocation of substrates and key electrolytes [8]. Because transmem-

brane fluxes of substrates and electrolytes are essential to life, membrane transporters likely

arose with the first cell, which may explain why the principal structural motifs present in trans-

porters of bacteria remain conserved in those of metazoans [9, 10]. On the other hand, meta-

zoan evolution triggered an expansion of transporter diversity necessary to handle cellular

competition for nutrients in tandem with escalation of cellular complexity.

Some key phenomena of metazoan evolution such as acquisition of neuronal integration

and massive extinction of enzymatic pathways involved in the synthesis of the most energeti-

cally-expensive amino acids, required a dramatic expansion of transporter diversity in order to

distribute the “now essential” proteinogenic substrates along with the membrane translocation

of metabolites and neurotransmitters derived from these substrates [11, 12]. The Sodium Neu-

rotransmitter symporter Family (SNF) a.k.a. SoLute Carrier family 6 (SLC6) represents a strik-

ing example of such an expansion [13, 14]. It includes the repertoire of transporters for

essential and conditionally essential amino acids, their metabolic derivatives, as well as amino

acid neurotransmitters GABA, glycine and glutamate; and derivatives of essential amino acids

phenylalanine and tryptophan which include the monoamines serotonin, dopamine, octopa-

mine, epinephrine and norepinephrine.

Intriguingly, phylogenomic trees of members of the SLC6 family show distinct clusters for

amino acid-selective and neurotransmitter-selective transport mechanisms. The separation of

a neurotransmitter transporter cluster from SLC6 amino acid transporter groups, which

occurred early during metazoan evolution, was essential for metabolic integration of metazoan

animals [10, 12, 13]. In order to shed light on metabolic requirements of earlier neurons, we

searched for membrane protein targets likely to be conserved that yet remain unexplored in

cnidarians, and that may ultimately provide more information on neuronal function. Here we

report the molecular cloning and the localization of the first neuronal SLC6 transporter from

the Lion’s mane jellyfish, Cyanea capillata (Linnaeus, 1758).

Material and methods

Experimental organism

The jellyfish Cyanea capillata were acquired from the Marine Biological Laboratory (Woods

Hole, MA), and were kept in a jellyfish kreisel supplied with filtered sea water from the Atlan-

tic. The water was chilled at 15˚C and aerated. Animals were fed mud minnows collected with

a cast net from the intra-coastal waterway near the shore land of the University of Florida. No
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specific permissions were required for using mud minnows (a non-endangered species) at the

time of the study.

Cloning of the Cyanea sequence

Degenerate oligonucleotides primers were deduced from conserved regions of annotated

SLC6 members. A fragment of 1500 bp was amplified by PCR from 1 μl of a C. capillata λgt22

phage library [15] using LA Taq DNA polymerase (Takara Bio USA, Inc.) along with a degen-

erate oligonucleotide (iNAT6R: GCACAACCGGTCCACTCCRTANANCCA) and an oligonucleo-

tide specific to the phage arm (PA144: GTATCGGCGGAATTCGTCGA). Annealing temperature

for the PCR amplification was set at 57˚C. The fragment was ligated into the pGEM-T vector

(Promega, WI, USA) and sequenced. BLAST query revealed that the fragment shared homol-

ogy with transporters of the SLC6 family. The 5’ and 3’regions were then PCR amplified with

oligonucleotides specific to the 1500 bp-fragment of the transporter cDNA (TR-1: CTGATTG
CCTTGTTCCAGGT and TR-2: GGGCTGGGTGGATTTCCTTC) paired with primers specific to

the respective phage arms (PA143 see sequence above, and PA144: GTATCGGCGGAATTCGT
CGA). The full-length fragment was obtained from the same phage library using primers spe-

cific to the 5’ and 3’ extremities of the coding sequence of the C. capillata transporter (TRPX-

HindIII: GGGGAAGCTTGCCACCATGCCTGAAGAAATGATAGAAATGGA and TRPX-NotI:

GGGGGCGGCCGCTCATCAGGCCATCTTGGATTTAGAGTCATT). A Kozak sequence and

restriction sites compatible for directional cloning in the pXOOM vector were added to the

primers. This construct was used for heterologous gene expression in HEK-293 cell as well as

for cRNA synthesis for expression in Xenopus laevis oocytes.

Phylogenetic analysis

The protein sequences of selected SLC6 transporters were retrieved from a BLASTp query of

the NCBI’s non-redundant protein sequence database using the translated open reading frame

of the cloned C. capillata transporter. Selected sequences were from the following organisms

of specific taxids:Homo sapiens (taxid:9606); Hydra vulgaris (taxid:6087); Stylophora pistillata
(taxid:50429); Bathymodiolus septemdierum (taxid:220392); Caenorhabditis elegans (taxid:

6239); Drosophila melanogaster (taxid:7227); Nematostella vectensis (taxid:45351); Orbicella
faveolata (taxid:48498); Trichoplax sp. H2 (taxid:287889); Trichoplax adhaerens (taxid:10228);

Ciona savignyi (taxid:51511); Ciona intestinalis (taxid:7719); Crassostrea gigas (taxid:29159);

Lingula unguis (taxid:7574);Mizuhopecten yessoensis (taxid:6573); Capitella teleta (taxid:

283909); Lottia gigantea (taxid:225164); Haemophilus influenzae (strain ATCC 51907 / DSM

11121 / KW20 / Rd) (taxid:71421); Bacillus subtilis (strain 168) (taxid:224308);Methanocaldo-
coccus jannaschii (strain ATCC 43067) (taxid:243232); and Branchiostoma floridae (taxid:

7739). The taxa were selected to represent deuterostome and protostome taxa, cnidarian

groups and other ancestral taxa. The identified proteins were aligned with ClustalW 2.1 [16]

(BLOSM62 matrix) vs. Aquifex aeolicus LeuT and DrosophilaDAT transporters which possess

explicit structural annotations. Sequences that displayed apparent significant losses of func-

tional domains were eliminated from the alignment, assuming that they may represent pseu-

dogenes or have incorrect predictions of their ORFs. Amino and carboxyl termini that

represented most divergent regions were trimmed in the alignment used for the tree (Fig 1).

The tree was built by the FastTree 2.1.5 software [17, 18] (http://www.microbesonline.org/

fasttree/) and inferred approximately-maximum-likelihood phylogenetic trees of the protein

alignment. The reliability of each split in the tree estimated by FastTree used the Shimodaira-

Hasegawa test on the three alternate topologies (NNIs) around that split. We used default

1,000 resamples setting in order to estimate local support values.
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Heterologous expression in X. laevis oocytes

The cRNA for the C. capillata transporter (CcSLC6) used for oocyte injections was generated

by in vitro transcription of a NotI-linearized pXOOM-CcSLC6 plasmid with T7 polymerase

using a mMessage mMachine ULTRA transcription kit (Invitrogen, Thermo Fisher Scientific).

Surgically isolated and collagenase-treated stage V-VI Xenopus laevis oocytes (Nasco, Fort

Atkinson, WI) were injected with approximatively 40 ng of CcSLC6 cRNA and incubated for

3–7 days at 17˚C in a sterile oocyte medium (98.0 mM NaCl; 2.0 mM KCl; 1.0 mM MgCl; 1.8

Fig 1. Evolutionary relationships of the newly identified CcSLC6_NAT1 protein with 78 selected SLC6 transporters. The tree shows the major subfamilies of the

SLC6 family: The NeuroTransmitter-specific Transporters (NTT) subfamilies and the Nutrient Amino acid (NAT) subfamily. The C. capillata SLC6 transporter belongs

to the NAT subfamily and forms a cluster with related taxa includingNematostella representing the closest homologs of the cloned jellyfish transporter. The cnidarian

transporters cluster together with characterized B0 and IMINO transporters of the NAT subfamily. Other shaded clusters indicate GABAT (GABA transporters), DAT

(dopamine transporters) and SERT (serotonin transporters) of the NTT subfamily. Species abbreviation included in leave strings are: BACSU: Bacillus subtilis (strain

168); BIVA: Bathymodiolus septemdierum; BRAFL: Branchiostoma floridae; CAEEL: Caenorhabditis elegans; CAPTE: Capitella teleta; CIOIN: Ciona intestinalis; CIOSA:

Ciona savignyi; CRAGI: Crassostrea gigas; DROME: Drosophila melanogaster; HAEIN:Haemophilus influenzae (ATCC 51907); HUMAN:Homo sapiens; HYDVU:

Hydra vulgaris; LINUN: Lingula unguis; LOTGI: Lottia gigantea; METJA:Methanocaldococcus jannaschii (ATCC 43067); MIZYE:Mizuhopecten yessoensis; NEMVE:

Nematostella vectensis; STYPI: Stylophora pistillata; ORBIC:Orbicella faveolata; TRIAD: Trichoplax adhaerens; 9METZ: Trichoplax sp. H2. The transporters from

prokaryotes were used as an outgroup in the tree. Numbers shown next to the nodes are local support values represented as proportions. UniProt IDs of protein

sequences used to assemble this figure are indicated at the ends of branches. Scale bar represents the number of substitutions per site.

https://doi.org/10.1371/journal.pone.0218806.g001
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mM CaCl; 2.5 mM Na pyruvate; 100 units/ml penicillin; 100 μg/ml streptomycin; 5% horse

serum; 10 mM Hepes, pH 7.4).

Electrophysiological recordings

Currents from CcSLC6-cRNA injected oocytes were recorded in a 50 μl constant-flow cham-

ber at the time of the application of each of the following substances at millimolar concentra-

tions: β-aminoethanesulfonic acid (taurine), β-alanine, γ-Aminobutyric acid (GABA),

5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), L-DOPA, dopamine, octopa-

mine, epinephrine and norepinephrine as well as the L-form of the following amino acids, ser-

ine, threonine, asparagine, glutamine, tyrosine, aspartic acid, glutamic acid, arginine, lysine,

and histidine. All substrates were tested at the concentration of 10 mM in the ringer solution

except for less the soluble L-Tyr, which were tested at a concentration of 2.5 mM. The record-

ings were performed with an OC-725C Oocyte Clamp amplifier (Warner Instruments LLC,

Hamden, CT, USA) and 2 M KCL-loaded glass microelectrodes with 0.5–1 MO resistance.

Current and voltage signals were obtained and analyzed using DigiData 1322A ADC and

pCLAMP software (Molecular Devices, Sunnyvale, CA, USA). The reference assay was based

on the detection of substrate-induced current. Voltage clamp oocyte screening conditions for

this assay were set at -50 mV [19, 20]. A total number of 76 oocytes were tested. The composi-

tion of solutions used to superfuse oocytes has been described earlier [9, 19, 20].

In situ hybridization

The procedure was based on a protocol developed for mollusk Central Nervous Systems

(CNS) [21] and adapted for C. capillata tissues. Riboprobes were prepared using a digoxigenin

RNA labeling mix along with T7 and T3 RNA polymerases (Sigma-Aldrich, MO, USA). The

full-length transporter cDNA from C. capillata cloned into pCR4-TOPO vector using HindIII

and NotI restriction sites of the polylinker was linearized with PmeI or NotI enzymes. The

digested fragments were purified using a PCR cleanup kit (Qiagen, Germantown, MD) and

used as template for the generation of the antisense and sense probes by T7 or T3 RNA poly-

merase, respectively. RNA probes were then purified using the RNeasy MiniElute Cleanup Kit

(Qiagen, Germantown, MD). The integrity of the probe was confirmed by electrophoresis on

an ethidium bromide 1% agarose gel. Jellyfish were anesthetized in an isotonic solution of

MgCl2 diluted 1:1 with sea water, then peri-rhopalial tissues were dissected and pinned down

on Sylgard-184 plates (Ellsworth Adhesives, Germantown, WI). One set of peri-rhopalial tis-

sues had their epithelia removed using the oxidative method [22]. Both intact and epithelial

cell-free tissue samples were then fixed for 2 h at room temperature in 4% ParaFormaldehyde

(PF) prepared in 0.1 M Phosphate Buffer (PB), pH 9.5 containing 0.42 M NaCl and 2 mM

MgSO4 [PROTOCOL DOI: dx.doi.org/10.17504/protocols.io.3qngmve]. The alkaline fixation

was reported to enhance signals in in situ hybridization procedures [23]. Following three

washes in PBST (0.1 M Phosphate Buffer pH 7.5, 150 mM Sodium chloride, 0.1% Tween-20)

of 5 min each, the fixed tissues were dehydrated in PBS/ethanol mixtures in the ratio of 3:1,

1:1, and 1:3 for 10 min each and kept overnight in 100% ethanol at -20˚C. Tissues were then

rehydrated by successive 10 min washes in PBS/ethanol mixtures in the ratio of 1:3, 1:1, and

3:1, and finally transferred in a capped 1.5 ml tube containing 800 μl PBST for a 5 min heat

treatment at 95˚C [24]. In order to prevent the glueing together of specimens during the heat

treatment, it is important to re-suspend the samples at 20-sec interval within the two first min-

utes of heating, followed by additional shakings every 60 sec during the rest of the heat treat-

ment. Samples were then chilled in an ice bath. This treatment considerably shrunk the peri-

rhopalial tissues. Following two washes of 5 min each in PBST, tissues were treated 5 min in
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freshly prepared TEAA (0.1 M TriEthanolAmine pH 7.8 containing 0.25% Acetic acid),

washed 2 times for 10 min in PBST and post-fixed for 20 min in 4% PF prepared in PBST, pH

7.5. After two consecutive washes of 10 min each in PBST, unspecific binding sites present on

the tissue were saturated using heat-denatured molecular grade DNA from sperm of herring

and cod that had a molecular weight distribution of 150–3000 bases. Each peri-rhopalial tissue

was incubated at room temperature for 10 min in 75 μl of PBST containing 0.5 mg/ml of fish

sperm DNA. Then 75 μl of the hybridization mixture (50% formamide, 5x Saline-Sodium Cit-

rate buffer (SSC), 1 mg/ml sperm-DNA, 0.1% Tween 20) was added to each tissue sample and

incubated at room temperature for 5 min. The solution was then replaced with 150 μl of

hybridization mixture and tissues were incubated at room temperature for 10 min. Pre-hybrid-

ization in this solution was pursued at 45˚C for 2 h. Hybridization was conducted at 40˚C for

48 h using three different digoxigenin-labelled cRNA probe concentrations for both the anti-

sense and sense probes (2250 ng/ml; 560 ng/ml; 56 ng/ml). Before use, probes were denatured

in the hybridization mixture at 70˚C for 10 min and then snap-cooled in an ice bath. Tissues

were then washed two times in 50% formamide, 2x SSC, 0.1% Tween-20 at 45˚C for 1 h, fol-

lowed by four washes of 15 min in the same conditions. Tissues were equilibrated in PBST for

20 min at room temperature, then submerged in blocking buffer (10% Normal Goat Serum

(NGS) in PBST) for 2 h with gentle shaking at 4˚C, followed by an incubation with shaking at

4˚C for 72 h with a DIGoxigenin antibody conjugated to Alkaline Phosphatase (AP-anti-DIG

antibody) diluted 1:2000 in PBST containing 1% NGS. Tissues were rinsed at room tempera-

ture four times for 20 min each with PBST. After three washes of 10 min each in AP-buffer

(100 mM Tris, pH 9.6; 100 mM NaCl; 10 mM Mg Cl2; 1 mM levamisole; 0.1% Tween-20), the

labelling was developed in the dark in nitro blue tetrazolium chloride / 5-bromo-4-chloro-

3-indolyl-phosphate (NBT/BCIP) solution (11681451001 Roche, Millipore Sigma). The colori-

metric reaction was stopped by rinsing the tissues three times for 5 min with PBST containing

50 mM Ethylene Diamine Tetraacetic Acid (EDTA). Tissues were re-fixed in 4% PF for 30 min,

then rinsed three times, 10 min each, in ethanol, and finally transferred in methyl salicylate.

Tissues were mounted in a glycerol-based aqueous medium and digitally documented using

Zeiss ApoTome.2 microscope equipped with CCD camera.

RNA isolation, and RT-PCR using antisense strand-specific priming

Neurons of the Motor Nerve Net (MNN) were isolated from freshly isolated peri-rhopalial tis-

sues after removal of the epithelia using the oxidative procedure [22]. Total RNAs were iso-

lated from a pool of several preparations of motor neurons using RNAqueous-Micro Kit

(Thermo Fisher Scientific, USA). RNAs were eluted twice in a volume of 10 μl water and the

eluate was treated with TURBO DNase (Thermo Fisher Scientific/Life Technologies, USA).

RNAs were either purified on an RNA Clean & Concentrator (Zymo Research Corp., Irvine,

CA) or by lithium chloride precipitation. The quality of the RNA sample was assessed on an

Agilent BioAnalyser. The presence of antisense strands expressed by the CcSLC6 gene was

identified using a modified RT-PCR procedure. First, total RNAs isolated from the neurons

were reverse-transcribed using SuperScript III First-Strand Synthesis (Thermo Fisher Scien-

tific, USA) along with a gene-specific primer annealing to the RNA antisense strand of the C.

capillata transporter (nuc52-76: attgccaagacggagtccatcaagg). Five microliters of the

cDNA product were then submitted to a PCR amplification in a volume of 50 μl using LA Taq

DNA polymerase (Takara Bio USA, Inc.) along with the primer pair Forward 176 and Reverse

757 (For_176: TTTGTCAGAAGAATGGAGGAGGTGC; Rev_757: CCTTTCCGCTGGACTGGA-
TACCTT), which were specific to the jellyfish transporter sequence. The conditions for the

amplification were as follows: initial denaturation at 95˚C, 7 min; 35 cycles of 30 sec at 60˚C,
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and 90 sec at 72˚C; and extension at 72˚C for 10 min. Concurrently, controls that consisted of

the same RNA sample used for the RT as well as a water control sample were both subjected to

the PCR amplifications described above. One microliter of each of the PCR products was fur-

ther submitted to a PCR amplification using the nested primers Forward 293 and Reverse 684

(For_293: CCCTCTTGGCATGGAAGGAAA; Rev_684: GAGTTTGGCATTGAGGCCGA) according

the PCR conditions described above. All PCR products were electrophoresed on a 1% ethidium

bromide agarose gel. A fragment in the range of 300 bp that was amplified in the experimental

sample was cloned into a pGEM-T vector (Promega, USA) and the insert was sequenced.

Immunocytochemistry

CcSLC6 ovalbumine-conjugated peptides and anti-CcSLC6 polyclonal antibodies were pur-

chased from 21st Century Biochemicals (Marlboro, MA). Rabbits were immunized with two

peptides corresponding to regions located at the N-terminal end (MPEEMIEMDTPVQHDSC)

and C-terminal end (CANYHPDPSWVDPSRRKSP) of the CcSLC6 transporter. The serum

from the second bleed was used in the immunolocalization experiment. Whole-mount immu-

nochemistry was conducted on intact peri-rhopalial tissues fixed for 4 h at room temperature

in 4% PF prepared in PB solution, pH 7.4 containing 2% NaCl. Then, tissues were extensively

rinsed in PBS (0.9% NaCl) pH 7.4, and incubated in blocking solution (PBS, 0.1% Triton X-

100, supplemented with 1% normal goat serum and 1% bovine serum albumin) for 2 h at

room temperature. Peri-rhopalial tissues were incubated overnight at 4˚C in presence of the

whole immunized rabbit serum (protein concentration: 65μg/μl) diluted 1:100 in the blocking

solution. The control experiment was conducted in the same conditions but tissues were incu-

bated overnight with the rabbit’s pre-immune serum. Tissues were rinsed six times for 30 min

each time in PBS after which they were treated with a secondary antibody FITC-conjugated

goat anti rabbit IgG (ThermoFisher Scientific, Invitrogen, USA) diluted 1:500 in the blocking

solution for 3 h at room temperature. After washing, the samples were mounted with anti-

quench mounting medium Fluoromount-G (ThermoFisher Scientific, USA) and examined by

confocal microscopy (Leica SP5).

Immunofluorescence labelling of HEK 293 cells transfected with pXOOM-

CcSLC6

Human Embryonic Kidney HEK 293 cells [25] (ATCC, Manassas, VA) were maintained at

37˚C in 5% CO2 in Dulbecco Modified Eagles Medium (DMEM) supplemented with 2mM L-

glutamine, 10% Fetal Calf Serum (FCS), 100 I.U/ml penicillin, and 100 μg/ml of streptomycin.

HEK-293 cells seeded on poly-l-lysined coverslips were transfected with the construct

pXOOM-CcSLC6 using Fugene 6 reagent (Promega, Madison, WI, USA). Following a 48-hour

transfection, HEK 293 cells were fixed for 15 min at room temperature with a solution of 2%

PF prepared in PBS-CM (PBS containing 0.1 mM CaCl2 and 1 mM MgCl2). The cells were

then washed 10 times for 1 min each with PBS-CM and incubated for 1 h at room temperature

with the blocking solution PBS-CM containing 1% Bovine Serum Albumin (BSA). The serum

of the immunized rabbit containing the antibodies to CcSLC6 was diluted 1:200 in the block-

ing solution and applied on the cells. Following an overnight incubation at 4˚C with the pri-

mary antibody, the coverslips were washed five times for 1 min each after which the cells were

incubated 2 h at room temperature in the secondary antibody Alexa Fluor 546 goat anti-rabbit

IgG (Thermo Fisher Scientific, Invitrogen) diluted 1:500 in the blocking solution. Cells were

then washed several times in PBS-CM and the coverslips were mounted on glass slides with

60% glycerol in PBS containing 1 mg/ml o-phenylenediamine HCL to minimize autofluores-

cence. The cells were viewed with a confocal microscope (Leica SP5).
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Results

Molecular cloning of the first C. capillata transporter

As a result of a PCR performed on a C. capillata λgt22 phage library using a degenerate primer

deduced from a protein sequence alignment of annotated SLC6, we isolated a cDNA sequence

of 1953 bp, which encodes a protein of 651 amino acids with a deduced molecular mass of

72,707 Da (GenBank accession number MH737701 / protein_id QBP15011). The Kyte-Doolit-

tle hydopathy analysis of the transporter predicted the presence of 12 transmembrane domains

with intracellular C- / N- termini, and a large extracellular loop between the third and fourth

transmembrane domains which is predicted to contain two N-glycosylation sites at position

173–176 (NLSD) and position 182–185 (NLTR) as well as a potential disulfide bridge (C153,

C196, C197). These features are common among previously annotated and characterized

SLC6 transporters [26].

Phylogenetic position of the CcSLC6 protein

The phylogenetic tree (Fig 1) was constructed to reveal the exact position of the new trans-

porter among a subset of better characterized SLC6 transporters as well as SLC6 sequences

retrieved from annotated genomes and transcriptomes of cnidarians and divergent organisms.

The tree showed that the jellyfish transporter belongs to the NAT subfamily. The closest

homologs of the CcSLC6 sequence are cnidarian transporters of the starlet sea anemone (N.

vectensis) A7RFF4 (62% and 70% for identity and BLSM62 homology, respectively), and a

coral (Sylophora pistillata) A0A2B45J71 (64% and 74% for identity and BLSM62 homology,

respectively). Human characterized homologs in the NAT cluster display about 55% of similar-

ity with the CcSLC6 sequence.

In consideration of the phylogenetic topology of the tree, we may predict that CcSLC6 is

functionally similar to NATs and therefore we will rename the transporter as CcSLC6_NAT1.

However, a more precise prediction of the function of CcSLC6_NAT1 based on sequence

homology with characterized NATs from the available phylogenetic information was

impossible.

CcSLC6_NAT1 is predicted to be a Na+-dependent, Cl—independent

transporter

SLC6 transporters translocate their substrates in presence of sodium ions and in most cases in

conjunction with a chloride ion. When compared to the crystal structure of the homologous

bacterial transporteur AaLeuT sequence (Protein Data Bank ID 2A65) [27], residues that

are involved in the binding of the sodium ions in AaLeuT are strongly conserved in the

CcSLC6_NAT1 sequence (Fig 2). One site is strictly conserved (CcSLC6_NAT1Na1: A47, G49, N52,

T309 / AaLeuTNa1:A22, G24, N27, T254), while the sodium site that coordinates the binding of

the second sodium (Na2) in AaLeuT is only partly conserved in the CcSLC6_NAT1 sequence.

The jellyfish sequence possesses three residues (CcSLC6_NAT1Na2: G45, V48, S409 /AaLeuTNa2:

G20, V23, S355) among five that are identical to the Na2 sites that reside in the binding pocket

of the AaLeuT sequence. As for the two other residues (CcSLC6Na2: L405, D408), known to inter-

act with Na2 in AaLeuT (AaLeuTNa2: A351, T354), only L405 of CcSLC6_NAT1 is similar to the

equivalent residues present in the AaLeuT sequence. This slight difference in the binding site of

Na2 of CcSLC6_NAT1 is also observed in most neurotransmitter transporters (NTT). As far as

the Na2 site is concerned, CcSLC6_NAT1 is more similar to NTT than to its counterparts of the

NAT. However, it is still not clear to what extent the Na2 site is used in NTT during substrate

translocation [27, 28]. Based on these observations, CcSLC6 is probably using at least one
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Fig 2. Sodium and chloride binding sites as identified in the bacterial AaLeuT and the human serotonin (SERT) transporters. Transmembrane domains (TM I, II,

VI, VII and VIII) that depict residues that interact with sodium 1 and 2 as well as with chloride are highlighted with the background colors blue for Na1 sites, orange for

Na2 sites and green for Cl- sites. Numbers located at the top of the alignment correspond to residue numbers of AaLeuT known to interact with sodium 1 and 2, while

residues numbered at the bottom of the alignment are those known to interact with chloride in SERT. The sites that coordinate the binding of sodium in the jellyfish

sequence are strictly conserved for Na1 while only partly conserved for Na2. Although CcSLC6 is likely to translocate its substrate in presence of sodium, the fact that
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sodium ion during translocation of its substrate. The same however cannot be said with regard

to the chloride ion.

Contrary to what is observed in eukaryotes, transport of substrate mediated by SLC6 pro-

teins in prokaryotes is chloride independent [29]. However, SLC6 transporters’ function

requires chloride in most cases and the residues involved in the binding of this ion have been

mapped. Those chloride binding sites typically found in mammalian neurotransmitter trans-

porters are conserved in CcSLC6_NAT1 (CcSLC6_NAT1: Y72, N341, S354, compared to sero-

tonin transporter SERT, NP_001036.1: Y121, N368, S372) [30, 31]. However, the residue S336

known to coordinate the Cl- ion in SERT, which is conserved in many other members of the

NTT and NAT families, is replaced by a threonine in CcSLC6_NAT1 (T309), a residue that is

also present in the AaLeuT sequence at the corresponding position (T254). In fact, in prokary-

otic sequences, this residue is believed to interact directly with a sodium ion, and together with

residue AaLeuTE290, AaLeuTT254, would probably prevent the binding of chloride. In light of

these observations, CcSLC6_NAT1 may not rely absolutely on chloride ions in order to trans-

locate its substrates. While transport in S6A18 Hum and S6A20 Hum is dependent on chlo-

ride, albeit not always in a strict fashion, not all NAT transporters of the B0 group rely on

extracellular chloride to transport their substrate. For instance, Cl—independent B0 transport-

ers such as S6A15 Hum, S6A17 Hum and S6A19 Hum, each display a non-conserved amino

acid among the four residues known to coordinate the chloride ion [32, 33, 34], while both

S6A18 Hum and S6A20 Hum, which interact with chloride during transport, have all four of

their amino acids identical to the ones identified as chloride binding sites in SERT [35, 36].

When one compare Na+ and Cl- binding sites conserved in CcSLC6_NAT1 with other cnidar-

ian sequences, NEMVE and ORBIC which share the highest homology with the jellyfish

sequence display an identical set of residues presumed to be involved in ionic interactions.

Conservation of the above sites among cnidarians decreases as the phylogenetic distance

increases, which suggests that dependence on ions during transport of substrates for these

transporters may vary considerably across the phylum.

CcSLC6_NAT1 expression in the motor nerve net of C. capillata
In situ hybridization experiments were conducted on intact as well as epithelial cell-free peri-

rhopalial tissues. In both preparations, hybridization experiments using the DIG-labelled anti-

sense probe showed that the transporter’s transcripts were localized in the cytosol of neuronal

somata in periphery of the nuclei (see epithelium-free peri-rhopalial preparation: Fig 3A, left

and right panels, and intact peri-rhopalial preparation, Fig 3B). Labeling that was occasionally

present in the neuron processes was too faint to be seen through the epithelial layer of the

intact peri-rhopalial tissue (Fig 3B). Three probe concentrations were tested (56 ng/ml; 560

ng/ml; 2250 ng/ml), however only the results obtained with the highest probe concentration

are shown as this concentration produced the most robust labelling. Nonetheless, because the

in situ hybridization results obtained with the control sense probe labelled the neuronal somata

of the motor neurons in the same fashion as the anti-sense probe, the experiment was repeated

using an additional control experiment in order to assess the presence of any non-specific

position 309 in the jellyfish sequence is a threonine as it is in AaLeuT may suggest that CcSLC6 may not rely absolutely on Cl- (see Results section for more details). The

alignment is constituted of the CcSLC6_NAT1 jellyfish sequence (Accession: MH737701 / protein ID: QBP15011) along with the following three sequences for which a

crystalized form has been determined: A. aeolicus AaLeuT (PDB ID 2A65), human serotonin transporter SERT Hum (NP_001036.1) and dopamineDrosophila
melanogaster transporter DopaT Dm (NP_523763). The alignment also includes characterized human (Hum) as well as cnidarian sequences which are homologues of

the CcSLC6_NAT1 sequence in the phylogenetic tree (Fig 1). They are identified as follows: S6A15 Hum (NP_877499HS), S6A17 Hum (NP_001010898), S6A18 Hum

(NP_872438.2), S6A19 Hum (NP_001003841), S6A20 Hum (NP_064593), A7RFF4 NEMVE for Nematostella vectensis (XP_001641770.1), ORBIC forOrbicella
faveolata (XP_020611607), and T2M528 HYDVU forHydra vulgaris (XP_012559838). The sequences were aligned using ClustalW tool in MacVector (v. 15.5.4).

https://doi.org/10.1371/journal.pone.0218806.g002
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staining that could have been generated by the experimental procedure. This control experi-

ment, conducted on intact peri-rhopalial tissues, used a sense cRNA probe synthetized from

the full-length cDNA sequence encoding an uncharacterized G-protein coupled receptor iso-

lated from a C. capillata. Because the distribution of labelling produced by the anti-sense

GPCR probe was different from the one obtained with the probe specific to the CcSLC6_NAT1

transcripts, we are confident that the in situ hybridization results obtained in this present

study are reliable. A related point to consider is that, contrary to the CcSLC6_NAT1 sense

probe, the GPCR sense probe behaved as a genuine control as it did not label any target in the

peri-rhopalial tissue. Because the distribution of the labeling obtained with the GPCR probe

was not in the MNN neurons further supports the fact that the labelling obtained with the

CcSLC6 control probe was not a false positive but rather a consequence of the expression of

the sense transcripts for this gene.

Fig 3. Distribution of the CcSLC6-NAT1 transcripts in the MNN neurons of the peri-rhopalial tissue. in situ
hybridization experiments were performed on whole-mount peri-rhopalial tissue using digoxigenin-labelled cRNA

probes transcribed from the full-length cDNA of CcSLC6_NAT1. (A) Epithelial cell-free preparations show two

neurons (left and right panels) of the MNN attached to a transparent mesoglea. The purple precipitate in the cells

highlights zones where the transporter transcripts are expressed. The transcripts are predominantly present in the

cytosol of the neuronal somata, in the periphery of the nuclei (n), and occasional labeling is also observed in the

processes (red arrowhead in left panel). Two arrows in right panel of (A) shows the process of one neuron that forms

an axosomatic contact with the labelled neuron. (B) An in situ hybridization experiment conducted on intact peri-

rhopalial tissue. Labelled somata of the neurons are seen through the transparent epithelial layer. No labelling was

observed in epithelial cells. (C) The labeling obtained in the control experiment using the sense probe suggests that the

transporter gene may undergo bidirectional transcription. Double arrowheads indicate two processes that emerged

from one neuronal soma, while a third process lay at the opposite pole of the soma, typical of tripolar nerve cells.

https://doi.org/10.1371/journal.pone.0218806.g003
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We then sought to explain the labelling of the neurons with this sense control probe by

demonstrating that naturally occurring antisense transcription occurs for the CcSLC6_NAT1

gene. In this procedure, it is important to remove any genomic DNA contaminant from the

total RNA preparation isolated from the motor neurons. The DNAse-treated total RNA prepa-

ration was presumed to contain the antisense transcripts for the CcSLC6_NAT1 gene, so we

used a specific DNA primer that annealed to the antisense transcript in order to generate a

complementary cDNAs during the reverse-transcription procedure (Fig 4A). Complementary

DNAs of the antisense transcripts were then PCR amplified using a pair of primers specific to

the CcSLC6_NAT1 cDNA. Separation of the PCR product revealed a band in the range of the

expected molecular weight (Fig 4B, lane RT). Sequencing of this band showed that the ampli-

fied sequence corresponded to the targeted region of the CcSLC6_NAT1 cDNA. The control

for this experiment consisted in a PCR amplification performed on the DNAse-treated RNA

preparation. As the negative control (Fig 4B, lane RNA) did not generate a product, we are

confident that the product obtained from the PCR amplification of the reverse-transcribed

DNAse-treated RNAs is evidence of the presence of antisense transcripts, and not a conse-

quence of genomic contamination of the total RNA preparation used for this experiment.

Immunochemistry performed on intact peri-rhopalial tissues confirmed the results

obtained with in situ hybridization experiments. The whole serum from a rabbit immunized

with two peptides deduced from the N-terminal and C-terminal extremities of the

CcSLC6_NAT1 transporter generated a robust signal in the motor neurons of the peri-rhopa-

lial tissue (Fig 5). As the two antigenic peptides were deduced from regions that are not con-

served among members of the SLC6 family, the antibody is less likely to label other SLC6

transporters that might be expressed in the MNN, although we cannot exclude the possibility

of other proteins present in the jellyfish MNN that would also be recognized by the antibody.

The labelling revealed that the CcSLC6_NAT1 protein expression is widespread in the plasma

membrane of both somata and neurites of the motor neurons in this region. No labelling was

observed in the control experiment which was performed using the rabbit pre-immunized

serum. The labelling obtained with the CcSLC6_NAT1 antibody was not restricted to the

motor neurons. Preliminary results suggested that other neuronal types may be immunoreac-

tive to this antibody.

The ability of the antiserum to recognize the CcSLC6_NAT1 transporter was verified on

HEK 293 cells expressing transiently the transporter. In this experiment, the recombinant vec-

tor pXOOM contained the cDNAs of GFP and CcSLC6_NAT1, both under the control of dif-

ferent promoters. Consequently, all transfected cells that produced green fluorescence (Fig

6A) were also expressing the CcSLC6_NAT1 protein (Fig 6B). Immunofluorescence experi-

ments using the serum of the immunized rabbit showed that the CcSLC6_NAT1 protein was

expressed at the level of the cytoplasmic membrane of the HEK-293 cells (Fig 6B and 6C).

Such immunopositive cells were not observed in transfected cells treated with the rabbit pre-

serum (Fig 6D).

Because the jellyfish transporter’s expression in a heterologous system was targeted to the

plasma membrane of HEK 293 cells, we undertook to test a variety of substrates on Xenopus
laevis oocytes injected with CcSLC6_NAT1 cRNA. As none of the amino acids tested were

transported in this heterologous system, it is possible that uptake by CcSLC6_NAT1 requires

the presence of an associated protein for membrane expression in oocytes [37, 38]. Alterna-

tively, it is possible that an uncommon amino acid or an unidentified substrate, not tested in

the uptake assay, is transported by the jellyfish transporter. Furthermore, this unknown sub-

strate is expected to be translocated by cnidarian sequence homologs that cluster with the jelly-

fish transporter in the phylogenetic tree because they share identical residues at substrate-

binding sites (S1 Fig).
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Fig 4. Strategy used to detect the expression of antisense transcripts of the CcSLC6_NAT1 gene. (A) A DNA

primer (primer 52–76) complementary to the sequence of the antisense transcript was used in a reverse transcription

procedure on total RNAs isolated from neurons of the peri-rhopalial tissue. Complementary DNAs obtained by this

modified reverse transcription were then subjected to a PCR amplification (PCR1) using the primer pair For_76 and

Rev_756. As no amplification product from PCR1 was visible on agarose gel, one microliter of this product was further

subjected to a nested PCR using primer pair For_293 and Rev_684, and the same amplification conditions described

for PCR1 (see Material & Methods). Numbers used to identify PCR primers indicate the nucleotide positions on the

CcSLC6 cDNA to which the 5’ terminal base of the primer would anneal to. (B) Lanes of the agarose gel are identified

according to the type of template (genuine or mock) used in PCR1 amplifications. Lane RNA: DNAse-treated RNA

isolated from the MNN; Lane H2O (water); Lane RT: reverse transcription conducted on DNAse-treated RNA isolated

from the MNN. The product of the nested PCR generated a band of the expected size (392 bp, lane RT on the ethidium

bromide 1% agarose gel). The identity of the band was confirmed by sequencing. The negative control experiment

consisted in an amplification (PCR1) of the same RNA sample, which came from the same pool of RNA used for the

reverse transcription (lane RT). One microliter of this PCR1 product was then subjected to a nested PCR. Absence of

amplification of this control sample suggested that genomic DNA was effectively eliminated from the total RNA

preparation following the DNAse treatment. Therefore, the amplification of a fragment of the expected size in the

experimental sample (lane RT) was the result of the first-strand cDNA synthesis of the antisense template during the

reverse transcription procedure. A second control (lane H2O) consisting of a mock amplification using water (lane

H2O) assessed any potential contamination of reagents used during PCR amplifications.

https://doi.org/10.1371/journal.pone.0218806.g004
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Discussion

We have isolated the first SLC6 sequence from the jellyfish C. capillata and we have shown

by in situ hybridization and immunohistochemistry experiments that the transporter is local-

ized in the MNN neurons of the peri-rhopalial tissue. The position of the new transporter

sequence in a phylogenetic tree of members of the SLC6 family indicates that the new SLC6

sequence belongs to a cluster of cnidarian sequences likely ancestral to the nutrient amino

acid transporter (NAT) subfamily. The CcSLC6_NAT1 is the first identified candidate trans-

porter that may play a role in neuronal homeostasis in a well-studied subset of neurons in a

scyphozoan.

In C. capillata as well as other scyphozoan jellyfish, swimming movements are coordinated

by neurons of the MNN (MNN–also named the Giant Fiber Nerve Net, GFNN by Horridge

[39]) [40]. The MNN consists of a flat, single-layer sheet of relatively large bi-polar neurons

along with occasionally tri-polar nerve cells, that are attached to an acellular mesoglea on the

subumbrellar side of the bell [41]. Within this spatially diffused network, chemical neurotrans-

mission proceeds by means of atypical synaptic contact, that is—vesicles are observed at both

pre- and post-synaptic terminals [42, 43]. This structural characteristic accounts for the bi-

directional propagation of the neuronal electrical activity within the MNN [44, 45]. The elec-

trical signal relayed by the neurons of the MNN is principally generated in sensory organs dis-

tributed around the margin of the bell, and which are named rhopalia [43, 46]. These rhopalial

Fig 5. Cellular localization of the CcSLC6_NAT1 protein in the peri-rhopalial tissue. Immunohistochemistry

conducted on intact peri-rhopalial tissue using the polyclonal CcSLC6_NAT1 antibodies (green). The MNN neurons

expressed the CcSLC6_NAT1 transporter robustly on the surface of the cytoplasmic membrane.

https://doi.org/10.1371/journal.pone.0218806.g005
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structures contain pace-making as well as sensory cells that produce electrical activities that

will ultimately trigger or modulate muscle contractions via synapses between neurons of the

MNN and processes of muscle cells [47, 43]. The simplicity of the organization of this neuronal

network allows for the study of neurons in their natural environment. A triangular section of

the subumbrellar region of the bell along with its rhopalium and the MNN can be isolated

([45], see Fig 2). In this preparation, the area that accommodates the MNN is identified as the

peri-rhopalial tissue. Provided that the single-layer subumbrellar epithelium is removed [22],

the exposed neurons of the MNN can then be studied using electrophysiology with their origi-

nal connections that remain linked to the various inputs generated in the rhopalium [48, 49,

44]. Intracellular recordings have shown that transmitters are released by action potentials

[50]. Subsequently, functional studies conducted on the motor neurons of the MNN identified

nonstandard substances as neurotransmitters, while none of the conventional transmitters

Fig 6. Heterologous expression of the CcSLC6_NAT1 protein showed that the antibody recognizes the C. capillata
transporter. The expression vector contained the GFP gene under the control of a promoter independent from the

transporter’s promoter. (A) All cells that were transfected with the recombinant vector expressed GFP (green) in the

cytosol of the HEK-293 cells. (B) GFP-expressing cells also expressed the transporter as revealed by the

immunofluorescence experiment using the CcSLC6_NAT1 antibody (red). (C) Merged images (A) and (B): all cells

expressing GFP (green) also expressed the CcSLC6_NAT1 transporter (red). Expression of the transporter was targeted

at the plasma membrane (arrowheads). (D) Control (merged image). Immunocytochemistry experiment was also

performed on transfected cells using the serum of the rabbit prior to immunization. The rabbit pre-serum did not label

the transfected cells (absence of red fluorescence).

https://doi.org/10.1371/journal.pone.0218806.g006
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tested on the neurons of the MNN were able to induce a response [51]. The substances able to

evoke a robust depolarizing response in the neurons of the MNN were the beta amino acids

taurine and β-alanine which are small amino acids structurally related to γ-aminobutyric acid

(GABA) and glycine. These substances were released by depolarization of the MNN neurons

along with aspartate, GABA, glutamate, glycine and possibly also some alanine and serine [51].

Interestingly, taurine was localized by immunochemistry in the neurons of the MNN [52],

although one should mention that Satterlie & Eichinger [53] were not able to replicate this

experiment in the MNN of C. capillata or, indeed, in any other scyphozoan jellyfish they

tested.

Although taurine and β-alanine are presumed to be neurotransmitters in the vertebrate ner-

vous system, a receptor sequence for taurine has not yet been isolated and β-alanine receptor

sequences isolated in vertebrates ([54] contra [55]) do not display obvious sequence similarity

with any cnidarian sequence available in databases. Conversely transport of taurine and β-ala-

nine in the nervous system is prominent and the role that those substances play in all tissues is

not restricted to neurotransmitter functions. While a few taurine transporter sequences were

isolated from vertebrates and invertebrates, transporter- and receptor-mediated effects of both

taurine and β-alanine also occur as a result of binding to receptors and transporters of both

GABA and glycine (see reviews: [56, 55]). Inversely, taurine transporters are also sensitive to

GABA, β-alanine as well as other amino acids [57]. The translocation of multiple substrates by

those transporters may have its evolutionary roots in duplication events of a common ancestral

transporter gene before the separation of the protostome and deuterostome lineages. Kinjo

and colleagues [58] suggested that an initial duplication event, before the appearance of bilat-

eral animals, resulted in the emergence of a creatine transporter and a GABA transporter.

Their analysis proposed that taurine transporters from protostome animals have a different

phylogenetic history than the taurine transporters of deuterostome animals. Even if those two

groups of taurine transporters are functionally similar, taurine transporters in deuterostome

animals are phylogenetically closer to the GABA transporters while taurine transporters in

protostome animals form a clade with creatine transporters in a phylogenetic tree [58]. Inter-

estingly, the creatine transporter has not been found at all in protostome animals which may

imply that transport of creatine is performed by taurine transporters in this group of inverte-

brate animals. With this information at hand, searching for a taurine transporter in any repre-

sentative of an ancient phylum that pre-date the appearance of explicit bilateral animals, such

as cnidarians, using sequence information available from protostome or deuterostome animals

could be misleading. If there were a taurine transporter in cnidarians, it may indeed be more

similar to a GABA (of type GAT-1) or a creatinine transporter than any of the taurine trans-

porters currently characterized in protostome and deuterostome animals.

Several initial attempts to isolate receptors and transporters of transmitters, including those

of taurine, from partial transcriptomes of MNN neurons of the lion’s mane jellyfish failed in

our hands. So we cast the net wider and searched for membrane proteins that were most preva-

lent and well-conserved across the phylogeny. Members of the SLC6 family were good candi-

dates because this family is more diverse and ancient, with the NAT subfamily being the most

basal, whereby a wide range of amino acids are transported. Some of these amino acids play

crucial roles in neuronal homeostasis and have the potential to be either neurotransmitters or

their precursors. This approach allowed for the isolation of a CcSLC6 sequence that displayed

similarities with transporters of the NAT subfamily. Subsequent to the isolation of the

CcSLC6_NAT1 sequence, transcriptomes of Cyanea species from the tentacles [59, 60] and the

peri-rhopalial tissue [61] have been made available. Analyses of those transcriptomes should

provide access to valuable sequence information to further our understanding of the nervous

system of C. capillata.
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The SLC6 family forms two major clusters on the tree, which are the Neurotransmitter

transporter (NTT) and the Nutrient Amino acid Transporter (NAT) subfamilies. It is known

that NTT genes underwent splitting in the course of early metazoan evolution and evolved

under the ultimate pressure of conserving their specificity to a particular type of neurotrans-

mitter [9, 13]. NTT members are made up of orthologous sequences (substrate-specific

branches) where GABA transporters, catecholamine (dopamine, norepinephrine, and octopa-

mine) transporters, indoleamine (serotonin) transporters, and glycine transporters form spe-

cific clusters, each constituted of transporters from different species. Hence, one can predict

the substrate specificity of a new invertebrate transporter by the affiliation of this transporter

with a particular cluster of the NTT subfamily [9]. In contrast, Nutrient Amino acid Trans-

porter (NAT) sequences diverged under the evolutionary pressure of feeding, nutrient avail-

ability, and other environmental adaptations [11]. As a result, the NAT group evolved under

rapid gene duplication events along with adaptive selections of transporters to new substrates.

For this reason, members of the NAT subfamily tend to form paralogous clusters (species-spe-

cific). The conclusion that can be made based on this phylogenetic analysis is that the jellyfish

transporter is not a member of the NTT subfamily, and accordingly does not transport either

taurine or GABA. Indeed, the new sequence belongs to an ancestral group of the NAT subfam-

ily and is part of a cluster of NAT cnidarian sequences, which possibly share similar substrate

selectivity profiles (S1 Fig). On the phylogenetic tree, the best studied transporters of the NAT

subfamily are characterized by their ability to translocate a wide spectrum of neutral amino

acids [62]. On the tree they form two distinct groups: one group comprises human transport-

ers B0AT2 /SLC6A15 (S6A15), NTT4 /XT1/SLC6A17 (S6A17) and the orphan SLC6A16

(SA16), whereas the second group of the system B0 includes B0AT1/SLC6A19 (S6A19),

B0AT3/SLC6A18 (S6A18) and IMINO/SLC6A20 (S6A20) transporters. While transporters of

the latter group are prevalent in epithelial membranes of the proximal kidney tubule [63] and

gastrointestinal tract [35, 64], members of the first group are predominantly expressed in neu-

ronal tissues as revealed by RT-PCR (v7-3/ B0AT2/SLC6A15 [65]), in situ hybridization (v7-3/

B0AT2/SLC6A15 [66] and Rxt1/NTT4/SLC6A17 [67]), and immunohistochemistry (v7-3/

B0AT2/SLC6A15 [58]; Rxt1/NTT4/SLC6A17 [68, 69]). The physiological role of those neuro-

nal transporters is not well understood [70].

The localization study of CcSLC6_NAT1 performed in the peri-rhopalial tissue showed a

robust transcription of the CcSLC6_NAT1 gene as well as its translated product in the neurons

of the MNN. CcSLC6_NAT1 transcripts were abundant in the cytosol in periphery of the

nucleus. Additionally, the presence of transcripts in the fine neuronal processes was suggested

by occasional faint labeling, a result that is consistent with axoplasmic transport of transcripts

[71]. However, an in situ hybridization signal was also observed using the sense control probe

in the cytosol of MNN neurons. Sense probes that reveal the presence of non-coding RNAs

provide valuable information on gene expression. In fact, the conservation of non-coding

RNAs in bacteria, yeast and plants as well as in invertebrate and vertebrate animals, is evidence

of the importance of these transcripts in evolution [72]. Many genes produce transcripts from

both DNA strands [73] and while the transcripts from the template strand are translated, com-

plementary non-coding transcripts play important regulatory roles in cells [74] and in organs

such as those involved in brain development [75]. Among those transcripts that do not code

for a protein, the long non-coding RNA (lncRNA) is a class of non-coding RNAs that are

more than 200-nucleotide-long. Based on the length of the CcSLC6_NAT1 non-coding tran-

script region examined in the RNA sample of the MNN (nucleotide 52 to 757), we suggest that

a lncRNA is expressed by the CcSLC6_NAT1 gene. The in situ hybridization results were sup-

ported by immunochemistry experiments performed with the serum of a rabbit immunized

with two peptides deduced from regions of CcSLC6_NAT1 that are known to be the least
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conserved among members of the SLC6 family. The jellyfish transporter was widely expressed

in the plasma membrane of the neurons of the MNN at the level of both soma and neurites.

Prior studies on amino acid transport in cnidarians concerned uptake of dissolved organic

materials in the ocean. Those studies conducted on whole sea anemones and isolated cells

from their dissociated tentacles suggested that there were three [76] and nine [77] separate

transport systems for amino acids including systems that transported neutral amino acids with

broad specificity. However, transporters involved in these systems have been neither molecu-

larly isolated nor localized in cnidarians. Furthermore, it is to be expected that dissolved

organic material in the ocean represents only a fraction of all substrates transported in cnidari-

ans. Bioprospecting has revealed that marine animals synthesize a plethora of compounds

absent in vertebrate and other terrestrial animals, and many remain yet to be discovered [78].

For this reason, functional characterization of transporters and receptors in cnidarians may

also require the isolation and identification of new molecules.

In contrast to vertebrate and some invertebrate animals such as insects, cnidarians do not

have a neurovascular unit or a hemolymph-brain barrier that distributes nutrients to neurons

[79]. However, in cnidarians, the mesoglea is a rich source of amino acids [80] that can be

released under the action of matrix metalloproteases [81]. How neurons in cnidarians main-

tain homeostasis in the absence of endothelial and glial cells will require investigating transport

systems of these nutritious metabolites in the neurons themselves. The extensive distribution

of CcSLC6_NAT1 in the MNN neurons and the likelihood that at least one amino acid is trans-

located by the transporter suggest that CcSLC6_NAT1 might be found to play a predominant

role in neuronal nutrition.

Because our efforts in identifying substrates transported by the CcSLC6_NAT1 in a heterol-

ogous system were not successful, in a future study we intend to determine the putative sub-

strates used by CcSLC6_NAT1 using in silicomodeling of the transporter’s binding site. As a

preliminary immunolabeling study suggested that the CcSLC6_NAT1 antibody may label

other neuronal types in the jellyfish, we will also assess the overall distribution of the trans-

porter in the entire animal. We are indeed interested to know whether this transporter could

be expressed ubiquitously in all neuronal types in this jellyfish. If such were to be the case, it

would then mean that CcSLC6_NAT1 plays a fundamental role in neuronal function in the

Lion’s mane jellyfish, and possibly, in other scyphozoans.

Supporting information

S1 Fig. Substrate binding sites of selected SLC6_NAT transporters. Sites interacting with

substrates were identified from sequence alignments guided by phylogenetic information and

3D structural alignments of a set of well characterized transporters. The burgundy rectangles

with patterned ends inserted on top of the alignment indicate transmembrane domains

(TMDs) distribution. The inferences of amino acid binding sites are based on published occlu-

sion state of AaLeuT/3F3D (Yamashita et al., 2005). Only amino acids that exhibit disagree-

ment with the consensus sequence are displayed on a background color; all other sites are

shown on white background. The Ofa_NAT sequence corresponds to the O. faveolataORBIC

sequence in the tree (Fig 1). Although it is annotated as a GABA transporter in public database,

the alignment shows that the major determinants known to be involved in the formation of

the amino acid binding pocket among NAT are conserved in the ORBIC sequence.

(TIF)

S1 Data. Trimmed alignment used to create the dendrogram of Fig 1.

(TXT)
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