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Abstract

Chronic myeloid leukemia (CML) is characterized by the constitutive tyrosine kinase activity

of the oncoprotein BCR-ABL1 in myeloid progenitor cells that activates multiple signal trans-

duction pathways leading to the leukemic phenotype. The tyrosine-kinase inhibitor (TKI)

nilotinib inhibits the tyrosine kinase activity of BCR-ABL1 in CML patients. Despite the suc-

cess of nilotinib treatment in patients with chronic-phase (CP) CML, a population of Philadel-

phia-positive (Ph+) quiescent stem cells escapes the drug activity and can lead to drug

resistance. The molecular mechanism by which these quiescent cells remain insensitive is

poorly understood. The aim of this study was to compare the gene expression profiling

(GEP) of bone marrow (BM) CD34+/lin- cells from CP-CML patients at diagnosis and after

12 months of nilotinib treatment by microarray, in order to identify gene expression changes

and the dysregulation of pathways due to nilotinib action. We selected BM CD34+/lin- cells

from 78 CP-CML patients at diagnosis and after 12 months of first-line nilotinib therapy and

microarray analysis was performed. GEP bioinformatic analyses identified 2,959 differently

expressed probes and functional clustering determined some significantly enriched
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pathways between diagnosis and 12 months of nilotinib treatment. Among these pathways,

we observed the under expression of 26 genes encoding proteins belonging to the cell cycle

after 12 months of nilotinib treatment which led to the up-regulation of chromosome replica-

tion, cell proliferation, DNA replication, and DNA damage checkpoint at diagnosis. We dem-

onstrated the under expression of the ATP-binding cassette (ABC) transporters ABCC4,

ABCC5, and ABCD3 encoding proteins which pumped drugs out of the cells after 12 months

of nilotinib. Moreover, GEP data demonstrated the deregulation of genes involved in the

JAK-STAT signaling pathway. The down-regulation of JAK2, IL7, STAM, PIK3CA, PTPN11,

RAF1, and SOS1 key genes after 12 months of nilotinib could demonstrate the up-regulation

of cell cycle, proliferation and differentiation via MAPK and PI3K-AKT signaling pathways at

diagnosis.

Introduction

CML results from unfaithful repaired DNA damage in a hematopoietic stem cell, but specific

features of leukemic stem cells (LSCs) have not yet been fully understood. Several studies dem-

onstrated that LSCs show a strong resistance to therapies in TKI-treated CML patients due to

their ability to activate specific signaling biological pathways [1]. Although nilotinib is highly

effective in the treatment of CML, multiple clinical trials showed that some patients could

become refractory and develop drug resistance [2]. Therapeutic strategies aiming for a cure of

CML will require full eradication of Ph+ CML stem cells. Previous studies demonstrated that

the aberrant regulation of pathways involved in the self-renewal of stem cells is implicated in

cancer [3]. Identifying such pathways and trying to exploit them therapeutically is important

to achieve CML-LSC eradication and disease cure [4]. Altered cell cycle checkpoints and a low

intracellular concentration of TKIs are among those mechanisms that can lead to drug resis-

tance in CML stem cells [5].

Previous studies demonstrated an increased expression of BCR-ABL1 oncogenic fusion

protein-kinase and the deregulation of cell cycle proteins that induced DNA damage in CML

cells [6]. These findings highlighted the properties of LSCs which become insensitive and resil-

ient to TKI treatments in the bone marrow niche [7]. In addition, stromal cells play an impor-

tant role in the survival of LSCs inducing cell cycle arrest and promote cellular quiescence in

marginal environments even after TKI therapies [1].

The ABC transporters represent the most abundant transmembrane protein family

encoded in the human genome. These membrane proteins transport drugs/substances across

the cell membrane by ATP hydrolysis, and their physiological role as a mechanism of defense

against xenobiotics has been investigated in CML [8, 9]. An altered regulation of ABC trans-

porter proteins induced multi drug resistance (MDR) in different types of cancer cells [10]. In

particular, the over expression of specific ABC transporter proteins can promote drug resis-

tance and the development of malignancy in CML CD34+ population [10]. Indeed, Porro

et al, showed that high levels of c-MYC were associated with an increased expression of some

members of ABC genes (including ABCC4) which were involved in drug resistance in promye-

loid leukemia cells [11].

The MDR phenotype may arise not only through the efflux of ABC transporters, but also

through several other mechanisms such as pathways involved in the cell growth and survival of

LSCs.
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In order to identify pathways which contribute to the LSCs survival, several investigations

have identified JAK2 as a putative target for CML. Hematopoietic growth factors (HGFs) bind

to specific cell surface receptors in the JAK2-STAT5 cell signaling pathway. Following the

HGFs binding, STAT5 is phosphorilated by JAK2 protein within the nucleus. JAK2-STAT5

signaling is involved in the signaling network downstream of BCR-ABL1, playing a crucial

role in the leukemogenesis in CML cells [12]. Recently, the existence of a JAK2/BCR-ABL1

protein complex, which helps to stabilize BCR/ABL1 kinase activity, has been demonstrated

[13]. Gallipoli et al. concluded that the JAK2/STAT5 signaling pathway is an important thera-

peutic target in CML stem/progenitor cells, and that JAK2/STAT5 inhibition by nilotinib and

ruxolitinib might contribute to obtain disease eradication [12]. Clinical studies combining rux-

olinib and TKIs in CML are ongoing in an attempt to eliminate the leukemic stem cell popula-

tion (EudraCT: NCT01702064).

Gene expression profiling studies have been performed to identify biomarkers predictive of

TKI failure [14–16]. In particular, analyses on CML CD34+ cells have revealed that some path-

ways were consistently deregulated in TKI non-responding patients [1].

The PhilosoPhi34 (EudraCT: 2012-005062-34) study aimed to verify the clearance of BM

CD34+/lin- Ph+ cells in CML patients after 3, 6 and 12 months of nilotinib treatment. We

investigated the transcriptome profiles and the consequent deregulation of genes and pathways

in CD34+/lin- cells from 78 CP-CML patients at diagnosis vs. 12 months of nilotinib treatment

by microarray analysis. We determined the deregulation of the cell cycle, the membrane drug-

transporters and the JAK-STAT signaling pathway to provide new insight into the action of

nilotinib in CP-CML patients.

Materials and methods

Patients

The PhilosoPhi34 study, which included 15 centers in Italy, collected samples from consenting

patients on behalf of the Rete Ematologica Lombarda (REL). The participants provided their

written consent to participate in this study. The study was approved by the Ethics Committee

ASST Grande Ospedale Metropolitano Niguarda (Milan, Italy) and the following local Ethics

Committees of the participants centers (Lombardia, Italy): EC ASST Spedali Civili Brescia, EC

Desio Hospital, EC IRCCS Policlinico San Matteo (Pavia), EC Valduce Hospital (Como), EC

Monza Brianza, EC IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan), EC San Raf-

faele Scientific Institute (Milan), EC Sacco Hospital (Milan), EC IRCCS Istituto Nazionale dei

Tumori (Milan), EC Valle Olona Ospedale di Circolo (Busto Arsizio), EC ASST Valle Olona

Sant’Antonio Abate (Gallarate), EC Hospital of Cremona, and EC ASST Lecco. In this study,

we enrolled 87 CP-CML patients [17]. Patients received first-line therapy with nilotinib 300

mg BID.

Isolation of BM CD34+/lin- cells using immunomagnetic beads

We collected BM samples from 87 patients at diagnosis. In addition, we collected BM samples

after 3, 6 and 12 months of nilotinib therapy [17]. 80/87 patients were examined after 12

months of nilotinib. Among these 80 patients, only one relapsed at 12 months. Mononuclear

cells (MNCs) from the bone marrow (BM) blood samples (range, 1–25 ml) of 80 CML patients

were isolated using Ficoll density gradient centrifugation at 800 rpm for 20 minutes. Immedi-

ately afterwards, we selected BM CD34+/lin- cells using Diamond CD34 Isolation kit and

autoMACs Pro separator (Miltenyi Biotec, Bologna, Italy) according to the manufacturer’s

instructions (Miltenyi Biotec). Briefly, we labeled BM MNCs with a mix of biotin-conjugated

antibodies against lineage-specific antigens. Immediately afterwards, these cells were labeled
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with Anti-Biotin Microbeads. We selected the lineage-negative stem and progenitor cells by

the depletion of the magnetically labeled cells. BM CD34+/lin- cells were obtained from the

lineage-negative stem and progenitor cells using CD34 Microbeads (Miltenyi Biotec). The

purity of isolated BM CD34+/lin- cells was detected by flow cytometry.

The methods were described in http://dx.doi.org/10.17504/protocols.io.yncfvaw, and

showed in our previous study [18].

FISH

Standard FISH tests were performed on isolated BM CD34+/lin- cells for 87 patients at diag-

nosis and for 80/87 patients after 3, 6 and 12 months of nilotinib treatment. For each patient, a

small sample of selected CD34+/lin- cells (containing at least 103 cells fixed in Carnoy’s solu-

tion) was analyzed by FISH using standard method [18]. Samples were co-hybridized to XL

BCR/ABL1 plus Translocation/Dual Fusion Probe (MetaSystems, Milan, Italy) on Thermo-

Brite Statspin Model (Leica Biosystems, US). FISH analyses were performed using fluorescence

microscope Axioskop 2 (Carl Zeiss Microimaging GmbH, Göttingen, Germany), equipped

with a UV 100-W lamp (Osram, Augsburg, Germany), ProgRes MF CCD camera (Jenoptik

AG, Jena, Germany), and ISIS System Software (MetaSystems Hard & Software, Althlussheim,

Germany).

Fine modulo. At least, 200 interphase nuclei were counted from each suitable specimen

(optimum: 300 nuclei). Each available interphase nucleus was read even in sub-optimal speci-

mens. FISH analyses were performed as described by Trojani et al [18], and in http://dx.doi.

org/10.17504/protocols.io.yncfvaw.

Cell cryopreservation and RNA extraction

Selected BM CD34+/lin- cells of 80 CP-CML patients were resuspended in 50 μl of RNAlater

(Thermo Fisher Scientific, Milano, Italy) and stored at -20˚C until RNA extraction was per-

formed as previously described [18].

Total RNA was isolated from the BM CD34+/lin- cells stored in RNAlater using MagMAX

96 Total RNA Isolation Kit (Thermo Fisher Scientific) [18], according to the manufacturer’s

instructions. The quality and the yield of the extracted RNA were measured using Nanodrop

(Thermo Fisher Scientific) (see http://dx.doi.org/10.17504/protocols.io.yncfvaw).

GEP experiments

Microarray experiments were performed on the BM CD34+/lin- cells of 80 CP-CML patients

at diagnosis as well as those who had undergone 12 months of nilotinib treatment. We pre-

pared cDNA starting from the previously extracted RNA (50 ng) using Ovation Pico WTA

System V2 kit (NuGEN) and Encore Biotin Module Kit (NuGEN) following the manufactur-

er’s instructions.

cDNA was hybridized to Affymetrix HTA 2.0 using the Gene Chip platform (Affymetrix,

Santa Clara, Ca, USA) and signals were scanned by Affymetrix Gene Chip Scanner 3000

according to the manufacturer’s instructions as described in http://dx.doi.org/10.17504/

protocols.io.yncfvaw, and in our previous manuscript [18].

Bioinformatic analyses of GEP data

The preprocessing of microarray raw data was performed using R software version 3.4.2 [19].

The Affymetrix HTA 2.0 probes were initially summarized into probe sets specific for a given

gene using function RMA [20] of R package oligo [21], downloaded from Bioconductor
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repository version 3.4. Principal component analysis (PCA) has been performed using prcomp
function of package stats version 3.4.2 [19]. MvA plots were generated using custom scripts.

MvA plots show the relationship among the average log intensity of the gene expression (A

value) and the log of intensity ratio (M value) between two samples. PCA and MvA plots were

examined before and after microarray preprocessing as a quality checking procedure. PCA

plots revealed the presence of batch effects due to the different protocols used for performing

RNA extraction and GEP experiments. Batch effects have been corrected using function Com-
Bat [22] of R package sva [23]. MvA plots showed the presence of bias in the distribution of

intensities among samples, then data was normalized using function normalize.quantiles of R

package preprocessCore [24].

The differential expression analysis was performed on the samples at 12 months vs. diagno-

sis using the two-classes SAM test [25], implemented in the homonym function in R package

samr [25]. Benjamini-Hochberg procedure was applied to control the False Discovery Rate

(FDR) and a cut-off value of 0.05 was applied to select for significant differential expression

[26].

Functional clustering was performed on significant differentially expressed genes using

online tool DAVID (https://david.ncifcrf.gov/) [27, 28], to classify them into functional groups

based on their annotation term co-occurrence. For this analysis, 1,723 protein coding genes

which have a unique EntrezID in the “Affymetrix NetAffx” annotation were used (HTA 2.0

Transcript Cluster Annotations, Release 36, 7/6/16). Groups that resulted significantly

enriched were selected based on FDR value below 0.05 [29], (see http://dx.doi.org/10.17504/

protocols.io.yncfvaw).

Results

FISH

At diagnosis, FISH analysis detected BM CD34+/lin- Ph+ cells in all 87 CP-CML patients. At

12 months, we could analyze 80/87 patients [17]. 79/80 patients were evaluable because they

achieved at least a complete cytogenetic response whereas 1/80 patient relapsed at 12 months.

No Ph+ nuclei were detected in 79/79 patients [17].

Purity of selected cells, quality and yield of total RNA

The purity of BM CD34+/lin- cells was > 97% as determined by flow cytometry (S1 Appen-

dix). The purity of the extracted RNA was in the range of 1.7–1.8, determined by absorbance

ratios of A(260)/A(280) using a NanoDrop Spectrophotometer (Thermo Fisher Scientific).

The total RNA concentration isolated from 100,000 BM CD34+/lin- cells was about 300 ng.

Preprocessing of HTA 2.0 arrays of BM CD34+/lin- cells of CP-CML

patients at diagnosis and after 12 months of nilotinib treatment

We performed the preprocessing and correction for batch effects for samples of 80 patients at

diagnosis and after 12 months of nilotinib treatment. We conducted the analyses on 78

subjects. Due to experimental issues, two patients were not considered for differential ex-

pression analysis, as the microarray CEL files of the 12 months samples were corrupted and

missed probe intensities for most of the probes. After correction for batch effects and normali-

zation, no more batch effects or residual systematic differences were observed in all the 156

arrays.
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Identification of genes and pathways deregulated between BM CD34+/lin-

cells of CP-CML patients at diagnosis vs. 12 months of nilotinib treatment

The differential expression analysis detected 2,959 probes (corresponding to 2,726 unique

genes and 1,740 unique gene symbols) differently expressed (DE) between 78 patients at diag-

nosis compared to 12 months of nilotinib treatment (S1 Table). Among the unique genes,

1,868 genes were annotated as “protein coding” and 858 as “non-coding” in the “Affymetrix

NetAffx” annotation (HTA 2.0 Transcript Cluster Annotations, Release 36, 7/6/16). Most of

non-coding DE genes (364 genes) consisted of long non-coding RNAs, while the remaining

genes were annotated as snoRNAs, miRNAs, piRNAs, miscRNAs, tRNAs and rRNAs.

The functional clustering analysis revealed interesting functional groups of genes, involved

in cell cycle, ATP-binding, and JAK-STAT pathway (Table 1 and S2 Table).

Up-regulation of 26 genes of the Cell Cycle (G1, S, G2 and M phases), DNA

damage and repair at diagnosis

Functional enrichment analysis demonstrated that 26/124 genes encoding proteins that belong

to the cell cycle pathway were significantly over expressed at diagnosis compared to 12 months

of nilotinib (Tables 1 and 2, Fig 1A). ORC5, ORC2, ORC4 (Origin Recognition Complex),

MCM3,MCM6 (Mini-Chromosome Maintenance complex) andHDAC2 encoding proteins

that belong to G1 phase of the cell cycle (Cell cycle control of Chromosome replication), were

up-regulated at diagnosis. We demonstrated that CCNA2, CDK7, CDC6, DBF4,ORC5, ORC2,

ORC4,MCM3, andMCM6 (S phase of the cell cycle) were over expressed at diagnosis. GEP

results showed that CCNA2, CCNB1,WEE1, PRKDC, ATM,MDM2 (G2 phase of the cell

cycle) as well as TTK,MAD2L1, BUB3, BUB1, ANAPC1, ANAPC4, ANAPC7, CDC27, SMC3,

YWHAE, and YWHAZ (M phase of the cell cycle) were over expressed at diagnosis compared

to 12 months of nilotinib.

Over expression of ATP-binding ABC transporters genes in CD34+/lin-

cells at diagnosis

GEP data demonstrated that ABCC4, ABCC5 and ABCD3 genes were significantly up-regu-

lated at diagnosis (Tables 1 and 3, Fig 1B). We previously demonstrated the over expression of

ABCC5 at diagnosis vs. 12 months of nilotinib treatment in 30 CP-CML patients [18].

Activation of JAK-STAT signaling pathway at diagnosis vs. 12 months of

nilotinib

We analyzed JAK-STAT signaling pathway that is made up of 155 genes (Kegg Pathway Data-

base). This pathway was deregulated in CD34+/lin- cells at diagnosis vs. 12 months of nilotinib

treatment. SOS1, PIK3CA, RAF1, IL7, JAK2, STAM, and PTPN11 were up-regulated whereas

IL22RA was down-regulated at diagnosis (Tables 1 and 4, Fig 1C).

Discussion

The resistance to TKIs remains one of the major causes of treatment failure and patient death

in CML [30]. A better understanding of the molecular biology of LSCs is crucial to develop

more effective treatments for advanced CML and prevent drug resistance [1].

To the best of our knowledge, we hereby report for the first time the results of a wide tran-

scriptome analysis of BM CD34+/lin- cells of 78 CP-CML patients at diagnosis vs. 12 months

of nilotinib treatment. We found 2,959 probes differently expressed at diagnosis compared to

12 months of nilotinib treatment. In particular, we focused on genes which are over expressed

Gene profiling of patients with chronic myeloid leukemia at diagnosis vs. 12 months of nilotinib
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at diagnosis and which play a crucial role in the cell cycle, ATP-binding ABC transporters and

JAK-STAT signaling pathway (Fig 1).

Gene expression and proteomic profile studies of CML LSCs drew attention to specific

gene pathways that could represent both prognostic indicators as well as new targets for ther-

apy that might eventually overcome resistance to the BCR-ABL TKIs [31, 32].

Table 1. Genes with significant differential expression in BM CD34+/lin- cells from 78 CP-CML patients at diagnosis vs. 12 months of nilotinib treatment.

Gene Symbola Fold Changeb Adjusted p-valuec KEGG Pathwayd

ANAPC1 1.23 0.01 CELL CYCLE AND MITOSIS

ANAPC4 1.20 0.01 CELL CYCLE AND MITOSIS

ANAPC7 1.16 0.04 CELL CYCLE AND MITOSIS

ATM 1,24 0,01 CELL CYCLE AND MITOSIS

BUB1 1.16 0.04 CELL CYCLE AND MITOSIS

BUB3 1.23 0.02 CELL CYCLE AND MITOSIS

CCNA2 1.29 0.01 CELL CYCLE AND MITOSIS

CCNB1 1.26 0.02 CELL CYCLE AND MITOSIS

CDC27 1.27 0.01 CELL CYCLE AND MITOSIS

CDC6 1.21 0.02 CELL CYCLE AND MITOSIS

CDK7 1.17 0.04 CELL CYCLE AND MITOSIS

DBF4 1.19 0.02 CELL CYCLE AND MITOSIS

HDAC2 1.33 0.02 CELL CYCLE AND MITOSIS

MAD2L1 1.27 0.01 CELL CYCLE AND MITOSIS

MCM3 1.19 0.02 CELL CYCLE AND MITOSIS

MCM6 1.25 0.03 CELL CYCLE AND MITOSIS

MDM2 1.26 0.02 CELL CYCLE AND MITOSIS

ORC2 1.31 0.01 CELL CYCLE AND MITOSIS

ORC4 1.19 0.03 CELL CYCLE AND MITOSIS

ORC5 1.17 0.02 CELL CYCLE AND MITOSIS

PRKDC 1.27 0.01 CELL CYCLE AND MITOSIS

SMC3 1.26 0.02 CELL CYCLE AND MITOSIS

TTK 1.24 0.02 CELL CYCLE AND MITOSIS

WEE1 1.31 0.01 CELL CYCLE AND MITOSIS

YWHAE 1.38 0.01 CELL CYCLE AND MITOSIS

YWHAZ 1.36 0.05 CELL CYCLE AND MITOSIS

ABCD3 1.19 0.03 ABC TRANSPORTERS

ABCC5 1.09 0.04 ABC TRANSPORTERS

ABCC4 1.21 0.01 ABC TRANSPORTERS

IL22RA1 -1.13 0.02 JAK-STAT

SOS1 1.32 0.01 JAK-STAT

PIK3CA 1.24 0.01 JAK-STAT

RAF1 1.11 0.03 JAK-STAT

IL7 1.16 0.03 JAK-STAT

JAK2 1.21 0.02 JAK-STAT

STAM 1.29 0.01 JAK-STAT

PTPN11 1.18 0.03 JAK-STAT

a Official gene symbols.
b Fold changes of gene expression (12 months vs. diagnosis).
c P-value adjusted according to Benjamini-Hochberg false discovery rate.
d KEGG pathway name.

https://doi.org/10.1371/journal.pone.0218444.t001
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The alteration of different signaling pathways such as cell cycle, JAK-STAT, and the deregu-

lation of ABC drug efflux transporters can promote the development of growth and survival of

CML progenitor and stem cells [1]. Some authors showed that several genes encoding proteins

involved in the cell cycle and chromosome segregation were up-regulated in CML LSCs [1]. We

demonstrated that 26 genes representing phases of the cell cycle (G1, S, G2 and M), were over

expressed at diagnosis compared to 12 months of nilotinib treatment in 78 CP-CML patients

(Tables 1 and 2). The integrity of signaling pathways involved in cell cycle arrest, chromatin

remodeling and DNA repair are critical to maintain the fidelity of replicated DNA. Mancini

et al, demonstrated that normal cells repaired damaged DNA during G1 arrest whereas leuke-

mic cells often had a deficient G1/S checkpoint and this depended on a functional G2/M check-

point for DNA repair (Mancini M. et al. Blood. 2017; Abs. Suppl1 130:1588).

Among the 26 deregulated genes, we found that ORC5, ORC2, ORC4,MCM3,MCM6, and

HDAC2 controlled G1 phase as well chromosome replication. The up-regulation of these genes

was associated with the initiation of DNA replication [33]. Notably, some studies demon-

strated that HDAC inhibitors treatment represented an effective strategy to target LSCs in

CP-CML patients receiving tyrosine kinase inhibitors [34, 35].

Table 2. Genes of the Cell cycle and Mitosis pathway with significant differential expression in BM CD34+/lin-

cells from 78 CP-CML patients at diagnosis vs. 12 months of nilotinib treatment.

Gene Symbola Fold Changeb Adjusted p-valuec

ANAPC1 1.23 0.01

ANAPC4 1.20 0.01

ANAPC7 1.16 0.04

ATM 1,24 0,01

BUB1 1.16 0.04

BUB3 1.23 0.02

CCNA2 1.29 0.01

CCNB1 1.26 0.02

CDC27 1.27 0.01

CDC6 1.21 0.02

CDK7 1.17 0.04

DBF4 1.19 0.02

HDAC2 1.33 0.02

MAD2L1 1.27 0.01

MCM3 1.19 0.02

MCM6 1.25 0.03

MDM2 1.26 0.02

ORC2 1.31 0.01

ORC4 1.19 0.03

ORC5 1.17 0.02

PRKDC 1.27 0.01

SMC3 1.26 0.02

TTK 1.24 0.02

WEE1 1.31 0.01

YWHAE 1.38 0.01

YWHAZ 1.36 0.05

a Official gene symbols.
b Fold changes of gene expression (12 months vs. diagnosis).
c P-value adjusted according to Benjamini-Hochberg false discovery rate.

https://doi.org/10.1371/journal.pone.0218444.t002
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Our GEP results demonstrated that genes encoding proteins involved in the S phase of cell

cycle (CCNA2, CDK7, CDC6, DFB4,MCM3, andMCM6) were down-regulated after 12

months of nilotinib. Previous studies showed that these genes might promote the cell prolifera-

tion and DNA replication in CML CD34+/lin- cells at diagnosis [15, 36, 37].

We showed that CCNA2, CCNB1,WEE1, PRKDC, ATM andMDM2 (G2 phase) were

down-regulated after 12 months of nilotinib. Notably, the study by Reynaud et al, demon-

strated the over expression of CCNA2 and CCNB1 in CML-LSCs of transgenic mice [38].

Our study demonstrated that TTK,MAD2L1, BUB3, BUB1, ANAPC1, ANAPC4, ANAPC7,

CDC27, SMC3, YWHAE, and YWHAZ (mitosis) were over expressed at diagnosis. In particu-

lar, TTK andMAD2L1might increase cell proliferation in CML CD34+/lin- cells at diagnosis,

and some researchers demonstrated that they were over expressed in CML leukemic stem cells

compared to the same cell counterpart from normal subjects [15]. Moreover, previous studies

Fig 1. (A) Box plot of expression of genes of the Cell Cycle and Mitosis pathway. Twenty-six genes were significantly

differentially expressed in BM CD34+/lin- cells from CP-CML patients at diagnosis vs. 12 months of nilotinib

treatment. (B) Box plot of expression of genes of the ATP-binding cassette (ABC) pathway. The comparison between

BM CD34+/lin- cells of CP-CML patients at diagnosis and 12 months of nilotinib treatment showed 3 genes

significantly differentially expressed. (C) Box plot of expression of genes of the JAK-STAT pathway. Eight genes

demonstrated a significant differential expression in BM CD34+/lin- cells from CP-CML patients at diagnosis vs. 12

months of nilotinib treatment.

https://doi.org/10.1371/journal.pone.0218444.g001

Table 3. Genes of the ATP-binding cassette (ABC) pathway with significant differential expression in BM CD34

+/lin- cells from 78 CP-CML patients at diagnosis vs. 12 months of nilotinib treatment.

Gene Symbola Fold Changeb Adjusted p-valuec

ABCD3 1.19 0.03

ABCC5 1.09 0.04

ABCC4 1.21 0.01

a Official gene symbols.
b Fold changes of gene expression (12 months vs. diagnosis).
c P-value adjusted according to Benjamini-Hochberg false discovery rate.

https://doi.org/10.1371/journal.pone.0218444.t003
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showed the over expression of the mitotic checkpoint genes BUB1 and BUB2 in several solid

tumors [39–41].

In conclusion, we can reasonably speculate that all the 26 genes over expressed at diagnosis

led to the up-regulation of the cell cycle in CML CD34+/lin- cells at diagnosis increasing their

survival with respect to 12 months of nilotinib treatment.

Our results showed that ABCC5, ABCC4 and ABCD3 were significantly under expressed in

CP-CML patients after 12 months of nilotinib treatment compared to diagnosis [18]. Previous

studies demonstrated that drug transporters, particularly ATP-binding cassette (ABC) trans-

porters, played a critical role in the intracellular levels of TKI and primary resistance [10].

Indeed, 48 genes represent the ABC transporters family (Kegg Pathway Database), and the up-

regulation of some of them can lead to MDR by promoting the efflux of drugs out of the cells

[9, 10, 11, 42]. Recent studies have investigated ABCC4 and ABCC5 to clarify the clinical signif-

icance of their altered function and expression in MDR. In particular, Chen et al, demon-

strated that proteins encoded by ABCC4 and ABCC5 were expressed at low levels in all normal

tissues [42]. Wang et al, demonstrated that both ABCC4 and ABCC5 regulated the efflux of

purine analogues. In order to overcome the drug resistance, recent in vitro studies demon-

strated that TKIs such as nilotinib and imatinib were able to inhibit the efflux actions of ABC

transporter proteins [43–46].

Several studies on CML demonstrated JAK-STAT signaling pathway as a potential survival

mechanism of CML LSCs [4]. Recently, researchers focused on the function of the intracellular

JAK2 in the survival and proliferation of CML LSCs and its putative role as a therapeutic target

in CML [12]. The combination of JAK2 inhibitors with TKI showed to be effective against

CML cell lines and primary cells. However, further work is still required to assess the effective-

ness, toxicity and specificity of inhibitors [31, 47–49]. Some studies are ongoing to identify

other regulators of the JAK-STAT pathway and to design innovative therapeutic strategies.

Our GEP data demonstrated an average up-regulation of 7 genes (JAK2, SOS1, PIK3CA, RAF1,

IL7, STAM, and PTPN11) encoding proteins of JAK-STAT signaling pathway at diagnosis.

In addition, the JAK-STAT pathway plays a major role in the transfer of signals from cell-

membrane receptors to the nucleus [50]. The interaction between the surface receptors and

the cytokines activates JAK2 and the cascade of genes which lead to the proliferation, differen-

tiation, cell cycle and survival of LSCs. Our study identified the dysregulation of MAPK and

PI3K signaling pathways due to the over expression of PTPN11, SOS1, RAF1 and PIK3C,

respectively [51–53]. Moreover, JAK2 could promote the phosphorilation of PIK3CA via

Table 4. Genes of the JAK-STAT pathway with significant differential expression in BM CD34+/lin- cells from 78

CP-CML patients at diagnosis vs. 12 months of nilotinib treatment.

Gene Symbola Fold Changeb Adjusted p-valuec

IL22RA1 -1.13 0.02

SOS1 1.32 0.01

PIK3CA 1.24 0.01

RAF1 1.11 0.03

IL7 1.16 0.03

JAK2 1.21 0.02

STAM 1.29 0.01

PTPN11 1.18 0.03

a Official gene symbols.
b Fold changes of gene expression (12 months vs. diagnosis).
c P-value adjusted according to Benjamini-Hochberg false discovery rate.

https://doi.org/10.1371/journal.pone.0218444.t004
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PI3K-AKT signaling pathway [53] that might be responsible to TKI resistance in Ph+ cell lines

[54].

In summary, we identified gene expression changes in BM CD34+/lin- cells of a cohort of

78 CP-CML patients after 12 months of nilotinib therapy compared to diagnosis. The dysregu-

lation of cell cycle and DNA repair, ABC transporters, and JAK-STAT signaling pathway after

treatment with nilotinib are interesting, since previous studies highlighted the role of these

pathways in CML.

We determined that the BM CD34+/lin- cells at diagnosis were all Ph-positive whereas the

same cells after 12 months of nilotinib were Ph-negative by FISH analyses. We could suppose

that BM CD34+/lin- cells of patients after 12 months of nilotinib were normal because of the

cytogenetic results. To clarify this point, we will compare GEP of BM CD34+/lin- cells after 12

months of nilotinib with respect to the normal cell counterparts of healthy donors.

The potential suitability of the genes highlighted in our study as biomarkers in CML

requires, however, further investigation to address their clinical relevance. We strongly believe

that the identification of dysregulated signaling pathways in progenitor and stem cells in CML

patients can significantly alter the presentation of the disease and its progression, and therefore

might suggest the design of new therapeutic strategies in CML. Furthermore, the identification

of pathways that might represent new drug-targets for elimination of LSCs, could improve the

outcomes of CML patients.
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