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Abstract

Background and objectives

The Dorsolateral prefrontal cortex (DLPFC) is implicated in cognitive and emotional

responses. Yet, research that investigates the causal role of the left versus right DLPFC dur-

ing the processes of emotion appraisal is lacking. In the current study, transcranial direct

current stimulation (tDCS) was used to disentangle the functional lateralization of the

DLPFC on emotional processing in response to the anticipation of, and subsequent confron-

tation with emotional stimuli in healthy volunteers.

Methods

Forty-eight subjects received both active and sham (on separate days) anodal tDCS over

either the left (N = 24) or right (N = 24) DLPFC. Subjects’ pupil dilation (PD, a physiological

marker of cognitive resource allocation) was recorded while performing an appraisal task in

which negative and positive emotion eliciting images were presented, each preceded by an

informative cue indicating the valence of the upcoming stimulus.

Results

As compared to sham stimulation, left DLPFC anodal tDCS resulted in increased PD when

confronted with negative emotional images, whereas right DLPFC anodal tDCS resulted in

decreased PD when confronted with emotional images, irrespective of valence.

Limitations

The interpretation of pupil dilation in response to emotional stimuli is limited.

Conclusion

These findings suggest inverse lateralized DLPFC effects on cognitive resource allocation

(as measured by pupillary responses) when confronted with emotional stimuli. The current
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findings may shed some light on mechanisms that explain the antidepressant effects of non-

invasive brain stimulation of the left DLPFC.

Introduction

The regulation of emotional responses is essential for subjective wellbeing [1], and plays an

important part in dealing with daily life hassles. Prefrontal cortico-limbic networks including

the dorsolateral prefrontal cortex (DLPFC) and the ventrolateral prefrontal cortex (VLPFC)

play an important role in this modulation of emotional responses [2–6]. For instance, it has

been shown that when individuals are instructed to down-regulate their emotional responses

towards emotional stimuli (i.e., reappraisal), activity in the DLPFC increases, while activity in

the amygdala and self-reported negative affect decreases [5]. It is well known that the DLPFC

has lateralized functioning. Increased right DLPFC activity is associated with emotion/mood

dysregulation and deficits in the regulation of emotional attention [7], whereas increased left

DLPFC activity is related to efficient emotion and emotional attention regulation [8]. In the

same context, patients with mood disorders are characterized by a functional hemispheric

imbalance of the DLPFC, with hyperactivity of the right DLPFC and hypoactivity of the left

DLPFC [9]. Moreover, by using non-invasive brain stimulation (NIBS) techniques, augment-

ing activity in the left DLPFC or reducing activity in the right DLPFC has been shown to

decrease depressive symptoms (for a review, see [10]). Research in healthy volunteers showed

that anodal (i.e., excitatory) tDCS over the left DLPFC decreased emotional reactivity towards

negative stimuli, as measured by both behavioral [11, 12], and psychophysiological [13] assess-

ment methods.

To date, even though NIBS is optimal to study lateralization of DLPFC in emotional pro-

cessing, research in healthy populations is currently limited to the scope of selective emotional

attention [14]. Specifically, it has been shown that anodal (i.e., excitatory) tDCS over the right

DLPFC leads to diminished emotional attentional disengagement, whereas anodal tDCS over

the left DLPFC leads to improved emotional attentional disengagement. These latter effects

were observed in a task requiring participants to intentionally implement top-down attention

regulation (i.e., divert gaze away from emotional stimuli when prompted to engage with their

neutral counterparts; [14, 15]). In other words, participants had to follow instructions in order

to perform the emotional attention task. Yet, the DLPFC is implicated in the maintenance and

implementation of goal-oriented behaviour (e.g., cognitive control, selective attention, [16]),

and these lateralized effects might be related to attentional set differences between left and

right DLPF activity [17–19]. Moreover, the DLPFC is also involved in other anticipatory

(related to attentional set) and reactive cognitive processes (e.g., [20]), that also play a role in

emotional processing [21]. Emotional responses arise both when confronted with an emotion-

eliciting event, as well as when anticipating such an event. For instance, the anticipation of a

stressful event has been shown to generate similar emotional and physiological responses as

the stressful event itself [22, 23], and anticipatory emotional processes may play an important

role in emotion and stress regulation [24, 25]. Research is therefore warranted to investigate

the functional lateralization of DLPFC functioning on emotional processing, when anticipat-

ing emotional stimuli and responding naturally (i.e., absence of task instructions) to these.

Such research is important as it resembles real life contexts more closely (i.e., absence of

explicit task instructions and/or pre-existing performance goals) and may shed light on the

outcomes of a functional hemispheric DLPFC imbalance on emotional processing, thereby

contributing to neuropsychological depression research.

Lateralized DLPFC effects on emotional processing
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Taken together, the aim of the current study was to investigate—using anodal tDCS versus

sham (placebo stimulation)—the functional lateralization of the DLPFC (and its associated

prefrontal cortico-limbic network) in regard to emotional processing when individuals

respond naturally to emotional stimuli (i.e., response phase), and where they receive time to

prepare to deal with these emotion-eliciting stimuli (i.e., anticipation phase), without explicit

instructions on how to respond to such stimuli. For this purpose, pupil dilation was measured

during the anticipation and response phase. Pupil dilation (i.e., an increase in pupil size),

caused by the iris dilator muscle, is under control of the sympathetic nervous system [26, 27]

and has been shown (under constant luminance conditions) to be positively related to emo-

tional arousal [28–30], cognitive load, mental effort, conflict processing, [31–34], and emotion

regulatory effort [35–39]. Taken together, pupil dilation seems to reflect cognitive resource

allocation for the processing of (emotional) stimuli, and can be measured during the anticipa-

tion of, and confrontation with, emotion-eliciting stimuli [25, 40].

First, based on previous research demonstrating reduced emotional reactivity towards

negative stimuli after anodal tDCS applied to the left DLPFC (suggested due to an increase of

cognitive control; [3, 11–13]), we hypothesized that anodal tDCS applied to the left DLPFC

(compared to sham tDCS) would result in larger PD (i.e., increased allocation of cognitive

resources for emotional processing) during the presentation of negative stimuli (H1). Second,

based on previous studies in which excitatory NIBS applied to the right DLPFC produced

acute deficits in selective emotional attention [14, 15, 41], which in turn may contribute to

impairments in emotion regulatory processes [42, 43], we hypothesized that anodal tDCS

applied to the right DLPFC (versus sham tDCS over the right DLPFC) would result in

decreased PD (i.e., decreased allocation of cognitive resources for emotional processing) dur-

ing the presentation of emotional stimuli (H2). Finally, in view of an absence of research in

which the causal role of the left and right DLPFC on emotional anticipatory processes during

natural responding (without task instructions) is investigated, we have no clear surrounding

hypothesis, and this section remains exploratory (but an innovative part of our study).

Materials and methods

Participants

Forty-eight healthy participants (aged 18–26; M = 21.35; SD = 2.21; 67% female) participated

in the study. A post-hoc power analysis was conducted with G�Power [44] to compute the

observed power, using the observed group × stimulation × phase × valence effect size (ηp2 =

.12) and sample size (N = 48) as input, showing power (1- β) = .98. Participants were recruited

through Facebook and the Ghent University web service. Selection criteria for participation

was: right handedness, normal or corrected to normal vision (only contact lenses, glasses were

not allowed due to technical issues with the eye-tracker to collect data from these participants),

no pregnancy at time of stimulation, no history or current neurological or psychiatric disor-

ders (checked using the Dutch version of the MINI screening; [45, 46]), no current use of

psychoactive substances or psychotropic medication, no history of serious head injury. The

experiment was conducted in accordance with the Declaration of Helsinki and the approval

of Ghent University’s Medical Ethical Committee was obtained in advance. Furthermore, all

participants provided written informed consent at the start of the experiment. Participants

received € 30 for participation.

Materials

Emotional appraisal paradigm. Participants were presented with a set of 30 positive (i.e.,

pleasant) and 30 negative (i.e., unpleasant) gray scaled pictures selected from the International

Lateralized DLPFC effects on emotional processing
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Affective Picture System (IAPS; [47]). The following IAPS pictures were used for negative

emotions: 1019, 1205, 1300, 2117, 2800, 2811, 2911, 3170, 3530, 3550, 6021, 6212, 6213, 6250,

6550, 6560, 6570, 8230, 8430, 8480, 9040, 9181, 9250, 9252, 9254, 9300, 9423, 9571, 9594, and

9635. For positive emotions, the following IAPS pictures were used: 1340, 1441, 1659, 1710,

1920, 2040, 2045, 2151, 2158, 2306, 2314, 2332, 2339, 2340, 2352, 2373, 2392, 2395, 2550, 4542,

4599, 4625, 4641, 5829, 5831, 5833, 5836, 7325, 8350, and 8540. Based on IAPS normative

data, the perceived valence (on a 1 to Likert 9 scale, where 9 reflects completely positive and 1

reflects completely negative) of positive (M = 7.35; SD = .57) and negative (M = 2.52; SD = .70)

pictures differed significantly, t(58) = 29.25, p< .001. Moreover, the arousal ratings (on a 1

to 9 Likert scale, where 9 reflects completely aroused and 1 reflects completely unaroused)

between positive (M = 4.70; SD = .59) and negative (M = 6.16; SD = .52) pictures also differed

significantly, t(58) = 10.41, p< .001. Each picture was displayed for 6 seconds, and a cue (e.g.,

the word ‘negative’ or ‘positive’), was presented during the 6 seconds prior to each picture’s

appearance. The cue always indicated the correct valence of the upcoming picture, thereby

informing subjects whether the upcoming stimulus would elicit negative or positive emotions.

The order of the picture presentation was pseudo randomized in advance, with the constraint

that no more than three pictures of the same valence were presented consecutively. Moreover,

pictures were arranged in 3 blocks of each 20 trials, in which the frequency of both picture

valences was equal in each block. Participants were told that a series of pictures would be dis-

played on the screen, and that a cue preceding each picture would inform them about its

valence. Participants were instructed to respond naturally to each picture and to look at it for

the whole time it was displayed on the screen. In order to control for confounding effects of

luminance on pupil dilation [28], the grey-scaled pictures of both valence types were corrected

to have similar luminance values. There was no significant difference in luminance between

positive (M = 90.35; SD = 30.88) and negative (M = 104.38; SD = 23.61) pictures, p> .1. Stimu-

lus presentation was programmed in MATLAB and stimuli were displayed on a 22-inch Mit-

subishi 2070SB CRT monitor, using a Cambridge Research System ViSaGe visual stimulus

generator. The stimulus generator featured a contrast resolution of 14 bits per gun. The aver-

age luminance of the monitor was 104 cd/m2 (4002 Td) and the output of the display was

gamma corrected. Subjects were seated approximately 75 cm from the monitor, using a fixed

head rest. See Fig 1 for a visualization of the paradigm.

Transcranial direct current stimulation (tDCS). TDCS was applied with a saline-

soaked pair of surface sponge electrodes (35 cm2) and delivered with a battery-driven stimu-

lator (DC-Stimulator Plus, neuroConn GmbH). TDCS modulates the membrane potential of

neurons through either depolarization (anodal tDCS) or hyperpolarization (cathodal tDCS),

thereby reducing the neuron threshold and increasing neuronal excitability (excitatory

Fig 1. Emotional appraisal task.

https://doi.org/10.1371/journal.pone.0218327.g001
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effect) or increasing the neuron threshold and reducing the neuronal excitability (inhibitory

effect), respectively [48]. To stimulate the left DLPFC, the anode electrode was vertically

positioned over F3 according to the 10–20 international system for electroencephalogram

electrode placement, whereas the right DLPFC was stimulated by positioning the anode elec-

trode vertically over F4. The cathodal reference electrode was horizontally positioned over

the supra-orbital area, contralateral to the anodal electrode location (Fp2 and Fp1, respec-

tively). The electrode placement and method of localization is in accordance with previous

tDCS studies, and has shown to produce significant effects on cognitive and emotional

processing in a vast range of studies [48, 49]. A constant, direct current of 2 mA (current

density = .06), with 15 seconds of ramp up and ramp down, was applied for 20 minutes. For

sham stimulation (i.e., placebo stimulation condition in each group) the electrode placement

was identical, however the current was directly ramped down after the initial ramp up phase.

This procedure entails a reliable sham procedure because subjects are not able to discrimi-

nate real from sham stimulation [48]. Fig 2 shows a visualization of the electric field simula-

tion for the left DLPFC (Fig 2A) and right DLPFC (Fig 2B) tDCS montage, which was

performed using Soterix HD-Explore software.

Eye tracker. Pupillary responses were recorded during the appraisal task using a Cam-

bridge Research System High-Speed Video Eye tracker (CRS HS-VET) at a sampling rate of

250 Hz, resulting in 1500 data samples for each phase (i.e., cue and target) of the trial. The eye

tracker and CRT monitor were controlled using the CRS MATLAB toolboxes, and the eye

tracking data was transferred to a computer along with event markers indicating the start and

valence of every trial, along with the respective phases (cue, target). At the beginning of the

task, the eye-tracker was calibrated by instructing subjects to direct their gaze towards 9 dots

Fig 2. Electric field simulations for tDCS over the left and right DLPFC. The scale represents the electric field (V/m)

induced by the anode and cathode.

https://doi.org/10.1371/journal.pone.0218327.g002
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that were randomly presented on the screen, one by one. Dots were displayed in the four cor-

ners of the display, midway between each corner, and in the middle of screen.

Questionnaires. To evaluate temporary changes in mood and physical states from before

(Tpre) to after (Tpost) stimulation, ratings were obtained, using six visual analog scales (VAS;

[50]). The six VASs comprised 3 mood measures (i.e., happiness, anger, sadness) and 3 mea-

sures of physical states (i.e., fatigue, vigor, tension). Participants were asked to describe how

they felt at that moment, by indicating on horizontal 100 cm lines to what extent they experi-

enced each state, ranging from “totally not” to “very much”.

Procedure

Participants were randomly assigned to either the left or right DLPFC stimulation group. A

single-blind randomized crossover within-subjects design was used for each group: each par-

ticipant received both active and sham tDCS (either over the left or right DLPFC) on two sepa-

rate days, with an interval of at least 2 days (M = 8.67 days, SD = 3.43 days, range: 2–16 days).

The order of both stimulation sessions (active and sham tDCS) was counterbalanced across

participants. At the start of the experiment, after providing written informed consent, partici-

pants reported their mood on the self-report visual analog scales. Next, participants underwent

either active or sham tDCS over either the left or right DLPFC, for a period of 20 minutes.

All participants were exposed to the same stimulation context in both stimulation sessions, by

asking them to remain calmly seated, to not talk or read, until the stimulation was finished.

After the stimulation, participants again reported their mood on the visual analogue scales.

Subsequently, participants performed the appraisal paradigm, which lasted for roughly 12

minutes. Finally, participants were debriefed and paid € 30 for their participation. For a visual-

ization of the session procedure, see Fig 3. This study was part of a larger project investigating

attentional control. During the experimental protocol, before performing the appraisal task,

participants performed an attentional engagement-disengagement task and completed several

questionnaires (e.g., emotion regulation strategies, rumination, and anxiety). These results are

reported by Sanchez-Lopez et al. [14].

Pupil data preprocessing

First, the pupil data were visually inspected. A consistent trend in pupil dilation was observed

during each first trial of every block, compared to consecutive trials. As pupil dilation is sensi-

tive to changes in luminance, and the screen before each first trial of every block is relatively

dark compared to the subsequent brighter grey-scale screens during trials, we argued that

these systematic differences were due to difference in luminance. Therefore, the pupil data of

every first trial from every block were excluded from subsequent analysis, resulting in 27 posi-

tive trials and 30 negative trials. Next, invalid data points containing eye blinks, missing or

invalid data were linearly interpolated using the interp1 function in Matlab. Next, the data

were smoothed, by means of a moving average, using the fastsmooth function in Matlab, with

Fig 3. Session protocol.

https://doi.org/10.1371/journal.pone.0218327.g003
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a 5-frame width and a 2-pass filter. Then, the data were detrended (to remove slow irrelevant

changes) within each block with simple linear regressions, using the detrend function in

Matlab. Consequently, a baseline correction was applied by subtracting the average pupil

diameter during the first 165 ms of each trial from the pupil diameter on the consecutive data

points during the trial. These pre-processing steps and baseline correction timespan are con-

sistent with prior studies using similar designs [25, 51]. Then, the pupil data from all trials for

every subject was averaged, per condition, excluding trials for which 50% or more contained

invalid data. This resulted in four pupil waveforms (cue-positive, cue-negative, target-positive,

and target-negative) for every subject. Across all conditions, all trials were retained in 79% of

the subjects. Finally, in accordance with previous research [28], the mean pupil response for

each condition was calculated in a window from 2 to 6 s after picture or cue onset, thereby

excluding the initial pupil light reflex (0 to 2s).

Data analytic plan

First, to assess whether tDCS affected reported mood and physical states, two mixed MANO-

VA’s were conducted, with one featuring the mood states as dependent variables and the other

featuring the physical states as dependent variables. These models included group (left DLPFC,

right DLPFC) as between-subject factor, stimulation (active tDCS, sham tDCS) and time (pre-

stimulation, post-stimulation) as within-subject factors.

Second, to investigate whether tDCS over the left versus right (relative to sham) differen-

tially affected pupillary responses, a mixed ANOVA with group (left DLPFC, right DLPFC) as

between-subject factor, stimulation (active tDCS, sham tDCS), phase (cue, target) and valence
(negative, positive) as within-subject factors, and pupillary changes as dependent variable, was

conducted. Then, to investigate the specific effect of tDCS over the left and right DLPFC, two

repeated measures ANOVA’s were conducted for each group (left DLPFC, right DLPFC) sepa-

rately, with stimulation (active tDCS, sham tDCS), phase (cue, target) and valence (negative,

positive) as within-subject factors, and pupillary responses as dependent variable. For the left

DLPFC, to address hypothesis 1, a planned comparison (paired t-test) was conducted, testing

the difference in pupillary responses during negative targets between active and sham stimula-

tion. For the right DLPFC, to address hypothesis 2, a planned comparisons (paired t-test) was

conducted, testing the difference in pupillary responses during the target phase between active

and sham stimulation. Furthermore, observed interaction effects that were outside of the

scope of our hypotheses, were decomposed using Bonferroni-corrected pairwise comparisons,

whereas planned comparisons where not corrected for multiple comparisons, as these did not

involve multiple (exploratory) pairwise comparisons and were hypothesis-driven [52]. Addi-

tionally, the potential presence of non-significant tDCS effects during the cue phase were fol-

lowed-up with Bayesian paired samples t-tests.

Results

Mood and physical states

Both the mixed MANOVA with the mood states as dependent variables, as well as the mixed

MANOVA with the physical states as dependent variables, both with group (left DLPFC, right

DLPFC) as between-subject factor, stimulation (active tDCS, sham tDCS) and time (pre-stimu-

lation, post-stimulation) as within-subject factors, yielded non-significant effects of group ×
stimulation × time, all F’s< .39, all p’s> .76, or stimulation × time, F’s< 1.36, all p’s> .27, sug-

gesting that tDCS did not influence mood or physical states. Table 1 displays descriptive statis-

tics regarding mood.

Lateralized DLPFC effects on emotional processing
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tDCS effects on pupillary changes

Table 2 displays descriptive statistics regarding PD for the various conditions. A mixed

ANOVA with group (left DLPFC, right DLPFC) as between-subject factor, stimulation (active

tDCS, sham tDCS), phase (cue, target) and valence (negative, positive) as within-subject factors,

was conducted. An effect of phase was observed, F(1, 46) = 253.48, p< .001, ηp
2 = .85, with

higher pupillary changes in the target phase (M = .11, SD = .01), compared to the cue phase (M
= -.19, SD = .01). In addition, a main effect of valence was observed, F(1, 46) = 20.132, p< .001,

ηp
2 = .30, with higher pupillary changes during negative trials (M = -.01, SD = .01), compared

to positive trials (M = -.072, SD = .01). However, these phase and valence effects were accounted

by a phase × valence effect, F(1, 46) = 8.86, p = .01, ηp
2 = .16. Bonferroni-corrected pairwise

comparisons showed that the effect of phase was significant for both negative, t(47) = 12.53,

p< .001, d = 1.81, and positive trials, t(47) = 13.97, p< .001, d = 2.02, whereas the effect of

valence was only significant during the cue phase, t(47) = 4.81, p< .001, d = .70, but not during

the target phase, t(47) = 1.28, p = .82. Furthermore, a significant effect of group × stimulation ×
phase, F(1, 46) = 4.84, p = .03, ηp

2 = .10, and a significant effect of group × stimulation × phase ×
valence, F(1, 46) = 5.98, p = .02, ηp

2 = .12, was observed. All remaining effects (i.e., group, stimu-
lation, group × stimulation, group × phase, group × valence, stimulation × phase, stimulation ×
valence, group × stimulation × valence, group × phase × valence, stimulation × phase ×valence)
were non-significant (all Fs< 2.11, all ps> .15). Further analyses including session order

(i.e., active tDCS in the first session or active tDCS in the second session) as a between-subject

factor in the mixed ANOVA showed that both the stimulation × phase × group, F(1, 44) = 4.25,

Table 1. Descriptive statistics regarding mood.

Variables Left DLPFC (N = 24) Right DLPFC (N = 24)

Active tDCS Sham tDCS Active tDCS Sham tDCS

M (SD) M (SD) M (SD) M (SD)
Fatigue (Tpre) 27.71 (16.70) 33.08 (20.70) 26.58 (16.05) 31.13 (21.54)

Fatigue (Tpost) 36.92 (22.90) 38.17 (20.58) 49.00 (30.59) 44.08 (22.56)

Vigor (Tpre) 58.63 (14.10) 59.34 (17.70) 56.50 (23.86) 58.54 (21.29)

Vigor (Tpost) 56.58 (18.11) 55.50 (14.23) 43.58 (23.54) 50.00 (21.47)

Anger (Tpre) 5.96 (9.54) 7.00 (9.74) 5.17 (6.81) 5.63 (7.70)

Anger (Tpost) 5.67 (8.80) 7.33 (7.39) 4.08 (6.70) 7.75 (12.13)

Tension (Tpre) 19.17 (20.96) 14.86 (15.11) 11.29 (11.71) 16.29 (18.28)

Tension (Tpost) 16.42 (16.39) 13.29 (11.46) 17.96 (24.68) 20.79 (22.51)

Sadness (Tpre) 9.75 (13.02) 8.88 (10.41) 7.17 (7.97) 6.46 (7.44)

Sadness (Tpost) 7.25 (9.87) 6.96 (7.94) 7.08 (11.10) 5.63 (7.42)

Happiness (Tpre) 62.88 (12.97) 63.92 (15.87) 66.46 (23.33) 69.58 (20.79)

Happiness (Tpost) 62.38 (14.06) 60.96 (12.84) 58.67 (20.53) 58.75 (19.80)

https://doi.org/10.1371/journal.pone.0218327.t001

Table 2. Descriptive statistics regarding pupil dilation changes relative to baseline.

Left DLPFC (N = 24) Right DLPFC (N = 24)

Phase Valence Active tDCS Sham tDCS Active tDCS Sham tDCS

M (SD) M (SD) M (SD) M (SD)

Cue phase Negative -.17 (.16) -.14 (.16) -.10 (.15) -.17 (.13)

Positive -.25 (.15) -.27 (.13) -.22 (.13) -.22 (.15)

Target phase Negative .15 (.13) .07 (.11) .10 (.09) .14 (.09)

Positive .08 (.09) .12 (.12) .07 (.11) .12 (.10)

https://doi.org/10.1371/journal.pone.0218327.t002
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p = .04, ηp2 = .09, and the stimulation × phase × valence × group, F(1, 44) = 4.67, p = .04, ηp2

= .09, effects remained significant, indicating the effect was not dependent on session order.

Order was not implied in any main or interaction effects. To test the hypothesized inverse

tDCS effects over the left and right DLPFC on pupillary changes, the four-way stimulation ×
phase × valence × group interaction was followed up by testing the stimulation × phase × valence
interaction separately for each group.

Effects of tDCS over the left DLPFC on pupillary changes

A repeated measures ANOVA with stimulation (active tDCS, sham tDCS), phase (cue, target)

and valence (negative, positive) showed a significant stimulation × phase × valence interaction,

F(1, 23) = 4.98, p = .04, ηp
2 = .18. The planned comparison showed a significant difference in

pupillary responses between negative targets during active tDCS, compared to sham tDCS, t
(23) = 2.53, p = .02, d = .52 (see Fig 4A). Specifically, when viewing negative targets, pupil dila-

tion was larger during active tDCS over the left DLPFC (M = .15, SD = .13), compared to sham

tDCS over the left DLPFC (M = .07, SD = .11). No significant difference between active and

sham tDCS was observed in pupillary responses during the cue phase of negative trials, t(23) =

.82, p = .42, or in the cue phase of positive trials, t(23) = .61, p = .56. Furthermore, post-hoc

Bayesian paired samples t-tests were conducted to investigate the relative support for HO (i.e.,

there is no difference between active and sham tDCS) versus H1 (i.e., there is a difference

between active and sham tDCS over the left DLPFC) on pupillary responses during the cue

phase. For positive cue’s, HO was 4.66 times more likely than H1, BF01 = 4.66, whereas for neg-

ative cue’s, HO was 1.46 times more likely than H1, BF01 = 1.46. Taken together, there is anec-

dotal to moderate evidence for HO (i.e., there is no difference in pupillary responses during the

cue phase between active and sham tDCS over the left DLPFC).

Effects of tDCS over the right DLPFC on pupillary changes

A repeated measures ANOVA with stimulation (active tDCS, sham tDCS), phase (cue, target),

and valence (negative, positive), showed no significant stimulation × phase × valence interac-

tion, F(1, 23) = 1.26, p = .27, ηp
2 = .05, however, a significant two-way stimulation × phase

interaction was observed, F(1, 23) = 5.17, p = .03, ηp
2 = .18. The planned comparison showed a

significant difference in pupillary responses between targets during active tDCS, compared to

sham tDCS, t(23) = 2.25, p = .04, d = .47 (see Fig 4B). Specifically, when viewing targets (irre-

spective of valence), pupillary changes were smaller during active tDCS over the right DLPFC

(M = .09, SD = .08), compared to sham tDCS over the right DLPFC (M = .13, SD = .07). More-

over, in the cue phase, no significant difference between active and sham tDCS was observed

in pupillary responses, t(23) = 1.44, p = .16. A post-hoc Bayesian paired samples t-test was

conducted to investigate the relative support for HO (i.e., there is no difference between active

and sham tDCS over the right DLPFC) versus H1 (i.e., there is a difference between active and

sham tDCS) on pupillary responses during the cue phase. HO was 1.88 times more likely than

H1, BF01 = 1.88, indicating anecdotal to moderate evidence for HO (i.e., there is no difference

in pupillary responses during the cue phase between active and sham tDCS over the right

DLPFC).

Discussion

The aim of the current neuro-modulation study was to investigate the functional lateralization

of the DLPFC (and its associated prefrontal cortico-limbic network) in regard to cognitive

resource allocation (as indexed by pupil dilation) for emotional processing when naturally

responding during the anticipation of, and confrontation with, emotional stimuli. Essentially,
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both groups (left and right sham controlled tDCS) were comparable on depressive symptoms

and mood, suggesting neither pre-existing nor task related differences in emotional process-

ing. Moreover, results suggested no differential effects of tDCS versus sham stimulation on

mood or physical states, which would be consistent with previous research showing that

Fig 4. TDCS effects of left (A) and right (B) DLPFC on pupil dilation during the target phase.

https://doi.org/10.1371/journal.pone.0218327.g004
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among healthy individuals, NIBS over the DLPFC is able to influence emotional processing,

without specifically modulating mood [53].

Overall, our results support the assumption of differential effects of tDCS applied to the left

versus the right DLPFC in pupillary responses to emotion-eliciting stimuli. First, anodal versus

sham tDCS applied to the left DLPFC resulted in increased PD when attending to negative,

but not positive images. Pupil dilation has been associated with both emotional arousal [28],

cognitive effort [54], and also activity in the DLPFC [37]. Other authors argued that pupil dila-

tion reflects top-down regulation of emotional stimuli (e.g., [55, 56]). In the current study, par-

ticipants received no instructions to regulate or use effort; they were simply asked to respond

naturally and spontaneously to every emotion-eliciting stimulus (participants carefully looked

at the pictures, and did not close their eyes). Therefore, in the current study, although pupil

dilation does not indicate about intentional regulation effort, it does inform about automatic

changes in emotional processing (i.e., cognitive resource allocation) due to neuromodulation

of the DLPFC. Furthermore, it informs about the change in the sympathetic nervous (and

arousal related neurochemical) system following the identification and appraisal of an emo-

tion-eliciting stimulus. Furthermore, it is probable that the increased cognitive resource alloca-

tion (due to active tDCS over the left DLPFC), contributes to improved (emotion) regulatory

top-down processes (i.e., cognitive control). This would be in line with research suggesting

that improved cognitive control is an important working mechanism in the effects of NIBS

over the left DLPFC in reducing depressive symptoms [8, 10, 57], and emotional reactivity

[11–13]. However, this is speculative and further research is required to specifically investigate

whether these changes in resource allocation contribute to improved cognitive control and

reduced emotional reactivity.

Second, anodal versus sham tDCS over the right DLPFC resulted in decreased PD when

confronted with emotional stimuli, irrespective of their emotional valence. The data show

a difference in dilation due to real versus placebo stimulation, denoting an adjustment in

sympathetic nervous system in response to tDCS. Prior studies using excitatory NIBS over

the right DLPFC showed adverse effects on emotional attention (e.g., increased attention

towards negative stimuli, reduced attentional control over emotional information; [14, 41,

58–60]), which in turn is suggested to contribute to maladaptive emotion regulatory pro-

cesses [42, 61]. These findings would be consistent with the notion that excitatory right

DLPFC stimulation contributes to decreased cognitive resource allocation to process emo-

tional information, impeding individuals’ capacity to engage in emotion regulatory pro-

cesses. As mentioned earlier, a functional hemispheric imbalance of the DLPFC is a hallmark

of depression, with increased activity in the right DLPFC relative to the left DLPFC [9].

Moreover, this increased activity in the right DLPFC is suggested to contribute to depressive

symptoms, such as increased negative mood [7]. In addition, depressed individuals typically

display impaired performance on experimental paradigms in which they have to exert cogni-

tive effort to inhibit emotional information [62–64]. Altogether, results of the current study

add to this literature by showing that PD decreases following tDCS over the right DLPFC,

possibly denoting a reduction in cognitive resource allocation to process emotional informa-

tion. Of importance, in contrast to the findings of the left DLPFC, this effect was indepen-

dent of emotional valence. The origin of this valence right DLPFC non-specific effect in

contrast to the valence specific left DLPFC is puzzling, and is in line with previous inconsis-

tent results produced by previous research (for a review, see [53]). For instance, the results of

one study showed increased attention towards negative stimuli after excitatory NIBS over

the right DLPFC [41], whereas another showed reduced attentional control towards emo-

tional information (irrespective of valence; [14]). Thus, further research is required to inves-

tigate in which specific contexts valence specific effects are produced.
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Third, effects of tDCS during the anticipation phase were non-significant. Furthermore,

post-hoc Bayesian paired t-tests for both the left and right DLPFC showed anecdotal to moder-

ate evidence for the absence of tDCS effects. Conceptually, it could be that the current para-

digm did not incentivize participants to proactively engage in emotional regulatory processes

during the anticipation phase, as the stimuli have no personal relevance. Future studies could

use more self-relevant and emotionally provoking stimuli, such as (rigged) social feedback, as

the need to belong is a fundamental human motivation and social feedback automatically

prompts self-regulatory processes [65–67].

Besides a number of strengths, such as a comparison of the left versus right DLPFC, and

the employment of an appraisal paradigm allowing natural responding, it has to be noted that

the current study has several limitations. First, only pupillary responses were measured. As a

result, it is difficult to interpret what pupil dilation reflects, given that PD has been shown to

reflect both arousal and cognitive effort to control emotional responses [28, 29]. Future studies

would benefit from including additional, complementary psychophysiological and behavioral

measures, such as skin conductance response (an index of arousal; [68, 69]), changes in heart

rate variability (an index of emotional regulation success; [70]), and self-report ratings of

arousal and valence. Second, based on the normative IAPS data, positive and negative images

not only differed on valence, but also on arousal (negative images being more arousing than

positive images). However, this does not affect the validity of the conclusions of the current

study, as inferences were restricted to the comparison between real and sham stimulation, and

not between negative and positive stimuli. Third, tDCS produces diffuse effects, resulting in

not only the neuro-modulation of the target area (DLPFC), but also of its underling neuronal

network and neighboring brain regions [71–73]. For instance, the VLPFC is also implicated in

emotional processing, and is located near the DLPFC [5]. Furthermore, research has shown

that anodal tDCS over the VLPFC affects emotional processing and emotional reactivity [74–

77]. Therefore, some caution is warranted for the specificity of the DLPFC stimulation in the

current study. Future studies would benefit from the inclusion of neuro-imaging assessment,

which would allow to investigate the specific affected neuro-circuitry.

To conclude, the results of the current study corroborate the hypothesis of inverse lateral-

ized DLPFC functioning on cognitive resource allocation for emotional processing when

naturally responding to emotional stimuli and extend previous findings of inverse lateralized

DLPFC effects on emotional attention processes [14]. This study established a basic proof of

concept for inverse lateralized DLPFC effects on resource allocation for emotional processing

(as measured by pupillary responses) when attending anticipated emotional stimuli. The cur-

rent findings may shed some light on the outcomes related to right DLPFC hyperactivity

observed in depression, and on how left DLPFC tDCS may produce antidepressant effects.

Author Contributions

Conceptualization: Alvaro Sanchez-Lopez, Rudi De Raedt, Chris Baeken, Marie-Anne

Vanderhasselt.

Data curation: Jens Allaert, Alvaro Sanchez-Lopez, Marie-Anne Vanderhasselt.

Formal analysis: Jens Allaert.

Funding acquisition: Alvaro Sanchez-Lopez, Marie-Anne Vanderhasselt.

Methodology: Jens Allaert, Alvaro Sanchez-Lopez, Rudi De Raedt, Marie-Anne

Vanderhasselt.

Resources: Alvaro Sanchez-Lopez, Rudi De Raedt, Marie-Anne Vanderhasselt.

Lateralized DLPFC effects on emotional processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0218327 June 19, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0218327


Supervision: Alvaro Sanchez-Lopez, Rudi De Raedt, Marie-Anne Vanderhasselt.

Validation: Marie-Anne Vanderhasselt.

Writing – original draft: Jens Allaert, Marie-Anne Vanderhasselt.

Writing – review & editing: Alvaro Sanchez-Lopez, Rudi De Raedt, Chris Baeken, Marie-

Anne Vanderhasselt.

References

1. Hu T, Zhang D, Wang J, Mistry R, Ran G, Wang X. Relation between Emotion Regulation and Mental

Health: A Meta-Analysis Review. Psychological Reports. 2014; 114(2):341–62. https://doi.org/10.2466/

03.20.PR0.114k22w4 PMID: 24897894

2. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE. Rethinking Feelings: An fMRI Study of the Cognitive

Regulation of Emotion. Journal of Cognitive Neuroscience. 2002; 14(8):1215–29. https://doi.org/10.

1162/089892902760807212 PMID: 12495527

3. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends in Cognitive Sciences. 2005; 9(5):242–

9. https://doi.org/10.1016/j.tics.2005.03.010 PMID: 15866151

4. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JDE, et al. For better or for worse:

neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage.

2004; 23(2):483–99. https://doi.org/10.1016/j.neuroimage.2004.06.030 PMID: 15488398

5. Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala–frontal connectivity during emotion

regulation. Soc Cogn Affect Neurosci. 2007; 2(4):303–12. https://doi.org/10.1093/scan/nsm029 PMID:

18985136

6. Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation:

implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecu-

lar psychiatry. 2008; 13(9):829–57. https://doi.org/10.1038/mp.2008.65 PMID: 18574483

7. De Raedt R, Koster EH. Understanding vulnerability for depression from a cognitive neuroscience per-

spective: A reappraisal of attentional factors and a new conceptual framework. Cognitive, Affective, &

Behavioral Neuroscience. 2010; 10(1):50–70.

8. De Raedt R, Vanderhasselt MA, Baeken C. Neurostimulation as an intervention for treatment resistant

depression: From research on mechanisms towards targeted neurocognitive strategies. Clin Psychol

Rev. 2015; 41:61–9. https://doi.org/10.1016/j.cpr.2014.10.006 PMID: 25468571

9. Grimm S, Beck J, Schuepbach D, Hell D, Boesiger P, Bermpohl F, et al. Imbalance between Left and

Right Dorsolateral Prefrontal Cortex in Major Depression Is Linked to Negative Emotional Judgment: An

fMRI Study in Severe Major Depressive Disorder. Biological Psychiatry. 2008; 63(4):369–76. https://

doi.org/10.1016/j.biopsych.2007.05.033 PMID: 17888408

10. Baeken C, De Raedt R. Neurobiological mechanisms of repetitive transcranial magnetic stimulation on

the underlying neurocircuitry in unipolar depression. Dialogues Clin Neurosci. 2011; 13(1):139–45.

PMID: 21485753
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