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Abstract

Many studies about classification and the functional annotation of intrinsically disordered

proteins (IDPs) are based on either the occurrence of long disordered regions or the fraction

of disordered residues in the sequence. Taking into account both criteria we separate the

human proteome, taken as a case study, into three variants of proteins: i) ordered proteins

(ORDPs), ii) structured proteins with intrinsically disordered regions (IDPRs), and iii) intrinsi-

cally disordered proteins (IDPs). The focus of this work is on the different functional roles of

IDPs and IDPRs, which up until now have been generally considered as a whole. Previous

studies assigned a large set of functional roles to the general category of IDPs. We show

here that IDPs and IDPRs have non-overlapping functional spectra, play different roles in

human diseases, and deserve to be treated as distinct categories of proteins. IDPs enrich

only a few classes, functions, and processes: nucleic acid binding proteins, chromatin bind-

ing proteins, transcription factors, and developmental processes. In contrast, IDPRs are

spread over several functional protein classes and GO annotations which they partly share

with ORDPs. As regards to diseases, we observe that IDPs enrich only cancer-related pro-

teins, at variance with previous results reporting that IDPs are widespread also in cardiovas-

cular and neurodegenerative pathologies. Overall, the operational separation of IDPRs from

IDPs is relevant towards correct estimates of the occurrence of intrinsically disordered pro-

teins in genome-wide studies and in the understanding of the functional spectra associated

to different flavors of protein disorder.

Introduction

Over the last two decades, the concept of ‘intrinsic disorder’ has emerged as a prominent and

influential topic in protein science [1–7]. The discovery of intrinsically disordered proteins

(IDPs), i.e., functional proteins lacking a well-defined tertiary structure, has challenged the
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traditional sequence-structure-function paradigm [8,9]. In their seminal paper, Uversky, Gil-

lespie, and Fink [2] introduced the “charge-hydrophobicity phase space”, which clarified that

IDPs are characterized by a combination of “low overall hydrophobicity and large net charge”.

IDPs constitute, in eukaryotes, a substantial part of the cellular proteome and are involved in

many biological processes that complement the functional repertoires of ordered proteins

[10,11]. Ever-increasing experimental evidence has revealed the presence of disordered regions

also in well-structured proteins [12,13]. Then the distinction between intrinsically disordered

proteins, i.e., proteins lacking a tertiary structure, and structured proteins containing intrinsi-

cally disordered regions gradually emerged [14–17]. An operational distinction of these two

variants is the main objective of the present work. A note on terminology is in order at this

point. The editors of the journal Intrinsically Disordered Proteins made an effort to disambig-

uate the semantics of protein intrinsic disorder [18]. They proposed “intrinsically disordered

proteins” as a unifying term, recognizing that it is a compromise “far from being ideal”, and

suggesting that “additional descriptors” would emerge, apt to clarify the many aspects of

“structurelessness” that are included in one term. The terminology we adopt here is surely also

not ideal. Let us try to make clear that we use here IDPs, when referring to previous studies, as

the general unifying term proposed by Dunker et al. We use IDPs also to denote a subgroup of

Dunker et al.’s IDPs, a variant that is operationally specified here as distinct from the variant

of mostly structured proteins with long intrinsically disordered regions (we call here IDPRs).

The biological role of IDPs has been the focus of a growing number of publications, in the

recent past. Xie et al., for example, in a series of three articles compiled an anthology of the

functional roles of IDPs [19–21]. It has been reported that out of the 710 keywords recording

biological functions in the Uniprot/Swissprot database, 310 (44%) are associated with ordered

proteins and 238 (34%) with IDPs [22]. Several studies have reported lists of Gene Ontology

functional classes that are enriched in IDPs, including but not limited to: cell regulation, tran-

scription, translation, signaling, and alternative splicing [23–30]. Different studies highlight

the occurrence of unfolded regions in proteins that function as chaperones for other proteins

or RNA molecules, transcription factors, effectors, assemblers, and scavengers [14–16,27].

Importantly, many proteins with disordered regions have been associated with human diseases

[9,31,32], and a D2 concept (disorder in disorders) emerged [33]. However, in all these studies

what we distinguish here as IDPs and IDPRs were considered as a unique variant, possibly

aggregating proteins which are structurally and functionally different. This is still reflected, for

example, in a recent paper by Darling and Uversky [34]. IDPRs, as we define them, may have a

well-defined 3D structure that either can undergo conformational, allosteric changes (e.g.,

after a post-translational modification [35]) or accommodate functional, locally disordered

domains, that are limited to less than 30% of the structure. The presence of unstructured loops

or domains, e.g., linear motifs and Molecular Recognition Features (MORFs), can be impor-

tant for these proteins to target low-affinity substrates enlarging the repertoire of protein inter-

actions [15].

Let us remind that one of the features that distinguishes IDPs from structured proteins is

their different interaction mechanism with target substrates. According to the classic lock-and-
key mechanism [36], the specificity and affinity required for molecular interactions depend on

the complementarity of the binding interfaces. However, even proteins that are disordered

under physiological conditions or contain long unstructured regions can form stable com-

plexes [9,37]. In this context, the lack of a well-defined 3D-structure represents a major func-

tional advantage for IDPs, allowing them to interact with a broad range of substrates with

relatively high-specificity and low-affinity, often undergoing a disorder-to-order transition

upon binding [3,9,27,38,39]. However, despite that this description makes sense for proteins

lacking a tertiary structure (IDPs), it is reasonable to suppose that structured proteins with
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long disordered regions (IDPRs) still interact with substrates through a mechanism similar to

the lock-and-key. It has been reported that disordered regions have many post-translational

modification sites (PTMs) [9,30,40–42], which induce conformational changes leading to one-
lock-many-keys interactions [34]. A recent study reviews different interaction mechanisms for

unfolded and folded proteins [35]. Unfolded proteins are characterized by induced-fit interac-
tions, whereas conformational change interactions characterize folded proteins. Although the

recent literature does not explicitly separate IDPs from IDPRs, it is reasonable to hypothesize

that IDPRs typically undergo conformational changes after post-translational modifications,

whereas high-specificity and low-affinity induced fit mainly characterize IDPs.

Many studies aiming at a general classification of IDPs’ functional roles were based on the

required presence of long disordered regions in the sequence [19–21,43–46]. However, the

presence of a long disordered segment does not necessarily imply that a protein lacks a three-

dimensional structure. In support of this claim, Gsponer et al. showed that also the percentage

of disordered residues plays an important role in determining the half-life of a protein [47].

Therefore, both the length of disordered domains and the overall fraction of disordered resi-

dues in the sequence are critical parameters to distinguish different types of protein disorder.

Following clear-cut criteria inspired by experimental observations [15,47], we compiled

two lists of human IDPs and IDPRs. We identified IDPs as those proteins having more than

30% of disordered residues (implying a shorter half-life [47]). We defined IDPRs as proteins

with at least one long disordered segment (suggesting a higher sensitivity to proteolytic degra-

dation [15]) but less than 30% of disordered residues in their sequence. We have assessed both

the over-representation and the enrichment of IDPRs and IDPs in different functional classes

and gene ontologies. Moreover, we have investigated the relative occurrence of IDPRs and

IDPs in proteins related to cancer, cardiovascular, and neurodegenerative diseases.

Our results indicate that IDPRs and IDPs are structurally different, have different func-

tional spectra, and play different roles in human diseases.

Materials and methods

Dataset of protein sequences

We downloaded the human proteome from the UniProt-SwissProt database (http://www.

uniprot.org/uniprot) [48], release 2018_07. We selected 20386 human proteins by searching

for reviewed proteins belonging to Homo Sapiens (Organism ID: 9606, Proteome ID:

UP000005640).

Dataset of protein sequences associated to diseases

To select the proteins associated to cancer, cardiovascular, and neurodegenerative diseases, we

used the lists of keywords found in Iakoucheva et al. [49], Cheng et al. [50], and Uversky [51].

Then, we extracted the proteins annotated with those keywords from the UniProt-SwissProt

database. The lists of disease-related proteins are available in S2, S3 and S4 Texts.

Prediction of protein disorder

We identified disordered residues in the protein sequences using MobiDB (http://mobidb.bio.

unipd.it) [52], a consensus database that combines experimental data (especially from X-ray

crystallography, nuclear magnetic resonance (NMR) and cryo-electron microscopy (Cryo-

EM)), curated data and disorder predictions based on various methods. From the initial data-

set, we discarded proteins not annotated in MobiDB. Of the 20386 initial proteins, we analyzed

20030 proteins, i.e. 98.3% of the initial dataset.
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Identification of IDPs and IDPRs

To partition the human proteome into different protein variants, we used two parameters: the

percentage of disordered residues and the length of the longest disordered domain in the

sequence. Based on these two parameters, we defined:

i. ordered proteins (ORDPs): they have less than 30% of disordered residues, no C- or N-ter-

minal segments longer than 30 consecutive disordered residues as well as no segments lon-

ger than 40 consecutive disordered residues in positions distinct from the N- and C-

terminus;

ii. proteins with intrinsically disordered regions (IDPRs): they have less than 30% of disordered

residues in the polypeptide chain and at least either one C- or N-terminal segment longer

than 30 consecutive disordered residues or one segment longer than 40 consecutive disor-

dered residues in positions distinct from the N- and C-terminus;

iii. intrinsically disordered proteins (IDPs): they have more than 30% of disordered residues in

the polypeptide chain.

Generally speaking, ORDPs are proteins with a limited number of disordered residues and

the absence of disordered domains. IDPRs, unlike ORDPs, are proteins with at least one long

disordered segment (implying a short half-life [15]) accommodated in globally folded struc-

tures. The rationale of taking into account the location of the long disordered segments in the

definitions i) and ii) is discussed below in the discussion section. IDPs are proteins with a sig-

nificant percentage of disorder (implying an unfolded structure and a high susceptibility to

proteolytic degradation [47]).

Clustering of the variants of disorder through functional profiles

The functional profiles of ORDPs, IDPRs and IDPs were defined considering several annota-

tions, such as: biological processes, cellular components and molecular functions from the

Gene Ontology database [53] and protein classes from the PANTHER database [54–56].

Functional profiles associated with each protein variant are unitary vectors whose compo-

nents are estimated as the number of proteins of a variant in each functional class divided by

the number of proteins in that specific variant. Functional distances between protein variants

were evaluated through the Euclidean distance of their profiles. The protein variants were then

clustered using the average linkage hierarchical clustering algorithm [57]. The stability of the

clustering against noise in the attribution of proteins to the different functional classes was

assessed through bootstrap [58]. In each bootstrap re-sampling, new lists of ORDPs, IDPRs,

and IDPs were compiled by randomly picking-up (with repetition) proteins in each variant.

The robustness of two variants clustering together was estimated by f, the number of times this

happened, divided by the number of bootstrap replicates [59]. Similarly, we evaluated the

probability that two variants cluster just by chance by evaluating the fraction f of times that the

two variants are clustered using resampled lists of ORDPs, IDPRs, and IDPs in which proteins

from the entire human proteome are randomly inserted.

Over-representation of a protein variant in a functional class

The fractions of ORDPs, IDPRs, and IDPs were evaluated in each functional class. A protein

variant is over-represented in a functional class if the frequency of its proteins in such a class is

higher than the frequency of the same variant in the human proteome. The statistical signifi-

cance of the differences was assessed through a binomial test [54,60]. We did three statistical
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analyses, one for each protein variant. A conservative p-value, accounting for the multiple test-

ing, was obtained through Bonferroni correction [61].

Enrichment of a protein variant in a functional class

A functional class is enriched in the protein variant that has the highest frequency and depleted

in the protein variant that has the lowest frequency. We evaluated the statistical significance of

enrichment/depletion through a cascade of tests. Firstly, we tested the null-hypothesis that the

three variants (ORDPs, IDPRs, and IDPs) have the same frequencies in a functional class.

Through a goodness-of-fit (chi-square) test we rejected the null hypothesis when the p-value is

lower than 0.05. Secondly, we tested the two pairs of variants with the highest and the two

pairs with the lowest frequencies with two further goodness-of-fit tests of the hypothesis of

equal probabilities. In each of the two tests, if the p-value is lower than 0.05 then the hypothesis

of equal frequency of the pairs is discarded. Eventually we concluded that a given functional

class is enriched in the protein variant that has the highest significant frequency and depleted

in the protein variant that has the lowest significant frequency. Looking at S6 Table it is clear

that, if the first test is not passed no conclusion on the enrichment can be made. Once the first

test is passed then three cases are possible in each functional class: i) neither significant enrich-

ment nor depletion; ii) either significant enrichment or significant depletion; iii) both signifi-

cant enrichment and significant depletion.

Results

ORDPs, IDPRs and IDPs in the human proteome

In Table 1 we report numbers and frequencies of ORDPs, IDRPs, and IDPs in the human pro-

teome. Most human proteins are ORDPs, followed by IDPs and IDPRs. The frequency of IDPs

(proteins with more than 30% of disordered residues) is about 32%, a result consistent with

Colak et al. [62]. According to previous estimates [63], the percentage of all proteins contain-

ing disorder (IDPRs and IDPs) is roughly 51%. Therefore, the classification of IDPRs either as

ordered or disordered is important to correctly estimate the overall percentage of protein

intrinsic disorder in the human proteome.

Protein variants: Distance of functional profiles

Functional distances between protein variants are reported in Fig 1 as hierarchical trees (dis-

tance matrices are reported in S1 Table) relative to gene ontology biological processes, cellular

components, molecular functions, and to the PANTHER protein classes. IDPRs robustly clus-

ter together with ORDPs. We conclude that, as a general trait, IDPRs have functional profiles

which are more similar to those of ORDPs than to those of IDPs.

To further check that ORDPs and IDPRs do not cluster together by chance, we compared

the hierarchical clusters of ORDPs, IDPRs, and IDPs in Fig 1 with the clusters obtained by

Table 1. Numbers and frequencies of ORDPs, IDRPs, and IDPs in the human proteome.

Variant Number of proteins %

ORDPs 9702 49

IDRPs 3862 19

IDPs 6466 32

Total 20030 100

Number and frequency of ORDPs, IDPRs and IDPs in the human proteome.

https://doi.org/10.1371/journal.pone.0217889.t001
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repeatedly resampling each variant with proteins randomly selected from the human prote-

ome. f values are comprised between 0.25 and 0.37 (see Figure A in S1 Text). We, therefore,

concluded that the lower distance between the functional profiles of ORDPs and IDPRs,

observed in the human proteome (Fig 1), is due to functional specialization and not by chance.

Protein variants: Over-representation in the functional classes

A protein variant is over-represented (under-represented) in a functional class if its frequency

is significantly higher (lower) than the frequency it has in the human proteome. In Fig 2 and

S2 Table, we report the over- (under-) representation of ORDPs, IDPRs, and IDPs in the func-

tional classes of PANTHER.

As expected, ORDPs are over-represented among enzymes (oxidoreductases, isomerases,

lyases, hydrolases, transferases, ligases), and in several other protein classes related to storage,
defense/immunity, transporters, receptors, transfer/carriers and calcium-binding proteins.
ORDPs are under-represented among cytoskeletal proteins, nucleic acid binding proteins and

transcription factors.

IDPRs are over-represented among transporters, cell-junction, cell adhesion, receptors,
enzyme modulators, cytoskeletal proteins. Moreover, they are over-represented in enzymes such

as hydrolases and transferases. IDPRs are under-represented among transcription factors and

Fig 1. Clusters of the protein variants in the human proteome. Hierarchical trees of ORDPs, IDPRs, and IDPs,

based on different functional profiles (i.e. biological processes, molecular functions, cellular components, and

PANTHER protein classes) are here reported. The length of the branches are not identical and reflect the distance

matrices in S1 Table. In all the four cases, ORDPs and IDPRs are robustly separated, as indicated by bootstrap scores,

the number of times these two groups clustered together divided by the number of bootstrap replicates (1000).

https://doi.org/10.1371/journal.pone.0217889.g001
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oxidoreductases. Notably, both ORDPs and IDPRs are over-represented in transporters, recep-

tors, hydrolases, and transferases; interestingly, IDPs are under-represented in all these latter

functional classes.

IDPs are over-represented only among structural proteins, transcription factors, and

nucleic-acid binding proteins; note that the two latter functions are not over-represented both

in ORDPs and IDPRs.

We also compared the over- (under-) representation of the variants in Gene Ontology

annotations related to biological processes, molecular functions and cellular components (for

details see: S1, S2 and S3 Figs; S3, S4 and S5 Tables).

In a nutshell, it is worth noting that each variant displays articulated spectra of specific GO

annotations, that are generally consistent with the closeness of IDPRs to ORDPs already

shown above, based on functional distances and PANTHER classes. On the contrary, IDPs

have a well characterized, peculiar, set of annotations. Indeed, IDPs are specifically over-

represented in molecular functions related to nucleic acid binding and chromatin binding, and

developmental biological processes (i.e., pattern specification processes, ectoderm, embryo,

mesoderm and system development), where ORDPs are under-represented and IDPRs are not

significantly represented.

Enrichment of functional classes in protein variants

In each protein functional class, the three protein variants (ORDPs, IDPRs, IDPs) are differently

distributed (Fig 3). A functional class is enriched (depleted) in the variant that has the highest

(lowest) relative frequency. The statistical significance of the enrichment (depletion) is evaluated

with a specific test (see Materials and Methods). In Fig 3 and S6 Table, we report the protein

classes that reached statistical significance in the assessment of their enrichment (depletion).

Only two protein classes are enriched in IDPs: nucleic acid binding proteins and transcription
factors. The other classes are enriched in ORDPs. No protein class is enriched in IDPRs.

The results on the enrichment of biological processes, cellular components, and molecular

functions in the protein variants are reported in S7, S8 and S9 Tables, respectively. Many

development processes (pattern specification, ectoderm, mesoderm, endoderm, and system
development), chromatin and nucleic acid binding are enriched in IDPs whereas ORDPs

enrich anatomical structure morphogenesis, death, and cell differentiation. Notably, IDPRs

enrich only calcium-dependent phospholipid binding and helicase activity. Finally, IDPs and

IDPRs do not enrich any cellular component.

Over-representation and enrichment of protein variants in diseases

In Fig 4 and S10 Table, we report the over-representation of the protein variants (ORDPs,

IDPRs, and IDPs) among the proteins related to cardiovascular diseases, neurodegenerative

diseases, and cancer. IDPs are over-represented in cancer and under-represented in cardiovas-

cular diseases. On the contrary, ORDPs are over-represented in cardiovascular diseases and

under-represented in cancer. IDPRs are over-represented in all the diseases here considered,

and particularly in neurodegenerative diseases.

In Fig 5 and S11 Table, we report the enrichment of protein variants in diseases. Notably,

cancer-related proteins are specifically enriched in IDPs. Both, proteins related to cardiovascu-

lar diseases and those related to neurodegenerative diseases are enriched in ORDPs. IDPRs are

Fig 2. Over- (under-) representation of the protein variants in the PANTHER protein classes. Bar charts of the normalized differential

occurrence of ORDPs, IDPRs, and IDPs in various protein classes, with respect to the human proteome (the reference). Only statistically

significant differences are reported (p-value<0.05).

https://doi.org/10.1371/journal.pone.0217889.g002
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depleted in all three categories of disease-related proteins (not significantly among proteins

related to cardiovascular diseases, see S11 Table).

Discussion

In this study we operationally distinguish the functional spectra and biological roles of three

broad variants of intrinsic protein disorder: i) ordered proteins (ORDPs), ii) structured proteins
with intrinsically disordered protein regions (IDPRs), and iii) intrinsically disordered proteins
(IDPs). The focus of this work is on the functional distinction and the different roles in dis-

eases of IDPs and IDPRs, as we distinguish them.

Many studies aiming at a general classification of functional roles of protein intrinsic disor-

der were based on the required presence of long disordered regions in the sequence, thus con-

sidering IDPRs and IDPs as a single entity [19–21,43–46].

Fig 3. Functional classes are differently enriched in ORDPs, IDPRs, and IDPs. A functional class is enriched (depleted) in the protein variant that

has significantly the highest (lowest) frequency. All the classes shown in this figure passed the enrichment (depletion) test for at least one variant

(detailed numerical values can be found in S6 Table).

https://doi.org/10.1371/journal.pone.0217889.g003

Fig 4. Over-representation of the variants of disorder in diseases. Bar charts of the normalized differential

occurrence (with respect to the human proteome) of ORDPs, IDPRs, and IDPs in three groups of disease-related

proteins.

https://doi.org/10.1371/journal.pone.0217889.g004
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However, the presence of just one long disordered segment (longer than 30 disordered resi-

dues) does not imply that a protein is globally intrinsically disordered, i.e., that it lacks a stable

three-dimensional structure. With this criterion, it is impossible to discriminate between IDPs

and IDPRs. Moreover, the general requirement of 30 consecutive disordered residues as a fin-

gerprint of IDPs is neither experimentally justified nor universally accepted in the literature.

Indeed, this length ranges from 20 residues in Necci et al. [64] up to 50 residues, as in Dunker

et al. [3] and Ward et al. [44]. Our distinction is based precisely on this point: the difference

between IDPs and IDPRs depends on the relative proportion of the unstructured regions. It has

been shown that proteins with more than 30% of disordered residues are more prone to proteo-

lytic degradation [47], likely due to the absence of a well-defined tertiary structure. In line with

this argument and in agreement with other studies that adopt the same threshold [62,65], we

have then defined proteins with more than 30% of disordered residues as IDPs. Finally, to iden-

tify IDPRs, we considered the study by van Der Lee et al. [15]. They report that a protein has a

shorter half-life (due to the protease-vulnerability of its disordered regions) either if it has a seg-

ment of 30 consecutive disordered residues located at the C- or N-terminus or a segment of 40

consecutive disordered residues in a generic position of the polypeptide chain. Moreover,

unstructured regions longer than ~25 residues have been considered to evolve, function, and

exist as independent, disordered domains [16,66,67]. Thus, we identified IDPRs as those pro-

teins with less than 30% of disordered residues but with at least one disordered domain.

The main result of this study is that intrinsically disordered proteins (IDPs) and structured

proteins with intrinsically disordered protein regions (IDPRs) have different functional roles

in the cell. We found that IDPs are mainly associated with nucleic acid binding proteins, chro-

matin binding proteins, transcription factors, and many developmental processes. The func-

tional classes in which IDPRs are over-represented substantially overlap with those in which

ORDPs are also over-represented (transporters, receptors, and catalytic activities). This out-

come shows that the functional roles of IDPRs are more similar to those of ORDPs than to

those of IDPs. Moreover, IDPs are specifically over-represented in PANTHER functional clas-

ses and GO annotations where both IDPRs and ORDPs are under-represented. We conclude

that the broadly shared statement that IDPs are specifically involved in signaling and cell-regu-

lation [68] should be taken with caution.

A few remarks are in order at this point of the discussion. We have reminded in the intro-

duction that, as a general trait, IDPs do not contain sufficient hydrophobic amino acids [2],

which are needed to mediate co-operative folding of polypeptide chains into a well-defined

Fig 5. Enrichment of the protein variants in diseases. Different groups of disease-related proteins are enriched

(depleted) in the protein variant that has significantly the highest (lowest) frequency. Each group is significantly

enriched (depleted) in at least one of the variants (detailed numerical values can be found in S11 Table).

https://doi.org/10.1371/journal.pone.0217889.g005
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tertiary structure. Moreover, intrinsic disorder can have different levels of protein structural

organization, and whole proteins, or various protein regions can be disordered to a different

degree [69]. To reconstruct a perspective, it is also worth reminding that since the time in

which the first DNA and protein structures were determined, in the early fifties of the past cen-

tury, molecular biology and biophysics have been dominated by the static picture brought by

the crystallographers. Notwithstanding the importance of static equilibrium structures, the

view that there are functional motions in proteins, spanning many scales of time, from femto-

seconds to seconds, gradually emerged [70–74]. These works were influential in suggesting a

thermodynamic scenario for proteins, in which fluctuations had a relevant role. In particular

G. Careri [75] had the intuition that enzyme catalysis could be understood within a thermody-

namic setting based on fluctuation-dissipation theorems and on a theory of correlated

fluctuations.

The nowadays prevailing picture is that proteins acquire functions within a conformational

continuum [15]. Thus, IDPs and IDPRs can be related to dynamic structures that interconvert

on multiple timescales, covering a spectrum of states that are in dynamic equilibrium under

physiological conditions [76].

ORDPs, IDPRs and IDPs are here coarse-grained operational classifications into which to

accommodate different broad functional classes, that are influenced by the degree of disorder

[77]. Now, it is quite clear that a polypeptide chain can encode for highly heterogeneous (in

space and time) protein molecules containing unique sets of foldons (i.e. ordered segments),

semi-foldons (i.e., partially folded protein segments with transient residual structure), inducible
foldons (i.e., segments that are able to fold at interaction with specific binding partners), non-
foldons (i.e., protein segments with functions depending on their intrinsically disordered

nature), and unfoldons (i.e., segments that are able to unfold under specific conditions, becom-

ing functional) [69,77]. Of this mosaic of units we do not have yet a unifying (equilibrium/

nonequilibrium) thermodynamic theory, based on basic statistical models. Finding these mod-

els, possibly in a mesoscopic stochastic theory of heterogeneous quasi-random polymers (see

e.g. [78]), could provide an understanding of the operational rules we used to define ORDs,

IDPRs and IDPs.

As regards to disease-related proteins, we observe that IDPs are abundant among cancer-

related proteins but not among proteins associated with cardiovascular and neurodegenerative

diseases, where ORDPs seem to dominate. This observation better specifies the quite estab-

lished D2 concept [33].

Overall, our approach is useful to discriminate between IDPs and IDPRs operationally, and

we have used it to demonstrate the different functional roles of these two variants in the

human proteome. As a conclusion, we believe that it is important to correctly evaluate the

occurrence of disorder in proteomes, in evolutionary studies, in understanding functional

aspects related to different flavors of protein disorder, and in deciphering the role of these vari-

ants in the emergence of diseases.
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