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Abstract

Urban heat islands (UHIs) have a significant and negative impact on the urban ecological

environment and on human health, and it is imperative to examine factors that lead to UHIs.

Although numerous studies have been conducted in this field, little research has considered

seasonal variations in UHIs in coastal cities. Moreover, parametric statistical analyses, such

as regression and correlation analyses, have been typically applied to examine the influen-

tial factors. Such analyses are flawed because they cannot uncover the complicated rela-

tionships between UHIs and their factors. Taking Dalian, a coastal city in China, as an

example, this paper reveals the dynamic mechanism of the UHI effect for different seasons

using the cubist regression tree algorithm. Analyses suggest that the UHI effect only exists

in spring and summer, and no obvious UHIs can be found in autumn and winter. The adja-

cency to the sea leads to moderate UHI effects in spring and summer and no UHI or urban

cooling island (UCI) effects in autumn and winter. The distance to the coastline, however,

does not play a role in the UHI effect. Furthermore, as one of the most important factors, the

vegetation coverage plays a significant role in the UHI effect in spring and summer and sig-

nificantly mediates the UHI in autumn and winter. Comparatively, the elevation (e.g., digital

elevation models (DEMs)) is consistently negatively associated with the land surface tem-

perature in all seasons, although a stronger relationship was found in spring and summer. In

addition, the surface slope is also a significant factor in spring and winter, and the population

density impacts the UHI distribution in summer as well.

Introduction

The urban heat island (UHI) effect, which refers to higher temperatures in urban areas than in

surrounding rural areas, has significant and negative impacts on the urban ecological environ-

ment and human health [1,2]. Since it was first recorded by British meteorologist Manley in

1958 [1], the UHI effect has become an important topic, and numerous studies have been con-

ducted to examine factors that lead to UHI effects. Urban biophysical compositions, particu-

larly vegetation, urban impervious surfaces, and soil, have suggested to be highly associated

with UHIs [3–6]. In addition, building infrastructure and adjacent heat sources have been
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suggested as factors that affect UHIs [7]. Similarly, aggregations and orientations of urban

buildings have been identified to have different effects on the distribution of UHIs [8]. Urban

traffic route planning and building roof materials have also been identified as factors affecting

UHIs [9,10]. Although numerous studies have been conducted to study the major factors

related to the UHI effect, existing research on UHIs emphasizes inland cities, and little

research has been applied to coastal cities. For a coastal city, the effects of sea are likely to play

a role in mitigating the UHI effect, as the temperature variations in water are relatively small

compared to built-up materials. Moreover, seasonal variations in the UHI effect are ignored in

the existing literature, as most studies have attempted to examine the effects of urbanization

and population growth on the UHI effect. That is, the same season was always used for a com-

parative analysis. Furthermore, existing studies typically applied parametric statistical analysis

approaches, such as correlation and regression analyses, to examine the influential factors.

Such techniques, however, are flawed because they cannot reveal the complicated relationships

between UHIs and their major influential factors. To address the aforementioned problems,

this research proposes to answer three questions, including 1) whether the UHI effect in a

coastal city is significantly different from that in an inland city, that is, whether the adjacency

to the sea affects temperature variations; 2) for different seasons, whether the influential factors

are significantly different and whether there is a significant cooling effect in winter; 3) whether

a nonparametric approach, e.g., classification and regression tree algorithms (e.g., the cubist

algorithm), is more appropriate for UHI studies.

Materials and methods

Study area

Dalian, a coastal city at the southern tip of Liaodong Peninsula in Liaoning Province, China,

was selected as the study area. Dalian lies between 38˚50’27”N and 39˚05’10”N latitude and

between 121˚20’57"E and 121˚45’22”E longitude (Fig 1). It is located south of the Bohai Sea

Fig 1. Dalian City, Liaoning Province, China.

https://doi.org/10.1371/journal.pone.0217850.g001
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and north of the Yellow Sea. The administrative area of Dalian includes the main city, Lüshun-

kou District, Jinzhou District, Zhuanghe, Pulandian District, and Wafangdian, covering

almost 13,237 km2. In this paper, we chose the main city (including Zhongshan District,

Xigang District, Shahekou District, and Ganjingzi District) as the study area. The main city of

Dalian is covered by low hills with higher elevations in the north and a few plains with lower

elevations in the south. Dalian is in the warm temperate climate zone, with temperate mon-

soon climate and oceanic characteristics. It has a mild climate with four distinct seasons. In

summary, Dalian has complex terrains, an obvious maritime climate, a high population den-

sity, and complex building layouts.

Data source and preprocessing

According to the division of the Dalian Meteorological Bureau, March-May, June-August,

September-November, and December-February are defined as spring, summer, autumn, and

winter, respectively. To examine the UHI effect, we adopted Landsat 8 imagery as the major

data source because of its large coverage and relatively high spatial resolution [11]. In this

paper, we selected four cloudless Landsat 8 Thermal InfraRed Sensor (TIRS) images on May 8,

August 28, November 16 and February 2 during 2016 as the data source for the four seasons

(Table 1). In addition to remote sensing imagery, air temperature data were also obtained

from the meteorological station in Dalian City for validation purposes. We also downloaded

the digital elevation data with a resolution of 30 m (strip number 121, line numbers 38 and 39)

from the United States Geological Survey (USGS) website (https://www.usgs.gov/). Further-

more, we downloaded night Defense Meteorological Satellite Program/ Operational Linescan

System (DMSP/OLS) light data via the United States National Geophysical Data Center web-

site (http://www.ngdc.noaa.gov). Night light data include three types of annual average data:

average visible, stable lights (SL) and cloud-free coverages (cloudless observation). Since most

data were limited to 2013, this paper employed the 2013 global nighttime light values as the

proxy for the 2016 stable light (SL) data. For the SL data, the background value is 0, and the

light intensity range is 1~63.

Methods

Surface temperature inversion. For generating surface temperature information from

thermal infrared bands, common methods include Jiménez-Munoz’s single-channel algorithm

[12], Qin’s single-window algorithm [13], Rozenstein’s split-window algorithm [14] and the

atmospheric correction method (radiation transmission equation method). Previous research

has shown that Qin’s single-window algorithm is suitable for Landsat TIRS bands [15]. While

Landsat 8 has both the 10th and 11th thermal infrared bands, the USGS recommends employ-

ing the 10th band for single-band thermal infrared data because of its optimal stability [16]. In

this paper, a modified single-window algorithm is applied to the geothermal inversion of the

Table 1. Surface temperature statistics in 2016.

Season Date Max Min Mean SD

Spring May 8, 2016 43.44 10.58 28.1 3.29

Summer August 28, 2016 48.18 23.1 33.76 3.45

Autumn November 16, 2016 18.49 1.97 11.08 1.12

Winter February 2, 2016 10.69 -7.66 2.3 1.85

https://doi.org/10.1371/journal.pone.0217850.t001
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10th band of the Landsat 8 TIRS data.

Ts ¼ ½að1 � C � DÞ þ ðbð1 � C � DÞ þ C þ DÞT10 � DTa�=C ð1Þ

where Ts is the land surface temperature for a pixel, a and b are parameters (a = -62.735657,

b = 0.434036), C and D are parameters relevant to atmospheric transmittance (τ), T10 is the

brightness temperature of Band 10 (10.6 μm~11.19 μm), and Ta is the average temperature of

the atmosphere.

With Eq (1), the parameters C and D are calculated as follows:

C ¼ dt ð2Þ

D ¼ ð1 � tÞ½1þ ð1 � dÞ�t ð3Þ

where τ is the atmospheric transmittance (τ = P1w3+P2w2+P3w+P4), with P1 = 3.746415×10–

3, P2 = –3.988729×10–2, P3 = –5.00628×10–3, and P4 = 0.947512; w is atmospheric water

vapor content; and δ is the surface emissivity.

Further, the average atmospheric temperature Ta was estimated using the equations illus-

trated in Table 2. In this paper, we chose the midlatitude summer model to estimate Ta. For

calculating Ta, we obtained the atmospheric profile information of atmospheric humidity,

pressure and atmospheric temperature from the National Aeronautics and Space Administra-

tion (NASA) website (http://atmcorr.gsfc.nasa.gov). The average atmospheric temperature can

be estimated from the near-surface temperature T0.
Furthermore, we employed the method developed in [12, 17] to estimate the emissivity δ.

d ¼ TAPv þ Tbð1 � PvÞ ð4Þ

where δ is the surface emissivity, TA denotes the emissivity of natural surfaces, Tb denotes the

emissivity of urban surfaces, and Pv represents the vegetation coverage. The remote sensing

image was classified into three land cover types: water bodies, urban areas and natural surfaces.

The emissivity of water was set to 0.99, and the emissivity of natural surface (TA) and urban

surface (Tb) were calculated via the following formulas:

TA ¼ 0:9625þ 0:0614Pv � 0:0461P2

v ð5Þ

Tb ¼ 0:9589þ 0:086Pv � 0:0671P2

v ð6Þ

respectively.

For this paper, the vegetation coverage (Pv) was calculated following the approach devel-

oped in [13, 18, 19] (see Eq (3)).

Pv ¼ ½ðNDVI � NDVISoilÞ=ðNDVIVeg � NDVISoilÞ�
2

ð7Þ

where Pv is vegetation coverage, NDVI is the normalized difference vegetation index, NDVI soil
is the NDVI threshold for the complete bare-soil or vegetation-free area, with a value of 0.05.

Table 2. Equations for estimating the average operation temperature of the atmosphere.

Atmospheric model Average atmospheric temperature estimation equation

Tropical Atmosphere Ta = 17.9769+0.91715T0
Midlatitude Summer Ta = 16.0110 + 0.92621T0
Midlatitude Winter Ta = 19.2704 + 0.91118 T0
1976 U.S. Standard Atmosphere Ta = 25.9396 + 0.88045T0

https://doi.org/10.1371/journal.pone.0217850.t002
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NDVIVeg is the fully vegetated NDVI threshold, with a value of 0.7. For this paper, the NDVI
was calculated using the digital numbers of OLI bands 3 and 4.

Finally, T10 was calculated using the following equation:

T10 ¼ ðK2Þ=ln ð1þ Kl=LlÞ ð8Þ

where T10 is the brightness temperature, and Ts is the land surface temperature. K1 and K2

are the moduli for the Landsat 8 TIRS 10th band, where K1 = 774.89 W/(m2�μm�sr), and

K2 = 1321.08 K.

Classification of the surface temperature. To further analyze the UHI effect, we divided

the temperature into a few zones using the average (a) and standard deviation (Sd) of the sur-

face temperature as the cutoff criteria. We used the equally spaced grading method. We

divided the surface temperature into six levels (Table 3).

Distance to coastlines. To examine the impact of sea on Dalian’s UHI effect, we estab-

lished eight 1000 m buffer zones from the coasts to the interior of the study area, and the dis-

tance to the coastline was extracted using the Euclidean distance method. Because both the

vegetated and mountainous areas may impact the UHI, we removed the vegetated and moun-

tainous areas to analyze the coastal effect (Fig 2).

Cubist model

To analyze the relationship between the UHI effects and environmental and socioeconomic

factors, we adopted a regression tree analysis model. The regression tree algorithm produces

rule-based models for the prediction of continuous variables based on training data [20].

Each rule set defines the conditions under which a multivariate linear regression model is

Table 3. Determination of the ranges of different surface temperature intervals.

Temperature zone Range

Low temperature zone Ts< a—Sd
Secondary low temperature zone a-Sd� Ts < a-0.5Sd
Medium temperature zone a—0.5Sd � Ts� a
Secondary high temperature zone a � Ts� a + 0.5Sd
High temperature zone a+0.5Sd� Ts� a+Sd
Extremely high temperature zone Ts> a+Sd

Ts: surface temperature; a: average surface temperature; Sd: standard deviation of the surface temperature

https://doi.org/10.1371/journal.pone.0217850.t003

Fig 2. Buffer map of the study area (left) and the buffer map without the vegetated and mountainous areas

(right).

https://doi.org/10.1371/journal.pone.0217850.g002

Examining seasonal effect of urban heat island

PLOS ONE | https://doi.org/10.1371/journal.pone.0217850 June 14, 2019 5 / 16

https://doi.org/10.1371/journal.pone.0217850.t003
https://doi.org/10.1371/journal.pone.0217850.g002
https://doi.org/10.1371/journal.pone.0217850


established. Regression tree models can account for a nonlinear relationship between the inde-

pendent and dependent variables and allow both continuous and discrete variables as input

variables. The cubist algorithm, a regression tree algorithm (detailed information on the cubist

software is available at http://rulequest.com/cubist-info), was employed to examine the rela-

tionship between UHIs and their factors. According to specific rules, the algorithm grows a

categorical and binary tree by repeatedly splitting the data into subsets, depending on how the

dependent variable and the independent variables interact [21]. It uncovers the predictive

structure of the problem under consideration to categorize the data into more homogeneous

subsets [20]. For each subset, a multivariate linear regression model is constructed, and the

splitting rules are specified such that the combined regression model residual errors of each

subset are substantially lower than that of the single best model before partitioning [22]. It has

been reported that the accuracy and predictability of regression tree models are better than

those of simple linear regression models [23]. Another feature of the cubist algorithm is its

ability to estimate the predictive accuracy via an n-fold cross-validation. Using this option, the

training data set can be divided into n blocks of roughly equal size. For each block in turn, a

model was built from the data in the remaining blocks and tested using the holdout blocks.

The final accuracy of the model was estimated by averaging the model results from all the n-

fold tests [24]. Here, we employed the cubist algorithm to analyze the relationship between the

urban heat island effect and its physical and environmental factors. The major steps of this

method are as follows (Fig 3).

Fig 3. Flowchart of the proposed method.

https://doi.org/10.1371/journal.pone.0217850.g003
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Results

Seasonal temperature distribution characteristics

We verified the derived surface temperature via the measured air temperature (provided by

the Dalian Meteorological Monitoring Station). Although the measured data cannot

completely represent the surface temperature of all the pixels, the data can be indirectly

employed as an accuracy test for the inversion result. Because there was only one measured

point (38.54˚N, 121.38˚E) in the study area, we chose the data from the last four years with

cloudless dates (28 days in total) for verification. Because the images were acquired at 10:30 a.

m. local time, we employed the measured temperature data obtained from the Dalian Meteo-

rological Monitoring Station at 10:30 a.m.as the ground truth values. The accuracy verification

(Fig 4) showed that the measured air temperature and the inverse of the land surface tempera-

ture fit very well, with an R2 of 0.9078 (the very large value of R2 may be because the 28 points

are from the same site: 38.54˚N, 121.38˚E). Therefore, we infer that the single-window algo-

rithm is suitable for this study.

The estimated land surface temperatures for the four seasons are shown in Fig 5 and

Table 4. From Fig 5, the UHI effect in Dalian City in the spring and summer is significant,

because the high temperature zones are generally consistent with the urban built-up areas near

the harbor area of Zhongshan District and the densely built-up areas in the downtown areas of

Shahekou District and Ganjingzi District. The intensity of the UHI, however, is relatively low.

In summer, the high temperature zone and the extremely high temperature zone occupy

approximately 18.46% and 16.56% of the total study area, respectively. Furthermore, in spring,

areas with high and extremely high temperatures are approximately 21.87% and 13.96% of the

total study area, respectively. The relatively low intensity of the UHI may be due to the ocean

effect, in which the sea-land breeze prevails, and the lower temperature in mornings and

evenings.

For autumn and winter, however, the UHI and the urban cooling island (UCI) effects do

not exist, as the surface temperatures are similar across Dalian, with relatively higher tempera-

tures in the northwestern region: a suburban area. This result may be associated with the

ocean effect. The heat capacity of water is relatively large, and the process of heat absorption

and dissipation on the surface of the sea is slow. Moreover, Dalian belongs to a temperate

monsoon climate, thereby leading to gentle temperature changes due to the ocean effect. Com-

pared with inland cities at the same latitude, Dalian has a mild maritime climate, and each

Fig 4. Scatter plot of the measured air temperature and the remotely sensed land surface temperature.

https://doi.org/10.1371/journal.pone.0217850.g004
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Fig 5. Spring, summer, autumn and winter temperature distributions and percentages for each temperature zone.

https://doi.org/10.1371/journal.pone.0217850.g005
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temperature zone is evenly distributed. This finding is consistent with the results obtained in

[25, 26], which reported that the spring and summer heat island phenomena are obvious in

Chicago, IL, United States. Another possible explanation could be the suburban development

policy of Dalian, which led to a large number of people moving to this suburban area, together

with factories, especially heating companies. As a result, a large amount of manufactured heat

may be produced in the suburban areas in the northwestern region because of the relocation

of factories.

Analyses of factors affecting the UHI

We further examined the influential factors, including the elevation and slope, the NDVI, the

distance to the coastline, and the stable light, on the UHI effect. The results of these analyses

are detailed as follows.

Elevation (DEM) and slope. The elevation and slope maps of Dalian (Fig 6) show that the

southwestern region is occupied by low mountains with relatively higher elevations and slopes.

Comparatively, other areas are occupied by plains with lower elevations and slopes. The rela-

tionships between the land surface temperature and the DEM and the slope are shown in Figs

7 and 8. Elevation and slope are significantly and negatively associated with land surface tem-

perature in spring and summer. For autumn and winter, however, there is almost no correla-

tion between the surface temperature and both the elevation and the slope.

Table 4. Surface temperature statistics (˚C).

Date Max Min Mean SD

May 8, 2016 43.44 10.58 28.1 3.29

August 28, 2016 48.18 23.1 33.75 3.45

November 16, 2016 18.49 1.97 11.08 1.12

February 2, 2016 10.69 -7.66 2.3 1.85

https://doi.org/10.1371/journal.pone.0217850.t004

Fig 6. Elevation (DEM) and the slope of the study area.

https://doi.org/10.1371/journal.pone.0217850.g006
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NDVI. In addition to the elevation and the slope, we also analyzed the effect of the vegeta-

tion cover on the UHI of Dalian City. Vegetation is considered to have a cooling effect and

reduces the temperature of underlying surfaces. Most scholars have employed the NDVI to

represent vegetation coverage. This method was also used in this study to analyze the relation-

ship between the surface temperature and the vegetation coverage. The correlation analysis

results show that the surface temperature negatively correlates with the NDVI in spring and

summer and positively correlates with the NDVI in winter and autumn (Fig 9). The results

indicate that the surface temperature decreases with increasing vegetation coverage in spring

and summer and increases in autumn and winter.

Distance to the coastline. From the coast to the inland, we created eight 1000 m buffers

starting from the north shore and the east shore of the study area (Fig 10). The results suggest

that the distance to the sea does not play a major role in the UHI effect, possibly due to the rel-

atively small study area.

Stable lights. In addition, we employed stable lights data to represent the population dis-

tribution [27, 28] and analyzed the relationship between the surface temperature and the pop-

ulation distribution. The correlation analysis results showed that the surface temperature is

positively correlated with the population distribution in spring and summer (Fig 11). That is,

the surface temperature increases with increasing population, and this phenomenon is more

obvious in summer. With the increase in population, more heat is generated because of the use

of air conditioning systems, and there is no significant correlation between the winter surface

temperature and the population distribution, which indicates that the effect of the population

distribution on the winter surface temperature is small.

Cubist results

In addition to simple correlation analysis, we further applied the cubist algorithm to analyze

the effects of different factors on the surface temperature in different seasons. We randomly

selected 200 points to examine the relationship between the surface temperature and other

influential factors, including the elevation (DEM), slope, vegetation coverage (NDVI), and

stable lights. The results (Table 5) suggest that these factors can adequately explain the UHI

effect in spring and summer (with an R2 of 0.77 and 0.85, respectively) but perform poorly in

autumn and winter. For individual factors, the vegetation coverage (NDVI) is clearly nega-

tively associated with the land surface temperature in spring and summer and positively

Fig 7. Mean elevation (DEM) and the slope values for each temperature level.

https://doi.org/10.1371/journal.pone.0217850.g007
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Fig 8. Scatter plot of the DEM, slope and surface temperatures.

https://doi.org/10.1371/journal.pone.0217850.g008
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associated with the land surface temperature in autumn and winter. The elevation is consis-

tently and negatively associated with the land surface temperature, and the relationship is

much stronger in spring and summer. Moreover, the population distribution (e.g., stable

lights) is only relevant in the summer, but the slope plays a role in spring and winter.

Discussion

The UHI effect is essential in public health. Existing research on UHIs largely emphasizes

inland cities, and little research has been performed to examine UHIs in coastal cities. Coastal

cities, however, may illustrate significantly different UHI effects due to the impact of the sea.

This research indicates that the sea does play a significant role in affecting the UHI effects in

different seasons. That is, moderate UHI effects exist in spring and summer, while no UHI or

urban cooling effects were found in autumn and winter. The distance to the coastline, how-

ever, does not have a significant effect on the land surface temperature. These results indicate

that although the coastal city has been impacted by the sea, the spatial difference of such

impact is insignificant at the local level and has little spatial impact on the urban heat island

effect.

This research proves that seasonality plays a major role in the UHI effect. Past research

always emphasizes the same season, without considering the UHI during different seasons.

Vegetation coverage (NDVI) is clearly negatively associated with the land surface temperature

in spring and summer and is positively associated with the land surface temperature in autumn

Fig 9. Scatter plot of the NDVI and the surface temperature.

https://doi.org/10.1371/journal.pone.0217850.g009
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and winter. The elevation is consistently negatively associated with the land surface tempera-

ture, and the relationship is much stronger in spring and summer. Moreover, the population

distribution (e.g., stable lights) is only relevant in the summer season, and the slope plays a role

in spring and winter. Such analyses with a nonparametric cubist regression tree model are

important because seasonal variations play a major role in the urban heat island effect, because

different factors affect the surface temperature during different seasons and at different

magnitudes.

Conclusions

In this paper, we examined the UHI effect and its seasonality in a coastal city (Dalian, China).

Furthermore, influential factors, including the vegetation coverage, elevation, surface slope,

distance to coastline, and population distribution, were identified, and their effects on land

surface temperature were examined. The results suggest that the UHI effect only exists in

spring and summer, and no obvious UHI effect can be found in autumn and winter. The

Fig 10. Distance to the coastlines.

https://doi.org/10.1371/journal.pone.0217850.g010
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adjacency to the sea leads to moderate UHI effects in spring and summer, and no UHI or

urban cooling effect exists in autumn and winter. The distance to the coastline, however, does

not play a role in the UHI effect. Furthermore, as one of the most important factors, the vege-

tation coverage plays a significant role in leading the UHI effect in spring and summer and has

a significant role in mediating the UHI effect in autumn and winter. Comparatively, the eleva-

tion (e.g., digital elevation model (DEM)) is consistently negatively associated with the UHI in

all seasons, although a stronger relationship was found in spring and summer. In addition, the

surface slope is also a significant factor in spring and winter, and the population density also

impacts the UHI distribution in summer. We also concluded that for the same area, seasonal

variations played a major role in the urban heat island effect, as different factors affected the

surface temperature during different seasons and at various magnitudes.

Fig 11. Scatter plot of the stable lights data and the surface temperature.

https://doi.org/10.1371/journal.pone.0217850.g011

Table 5. Cubist analysis results.

Seasons Equations R2

Spring (May 8) LST = 32.151–9.5NDVI—0.176Slope—0.0138DEM 0.77

Summer (Aug 28) LST = 31.908–12.4NDVI-0.0209DEM+0.062Stable Lights 0.85

Autumn (Nov 16) LST = 10.907+13.8NDVI-0.038DEM 0.41

Winter (Feb 2) if NDVI>0.09, then LST = 1.742+8.4NDVI-0.027Slope-0.0019DEM

If NDVI≦0.09, then LST = 1.469+37.2NDVI-0.103Slope-0.0004DEM

0.49

https://doi.org/10.1371/journal.pone.0217850.t005
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