
RESEARCH ARTICLE

Enhanced sprint performance analysis in

soccer: New insights from a GPS-based

tracking system
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Abstract

The aim of this investigation was to establish the validity of a GPS-based tracking system

(Polar Team Pro System, PTPS) for estimating sprint performance and to evaluate addi-

tional diagnostic indices derived from the temporal course of the movement velocity. Thirty-

four male soccer players (20 ± 4 years) performed a 20 m sprint test measured by timing

gates (TG), and while wearing the PTPS. To evaluate the relevance of additional velocity-

based parameters to discriminate between faster and slower athletes, the median-split

method was applied to the 20-m times. Practical relevance was estimated using standard-

ized mean differences (d) between the subgroups. Differences between the criterion refer-

ence (TG) and PTPS for the 10 and 20 m splits did not vary from zero (dt10: -0.01 ± 0.07 s,

P = 0.7, d < -0.1; dt20: -0.01 ± 0.08 s, P = 0.4, d < -0.2). Although subgroups revealed large

differences in their sprint times (d = -2.5), the average accelerations between 5 and 20 km/h

as well as 20 and 25 km/h showed merely small effects (d < 0.5). Consequently, analyses of

velocity curves derived from PTPS may help to clarify the occurrence of performance in out-

door sports. Thus, training consequences can be drawn which contribute to the differentia-

tion and individualization of sprint training.

Introduction

As in most team sports, soccer is about scoring and preventing goals, whereas straight sprint-

ing with and without the ball was found to occur in approximately every second goal situation

in the first German national league [1]. Since all players on the pitch are involved in these situ-

ations, sprinting is of outstanding importance and thus a crucial element of the requirement

profile. This estimation was also shared by many authors [2–5], although the cumulative sprint

distance is below 5% relative to the total distance covered during a match. Furthermore, the

vast majority of sprint displacements are below 20 m [6–9]. Moreover, investigations in the

English Premiere League across seven seasons from 2006/07 to 2012/13 showed a massive

increase in the distance covered in the high-intensity (24–36%) and sprinting (36–63%) zone

in all playing positions although the total distance only changed marginally [2, 3]. Following
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common conventions, high-speed running and sprinting are achieved when at least 20 or 25

km/h are reached, respectively [3, 7, 10–12]. As a matter of course, every sprint consists of an

initial acceleration phase in order to gain running velocity. Nevertheless, accelerating is more

energetically demanding than moving at constant velocity [13]. In spite of an 8-fold higher

number of maximal accelerations than sprints per game, this phase is frequently excluded

from analysis, since the high-intensity running threshold is not crossed [12].

To manage training intensities appropriately, performance diagnostics are required. In this

context, special technologies are commonly utilized. The most widely applied and proven tech-

nology involves photo-electric timing gates (TG) [14]. However, TG solely measure the time

required to cover a given distance and therefore can only be used to calculate average velocities

within sections [15]. Since velocity profiles are leading to more meaningful information (i.e.

peak velocity, initial acceleration, etc.), different technologies need to be involved. At this

point, GPS (global positioning system)-based tracking systems are frequently considered in

team sports [16, 17]. In recent years, this technology has become a standard tool for routine

load monitoring in training and competition [18]. The validity and reliability of GPS devices

has already been proven extensively (e.g. [19, 20, 21]). While radar guns served as the criterion

measure, the velocity traces were found to be accurate during acceleration, deceleration as well

as constant movements [21]. As mentioned earlier, the main advantage of these devices in the

context of sprint performance diagnostics is that they are able to measure the temporal course

of the velocity. Additionally, the possibility of measuring multiple players synchronously is

opened up and there are no local restrictions due to a fixed pathway (as in the case of TG), so

that multidirectional movements or curved runs could also be investigated.

Against this background, we assume that parameters derived from the time course of the

running velocity determined by a GPS-based tracking system represent an added value for

sprint diagnostics compared to split times measured by TG. Thus, this investigation aimed at

analysing velocity profiles during linear short-distance sprinting while TG served as the crite-

rion reference to validate times and distances determined via GPS. In addition, velocity pro-

files were used to parametrize sprint performance section-wise.

Methods

Participants and tasks

One linear sprint per athlete over 20 m distance was concurrently examined via TG and a

wearable motion sensor in a population of 34 male outfield soccer players (age: 20 ± 4 years;

mean ± SD; height: 180 ± 6 cm; mass: 74 ± 7 kg; BMI: 23.0 ± 1.4 kg/m2) on artificial turf. The

sample consisted of two separate teams of a German soccer club: 13 members of the profes-

sional (PRO) and 21 players of the under-19 team (U19). The study protocol used was

approved by the Martin-Luther-University Halle-Wittenberg Institutional Review Board (IRB

# 2013–13), and all participants agreed to enter the study after having been informed orally on

study details.

All athletes performed the FIFA 11+ routine as a standardized warm-up complemented

with specific speed drills prior to testing. A rest of approximately three minutes between

warm-up and test was administered to avoid fatigue effects. Further, participants were tested

at least 48 h after the last intense training to minimize fatiguing effects [15]. In order to record

10 m and 20 m split times (t10, t20) to the nearest 0.01 s, single-beam TG (DLS-LA Timing

System, AF Sport, Wesel, Germany) were placed at 0, 10 and 20 m. The sprinting course was

sized using a tape measure, and the TG were mounted at a height of one meter (which corre-

sponds to the average hip height of adult males) to prevent them from being triggered too

early by raised knees or swinging arms [22]. Following a recent review by Haugen and
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Buchheit, in a single-beam setup the standard error of measurement is about 0.03 s [14]. Par-

ticipants started 0.5 m behind the first TG in a forward leaning split-stance position with

slightly bended knees and their preferred foot in front. Each participant wore a Polar Team

Pro sensor (PTPS, Polar Electro, Kempele, Finland) which recorded spatial position (GPS) and

heart rate simultaneously. Thus, the PTPS was attached to the skin (with a commercially avail-

able strap) approximately above the xiphoid process. The PTPS starts recording as soon as a

heart rate signal is detected and saves data to an internal storage. As recommended by Polar,

the electrode area of the straps was moistened with water to achieve an optimal connection.

Outdoors, the GPS signal was typically received within a few seconds. The measurements were

carried out on a cloudless, precipitation-free late summer day (temperature: ~20˚ C; relative

humidity: 48%; atmospheric pressure: 1002.5 hPa). There were no larger buildings in the

immediate vicinity of the test field.

Data acquisition and processing

As specified by the manufacturer, the PTPS combines signals from a 10 Hz GPS with a 200 Hz

microelectromechanical inertial measurement unit (IMU) consisting of a tri-axial accelerome-

ter, gyroscope and magnetometer. Based on these signals, data fusion algorithms are applied

within the device to improve spatial accuracy [23]. In principle, the algorithms mentioned are

based on sensor fusion of GPS and IMU data using a Kalman filter [24]. Raw data (velocity,

distance time series) were exported as CSV files and further processed in MATLAB R2016a

(The MathWorks, Natick, MA, USA). No filter was applied to the time series. In order to relate

the split times of the TG to the raw signals of the PTPS, a fixed threshold of 8 km/h was set for

the moment when passing the first TG (see Fig 1). This specific threshold was chosen due to

the known gait transition (walking to running) velocity in human locomotion of between 7

and 8 km/h [25].

Outcomes

To characterize sprinting performance, several parameters were derived from the velocity and

distance trajectories (PTPS) as outlined exemplarily in Fig 1. For PTPS validation purposes,

TG results served as the criterion reference [20, 26]. In order to determine t10 and t20 based on

PTPS data, the times taken for covering the corresponding distances were calculated. Other-

wise, the accuracy of the PTPS distance estimation was determined by relating the distances

(s10, s20) covered within the split times of the TG system.

Through the availability of synchronized time series, a velocity-based analysis was per-

formed here. Accordingly, the times (t20 km/h, t25 km/h) and distances (s20 km/h, s25 km/h) for

reaching 20 as well as 25 km/h (v20 km/h, v25 km/h) were analyzed separately for each athlete. Fur-

thermore, the velocities when passing the second (v10 m) and third (v20 m) TG were

determined.

In addition, the velocity curve between 5 and 20 km/h as well as 20 and 25 km/h, respec-

tively, was fitted by a linear regression. The slopes of the two regression lines (acc1, acc2) repre-

sented average accelerations within the respective phases.

Statistical analyses

Statistical analyses were carried out with MATLAB R2016a (Mathworks Inc., Natick, MA)

software. Data distribution was visually inspected and evaluated by skewness, kurtosis and the

Shapiro-Wilk’s test. Validity was established by comparisons of the 10 m and 20 m sprint

times of the PTPS with those measured by TG using Pearson’s correlation coefficients (r) with

95% confidence intervals (CI), whereas the agreement of both measurement systems was
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inspected with difference plots and limits of agreement. To indicate accuracy, root-mean-

square error (RMSE) was calculated [22]. The between-subject variability was assessed using

coefficient of variation (CV). Possible effects between teams as well as performance subgroups

(median-split, [27]) were verified utilizing Student’s t test for independent samples separately

on each parameter. Practical relevance was estimated calculating standardized mean differ-

ences (d) with values� 0.2,� 0.5,� 0.8 indicating small, moderate, or large effects, respec-

tively [28].

Results

Sprint performance (TG)

The split times measured by TG did not differ between PRO (t10: 1.75 ± 0.08 s, t20:
3.03 ± 0.10 s) and U19 (t10: 1.72 ± 0.07 s, P = 0.16, d = 0.51; t20: 2.99 ± 0.10 s, P = 0.33,

d = 0.35). The variability within each team was low and of comparable magnitude (t10:
CV < 4.5%; t20: CV < 3.4%).

Validity

Low (r = 0.57, CI: 0.40–0.86, P< 0.001) to moderate (r = 0.74, CI: 0.57–0.91, P< 0.001) rela-

tionships were found between the results of TG (t10 and t20) and times estimated by PTPS,

respectively. Differences between the criterion reference (TG) and PTPS for t10 and t20 did not

vary from zero (dt10: -0.01 ± 0.07 s, P = 0.7, d = -0.07; dt20: -0.01 ± 0.08 s, P = 0.4, d = -0.15).

Neither did the differences vary between teams (PRO: dt10: -0.01 ± 0.08 s, dt20: 0.01 ± 0.07 s,
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Fig 1. Sample results of a slower (A) and a faster (B) soccer player. Grey dashed lines are linear regressions with slope representing the average acceleration within the

two different phases. Camera symbols represent the associated split times measured by the timing gates. See text for details.

https://doi.org/10.1371/journal.pone.0217782.g001
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P> 0.9, -0.08< d< 0.20; U19: dt10: 0.00 ± 0.07 s, dt20: -0.03 ± 0.09 s; P = 0.16, -0.33< d<

-0.07). Consequently, the comparisons of the results between measurement systems with dif-

ference plots (Fig 2) were performed with all participants tested. RMSE was 0.07 s for t10 and

0.08 s for t20, respectively.

Sprint performance categorization (median-split of 20 m times)

The t20 measured by TG revealed a normal distribution (Shapiro-Wilk’s test, P> 0.4, skewness:

-0.28, kurtosis: -0.44). Thus, the median-split method was applied to categorize the short-dis-

tance sprint performance into a faster (FA, n = 17, PRO: 7, U19: 10) and a slower (SL, n = 17,

PRO: 6, U19: 11) subgroup based on 20 m sprint times derived from timing gates (see Fig 3).

Subgroup comparisons of PTPS parameters

As expected, characteristic velocities showed strong differences between FA and SL (d> 1.0,

Fig 3A). The distances after which the subgroups reached 20 or 25 km/h revealed moderate

(d = -0.6) to large (d = -1.2) differences (Fig 3B). The PTPS-based times revealed large differ-

ences for the instant where subgroups reached 25 km/h (d = -1.2, Fig 3C). Although the

instants where 20 km/h was achieved showed moderate differences between subgroups (d =

-0.5), this result did not reach statistical significance (P> 0.1). The average accelerations deter-

mined by linear regressions showed only small differences between categorized subgroups

(P> 0.2, d< 0.5, Fig 3D).

Discussion

This study investigated the validity of the PTPS to estimate short-distance linear sprint perfor-

mance using velocity profiles. The analyses of velocity curve progressions enabled a section-
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wise evaluation. Within the distance of eight to ten meters, two characteristic slopes of the

velocity curve were identified. These phases represented different average accelerations which

could not predict the sprint time over 20 m distance.

The sprint times measured in our samples were comparable to those of previous studies on

professional soccer players [29–31] or U19 athletes [29, 32, 33]. Consequently, the analyses

presented here can be regarded as generally applicable in elite soccer. The longer the sprint dis-

tance measured, the lower the between-subject variability, which most probably results from

different photocell triggers within slower locomotion velocities [14]. This fact is frequently dis-

cussed as a limitation in applying timing gates to monitor performance in field sport athletes.

As pointed out by Akenhead and colleagues [34], the accuracy of GPS measures is compro-

mised at higher accelerations (> 4 m/s2). This is in line with our results (see Fig 3D) and

explains, in part, the lower relationships with the criterion reference within the early accelera-

tion phase which is defined by the 10-m time (t10) in short-distance sprints [15]. However, the

results of the correlation analysis were most likely much more affected by the restricted range

of values due to the homogenous sample. The range of the 20-meter times was 0.37 s and thus

about 30% higher than that of the 10-meter times (0.29 s). Correspondingly, the correlation

was higher in t20 than in t10. Based on our results, the measurement errors of the tracking sys-

tem used for the sprint times and distances were below 0.18 s or 1.35 m, respectively (Fig 2).

As reported by different previously conducted studies on 10 Hz GPS devices, validity increased

with increasing sprint distances [20, 35]. Numerous studies already examined the validity of

kinematic data derived from GPS devices against timing gates [35–37]. For an extensively per-

formed review on validity and reliability of GPS-based devices, please refer to Scott and col-

leagues [38].

Due to the measuring principle which is leading to a limited number of sampling points,

timing gates provide only average velocities. Analyses of velocity profiles measured by wear-

ables in turn overcome this limitation. In the present study, each athlete investigated reached

the velocity of 20 km/h (high-speed running) before a travelled distance of 6 m, whereas the

sprinting threshold (25 km/h) was achieved between 6 and 13 m. In this way, average accelera-

tions of up to 5 m/s2 were achieved within the first half of the sprint (Fig 4D). The ability to

accelerate and decelerate their body mass from various velocities (rarely standing still) is of

fundamental importance for soccer players [15]. For example, a player has to produce high

accelerations to quickly enlarge the distance to an opponent in offensive actions or to reduce

the distance in the defense, respectively [39]. Since the sprint performance categorization

(median-split, [27] was applied via the 20 m splits, which corresponds to more than 80% of
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athletes’ maximum velocity [40], parameters related to performance characteristics (v10 m,

v20 m, s25 km/h, t25 km/h) above 6 m differed at least moderately between subgroups. Murphy and

colleagues [27] found that the early acceleration phase lies within the distance between 5 and

10 m. In short-distance linear sprints, it is widely accepted that t10 represents the athletes’ abil-

ity to accelerate [15, 41–43]. However, although there is no consensus on determination of an

acceleration threshold [44] within the early acceleration phase, two independent phases were

found in this study. The results of these two acceleration phases failed to distinguish between

the faster and slower athletes. While acc1 includes the first steps up to 6 m, acc2 comprises later

acceleration abilities (see Fig 4).

The mechanical differences between distinct sprint phases within a 20 m straight-line sprint

were impressively highlighted after specific resistance training interventions [45, 46]. These

studies emphasized the presence of early (initial) and later acceleration subphases in short-dis-

tance sprint efforts. To reduce training errors and optimize training adaptations, Brown and

colleagues [47] differentiated between three consecutive short-distance sprint phases in team

sport athletes.

Interestingly, only small differences in acc1 as well as acc2 were found between categorized

subgroups. This is most probably due to the higher within-subject variability (CV), which indi-

cates athletes’ different performance predispositions within both acceleration phases. Thus,

the parameters mentioned can help to better distinguish between adequate exercises to

improve different acceleration attributes (e.g. start, first-step quickness, initial acceleration,

pick-up acceleration) and thus systematically improve the global sprint performance. More-

over, the different characteristics of acceleration suggest a probable association of acc1 with

attributes of agility, conversely to the three distinct physical attributes of speed of movements

(agility, acceleration, top speed), as pointed out by Little and Williams [15].

The methods applied in this study also have some limitations that need to be addressed.

First, the fact that the split times did not differ between PTPS and TG is a strong indication,

but not proof, of validity of the velocity curves. Undoubtedly, radar guns would have been bet-

ter suited for this purpose [48]. Furthermore, the performed synchronization of the two mea-

suring systems at a fixed velocity of 8 km/h can be criticized, but was at least in our opinion

the best solution, since no interface existed between the two measurement systems. The fact

that this approach was successful in the present study does not necessarily mean that it can
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also be applied to differing test situations (especially with higher starting velocities). Finally,

given the fact that the two acceleration phases discovered took place in the first half of the

sprint distance, the concurrent use of motion capture systems (e.g. Vicon, Qualisys) or high-

speed video cameras could have been considered. This approach could have provided addi-

tional information about differences in running technique.

Conclusion

In conclusion, the results of this study indicate that velocity curves derived from a GPS-based

tracking system are a valid and useful database to analyze sprint performance. Especially the

section-wise calculation of kinematic parameters in defined velocity ranges leads to additional

perspectives on the occurrence of sprint performance in outdoor sports. Thus, specific training

consequences can be drawn which contribute to the differentiation and individualization of

short-distance sprint training. Due to the fact that these technologies are used by the majority

of the elite soccer teams on a daily basis, it is reasonable to use the data captured as a source of

additional information concerning the sprint performance. This compensates for the disad-

vantage of existing measurement inaccuracy.
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