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Abstract

Purpose

To develop and validate a classifier system for prediction of prostate cancer (PCa) Gleason

score (GS) using radiomics and texture features of T2-weighted imaging (T2w), diffusion

weighted imaging (DWI) acquired using high b values, and T2-mapping (T2).

Methods

T2w, DWI (12 b values, 0–2000 s/mm2), and T2 data sets of 62 patients with histologically

confirmed PCa were acquired at 3T using surface array coils. The DWI data sets were post-

processed using monoexponential and kurtosis models, while T2w was standardized to a

common scale. Local statistics and 8 different radiomics/texture descriptors were utilized at

different configurations to extract a total of 7105 unique per-tumor features. Regularized

logistic regression with implicit feature selection and leave pair out cross validation was

used to discriminate tumors with 3+3 vs >3+3 GS.

Results

In total, 100 PCa lesions were analysed, of those 20 and 80 had GS of 3+3 and >3+3,

respectively. The best model performance was obtained by selecting the top 1% features of

T2w, ADCm and K with ROC AUC of 0.88 (95% CI of 0.82–0.95). Features from T2 mapping

provided little added value. The most useful texture features were based on the gray-level

co-occurrence matrix, Gabor transform, and Zernike moments.

PLOS ONE | https://doi.org/10.1371/journal.pone.0217702 July 8, 2019 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Toivonen J, Montoya Perez I, Movahedi

P, Merisaari H, Pesola M, Taimen P, et al. (2019)

Radiomics and machine learning of multisequence

multiparametric prostate MRI: Towards improved

non-invasive prostate cancer characterization.

PLoS ONE 14(7): e0217702. https://doi.org/

10.1371/journal.pone.0217702

Editor: Kathryn L. Penney, Brigham and Women’s

and Harvard Medical School, UNITED STATES

Received: December 19, 2018

Accepted: May 16, 2019

Published: July 8, 2019

Copyright: © 2019 Toivonen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data used in this

study is available online at http://mrc.utu.fi/. This

includes a CSV file containing the average texture

values used as features, and lesion-wise figures of

the parametric maps, along with corresponding

prostate and lesion masks. Unfortunately, for

patient privacy concerns the original source images

cannot be provided for download, but they can be

viewed online.

http://orcid.org/0000-0003-3070-7544
http://orcid.org/0000-0002-9744-9204
http://orcid.org/0000-0002-8515-5399
https://doi.org/10.1371/journal.pone.0217702
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217702&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217702&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217702&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217702&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217702&domain=pdf&date_stamp=2019-07-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217702&domain=pdf&date_stamp=2019-07-08
https://doi.org/10.1371/journal.pone.0217702
https://doi.org/10.1371/journal.pone.0217702
http://creativecommons.org/licenses/by/4.0/
http://mrc.utu.fi/


Conclusion

Texture feature analysis of DWI, post-processed using monoexponential and kurtosis mod-

els, and T2w demonstrated good classification performance for GS of PCa. In multise-

quence setting, the optimal radiomics based texture extraction methods and parameters

differed between different image types.

1 Introduction

Prostate cancer (PCa) is the most common cancer in men, and the second most common

among the causes of death related to cancer. For example in USA, 161 360 new cases of PCa

are estimated to be diagnosed in 2017, while the estimated cancer related deaths are 26 730 [1].

However, in approximately half of the cases of newly diagnosed PCa, the patients have a low

risk of death from the disease [2, 3]. Due to this wide range of possible outcomes, it is impor-

tant to accurately predict the risk caused by PCa and to stratify patients accordingly aiming to

limit over-treatment and PCa mortality simultaneously.

The Gleason score is a commonly used marker for estimating the possible threat posed by a

PCa lesion, based on histopathological analysis of biopsy and prostatectomy specimens under

the microscope [4]. It is a two or three-component numerical grading that is based on

observed structural patterns, and can be expected to provide indication of tissue abnormality

and tumor’s estimated likeliness to spread (metastatic potential). Gleason score can be esti-

mated using speciments acquired by using transrectal ultrasound (TRUS) guided prostate

biopsy. Unfortunately, in 30–50% of patients the findings based on systematic TRUS do not

represent true Gleason score [5–7].

Magnetic resonance imaging (MRI) is increasingly being used for the detection of PCa

lesions. Diffusion weighted MR imaging (DWI) has been shown to have potential for the

detection and characterization of PCa. DWI data sets are still usually being analyzed by mea-

suring only the first-order statistical properties found in parametric maps such as apparent dif-

fusion coefficient of the monoexponential function (ADCm) [8–10].

Various different fitting methods have been applied for modeling PCa DWI signal decay.

The biexponential function [11] provides the best fitting quality for DWI data sets acquired

using “high” b values (*2000 s/mm2) [12]. However, it is not robust to noise and has low

repeatability. In contrast, the kurtosis function [13] provides similar fitting quality while being

substantially more robust to noise [12]. Texture features of parametric maps derived from the

kurtosis function have not been evaluated and hold promise by better signal characterization

compared with the most commonly used monoexponential function [9]. Other MRI methods,

such as T2-mapping (T2) and anatomical T2-weighted imaging (T2w), could provide compli-

mentary information to DWI for prediction of PCa characteristics [10].

Computer-aided diagnostics (CAD) based on MRI has been demonstrated to have comple-

mentary role to a reporting radiologist in PCa detection [14–16]. However, only a limited

number of studies focused on characterizing the detected PCa lesions, and they typically utilize

only a small number of texture features. Tiwari et al. [17] used MR spectroscopy data and vari-

ous texture features from T2w to first detect PCa and then predict its Gleason score. Peng et al.

[18] evaluated histogram-based features from multiparametric MRI regarding correlation with

Gleason score. Texture features from DWI and T2w have been assessed for differentiating

Gleason scores [19–21]. Rozenberg et al. [22] evaluated whole-lesion histogram and texture

features from DWI in order to predict Gleason score upgrade after radical prostatectomy.
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The aim of this study was to use carefully optimized high quality MRI data sets to develop

and validate machine learning methods for non-invasive Gleason score prediction, meaning

prediction of PCa aggressiveness. In this study, we built and evaluated a classifier system based

on multiple texture features of high quality T2w, DWI (the monoexponential and kurtosis

functions), and T2 relaxation maps for prediction of PCa Gleason score dichotomized as 3+3

(low risk) vs>3+3 (high risk). Moreover, we explored which combinations of imaging modali-

ties and texture extraction methods are most useful for this task.

The current study is first of its kind in multiple aspects: a) direct comparison of textures

extracted from T2w and T2 relaxation maps, b) elevation of texture features from non-mono-

exponetial DWI signal decay using high quality data sets, and c) evaluation of a large number

of texture extraction methods and parameters to calculate them in a multi-dimensional high

quality MRI data sets of patients with PCa.

All data sets, post-processing program code as well as all MR sequences are freely available

for review upon request following publication of the manuscript. Supporting Material is avail-

able at http://mrc.utu.fi/data. Program code used for calculations is available at https://github.

com/jupito/dwilib.

2 Methods

The Ethics Committee of the Hospital District of Southwest Finland has approved this study.

All patients have given written informed consent. The MR examinations were performed

between March 2013 and May 2014. The study enrolled 72 consecutive patients with histologi-

cally confirmed PCa who were scheduled for robotic assisted laparoscopic prostatectomy.

Two of the patients had the Gonadotropin releasing hormone antagonist (Degarelix, Fer-

ring Pharmaceuticals) started just before the MR examination. The rest of the patients had no

prostate-related hormonal, surgical, or radiotherapy treatment before or during imaging.

A subset of the data has already been used in previous studies. DWI data sets (12 b values,

0–2000 s/mm2) of 48 patients were used for evaluating mathematical models of DWI [9, 10,

12], while T2 of 37 patients were used in feasibility evaluation of relaxation along fictitious field

and continuous wave T1ρ imaging of PCa [10, 23].

2.1 MRI examination

The MR examinations, as previously described [9, 10, 12], were performed using a 3T MR

scanner (Ingenuity PET/MR, Philips, Cleveland, USA), a two channel volume whole body RF

coil for excitation, and a 32 channel manufacture’s cardiac coils for measuring the signal.

Transversal single shot turbo spin echo (TSE) T2-weighted images (T2w) were acquired

with repetition time/echo time (TR/TE) 4668/130 ms, field of view (FOV) 250×250 mm2,

matrix size 250×320, slice thickness 2.5 mm, no intersection gap, and SENSE [24] factor 2. The

acquisition time was 1 min 10 s.

For acquiring the DWI data sets, a single shot spin-echo based sequence was used with

monopolar diffusion gradient scheme and echo-planar read out. Other parameters were TR/

TE 3141/51 ms, FOV 250×250 mm2, acquisition matrix 100×99, reconstruction matrix

224×224, slice thickness 5.0 mm, number of slices 20, intersection gap 0.5 mm, diffusion gradi-

ents applied in three directions, diffusion gradient timing (Δ) 24.5 ms, diffusion gradient dura-

tion (δ) 12.6 ms, diffusion time (Δ − δ/3) 20.3 ms, SENSE [24] factor 2, partial-Fourier

acquisition 0.69, SPAIR fat suppression, and b values (number of signal averages) 0 (2), 100

(2), 300 (2), 500 (2), 700 (2), 900 (2), 1100 (2), 1300 (2), 1500 (2), 1700 (3), 1900 (4), 2000 (4) s/

mm2. The acquisition time was 8 min 48 s.
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T2 relaxation values (T2 mapping) were obtained using a gradient and spin echo (GraSE)

sequence with TR/TEs of 686/20, 40, 60, 80, 100 ms, FOV 230×183 mm2, acquisition matrix

256×163, reconstruction matrix 512×400, slice thickness 5.0 mm, and no intersection gap. The

acquisition time was 1 min 35 s.

2.2 Histopathological analysis and cancer delineation on MRI

The whole mount prostatectomy sections were processed as previously described [12, 23]. The

hematoxylin-eosin stained histological slides were first reviewed by one staff board certified

pathologist and later re-reviewed by one experienced genitourinary pathologist (PT). In the

cases there were differences between the two reviews, the opinion of the third genitourinary

pathologist was searched and consensus was reached between the involved genitourinary

pathologists.

The histology slice thickness of whole mount prostatectomy sections was approximately 4

mm (range 4–6 mm). Gleason scores were assigned to tumors as combinations of primary, sec-

ondary, and tertiary Gleason grade, as defined by the 2005 International Society of Urological

Pathology Modified Gleason Grading System [4]. If a Gleason grade pattern higher than the

primary and secondary grade was present and visually accounted for less than 5% of the tumor

volume, it was assigned as tertiary Gleason grade [25].

Prostate cancer extent on each MRI acquisition (T2w, DWI, T2) was manually delineated by

one research fellow (IJ) working in consensus with the genitourinary pathologist (PT), using

whole mount prostatectomy sections as “ground truth.” Anatomical landmarks were used to

align each MRI acquisition (T2w, DWI, T2) with mount prostatectomy sections.

2.3 Final data set

Ten of the patients were excluded from further analysis due to presence of motion (n = 2),

severe susceptibility artifacts (n = 5), or incomplete data (n = 3). The characteristics of the

remaining 62 patients are shown in Table A in S1 File. Their median age was 65 years (range

45–73 years), while the median serum PSA value was 9.3 ng/ml (range 1.3–30.0 ng/ml). The

number of patients having one, two, and three lesions was 29, 28, and 5, respectively.

The final data set was composed of 100 PCa lesions derived from the MRI data sets of these

62 patients. In total, 67 and 33 lesions were located in peripheral zone (PZ) and central gland

(CG), respectively. For the purpose of classifier performance evaluation, the Gleason scores of

prostate cancer lesions were divided into two groups of low (3+3) and high (>3+3), containing

20 and 80 lesions, respectively.

2.4 MRI data post-processing

The post-processing pipeline is outlined in Fig 1. An example case with resulting standardized

image and fitted parametric maps is shown in Fig 2. The in-house software used in fitting was

quality controlled for correctness with cross-comparison to independent implementation and

with visual inspections of parametric maps and distributions.

2.4.1 T2w standardization. The signal intensity of a T2w image is not a specific tissue

property and this non-standardness of T2w images (“intensity drift”) requires standardization

to a common scale. To correct this bias, a histogram alignment method was used, as described

by Nyúl et al. [26, 27]. This simple method transforms the images to make their histograms

match at certain landmark locations, and interpolates the values between.

In this study, the deciles (i.e. every tenth percentile) were used as landmarks, as suggested

by Nyúl et al. [26]. Only delineated prostate volume was considered for histogram averages, as
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other parts of the image might distort the learning. The result was validated by visual

inspection.

2.4.2 DWI fitting. Diffusion weighted imaging data sets were fitted on voxel level using

the monoexponential model:

SðbÞ ¼ S0 expð� bADCmÞ ð1Þ

and the kurtosis model [13]:

SðbÞ ¼ S0 exp � bADCk þ
1

6
b2ADCk

2K
� �

ð2Þ

where S(b) is the signal intensity as a function of b value, S0 is the signal intensity at b = 0 s/

mm2, ADCm is the apparent diffusion coefficient of the monoexponential model, ADCk is the

apparent diffusion coefficient of the kurtosis model, and K is the kurtosis.

The fitting procedure was performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [28] implemented by the dlib [29] library. In order to find a reliable fit and prevent

local minima, the algorithm was executed with multiple evenly spaced initialization values.

Fig 1. The pipeline. The T2-weighted images (T2w) are standardized, the monoexponential and kurtosis models are fitted to the diffusion weighted

images (DWI), and the T2 relaxation values are obtained using a two parameter monoexponential function. Texture features are extracted subsequently.

Top 1% of the features are selected by AUC. A logistic regression model is fitted to the selected features, and is used to predict the lesion’s Gleason score

class.

https://doi.org/10.1371/journal.pone.0217702.g001

Machine learning in prostate cancer characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0217702 July 8, 2019 5 / 23

https://doi.org/10.1371/journal.pone.0217702.g001
https://doi.org/10.1371/journal.pone.0217702


Their intervals (step sizes) were for ADCm 0.1–3.0 μm2/ms (0.01 μm2/ms), for ADCk 0.01–

3.0 μm2/ms (0.1 μm2/ms), and for K 0.0001–4.0 (0.2).

2.4.3 T2 fitting. T2 relaxation values were calculated on a single voxel level using a two

parameter monoexponential function:

SðTEÞ ¼ S0 expð� TE=T2Þ ð3Þ

where S(TE) is the signal intensity at given time TE, S0 is the signal intensity at TE = 0 ms, and

T2 is the spin-spin relaxation time.

The Levenberg-Marquardt algorithm was used for fitting, as implemented by the SciPy

library, with the multiple initialization values of 0.0 ms to 300 ms with step size of 50 ms. T2

relaxation values were constrained to 1–300 ms interval.

2.5 Feature extraction

Texture extraction methods can be roughly categorized into four main groups [30], although

this taxonomy is somewhat ambiguous. The statistical approach is based on local spatial distri-

butions and relationships of intensity occurrences in the image. The structural methods use

well-defined geometrical primitives to measure texture. The model-based methods attempt to

represent the image properties as parameters of various mathematical models. The transform

methods use signal processing transformations such as Fourier and wavelets to analyze the

image in a different space.

In this study, the gray-level co-occurrence matrix, the local binary patterns, and the histo-

gram of oriented gradients can be assigned into the statistical category, and the Sobel operator

Fig 2. An example case with parametric maps. A: Whole mount prostate histological section. B: ADCm (apparent diffusion coefficient,

monoexponential model). C: ADCm (apparent diffusion coefficient, kurtosis model). D: K (kurtosis parameter, kurtosis model). E: T2w (T2-weighted

imaging). F: T2 (T2-mapping). This is from patient #43 (see Table A in S1 File). The two lesions are outlined; their Gleason scores are 4+3 (lower,

posterolateral region) and 3+4 (upper, anterior region).

https://doi.org/10.1371/journal.pone.0217702.g002
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into the structural one. The Hu and Zernike moments belong to the model-based group, while

the Gabor filter and the Haar wavelet are transform methods.

The selection of texture extraction methods used in this study was based mainly on prior

experiences in existing MRI literature [30, 31] and the availability of applicable open-source

software components. All of these texture descriptor methods, except the Hu and Zernike

moments, have been previously used for CAD of PCa. However, detailed information on their

implementation and parameter selection are usually very scarce. This issue was addressed in

this study by providing complete information on the parameters, and by using a wide array of

them.

Three-dimensional texture extraction of MRI has been utilized in various studies, including

some of PCa diagnosis [32]. In this study, however, texture analysis was performed only in 2D

and per-slice, due to voxel anisotropy.

2.5.1 General implementation details. Several texture descriptor methods with various

parameter combinations were used for extracting 2D texture features from the manually delin-

eated PCa lesions. Most of the methods in this study inherently incorporate the so-called “slid-

ing window” algorithm. This means that the local voxel neighborhood for calculations is

represented as a fixed-shape subwindow centered at each voxel in turn. The output image, a

texture feature map, consists of the feature values positioned on corresponding neighborhood

center locations. A more detailed explanation is provided by Clausi et al. [33], for example.

Seven window configurations were used for DWI and nine for T2w and T2 data. These

square-shaped windows had evenly spaced voxel side lengths of 3, 5, . . ., 15 for DWI and 3,

7, . . ., 35 for the higher-resolution T2w and T2. These lengths correspond to 3.3–17 mm for

DWI and 1.4–16 mm for T2w and T2, maintaining similar physical cover over different

resolutions.

For each lesion, the window was placed on all possible locations along the transverse planes

so that it still stayed completely within the lesion area. In cases of the window not fitting

completely inside lesion area, the window locations with maximum lesion area were used.

Extracted texture feature maps were then averaged over all slices to be used as lesion-wise

median features. The use of different window sizes and parameter combinations resulted in

1281 features per DWI image type (ADCm, ADCk, K) and 1631 features per other image type

(T2w, T2), totaling 7105 features all five image types combined. The free software libraries Sci-

kit-image [34] and Mahotas [35] were utilized in the implementation of the process.

2.5.2 Method-specific implementation details. The gray-level co-occurrence matrix

(GLCM) [36] is a very popular method of texture characterization. It observes all the pixel gray

level pairings that occur in the image at a certain distance and direction. In this study, the

GLCM was calculated for each window using four different voxel distances of 1 to 4 (unless

prevented by window dimensions). Because the 22 GLCM-derived features introduced by

Haralick et al. [36] have correlation [37], using only three to five features have been recom-

mended [37–39] in order to minimize redundancy and dimensionality.

In this study, the six GLCM features implemented by the Scikit-image software library [34]

were extracted. These features, namely contrast, dissimilarity, homogeneity, energy, correla-

tion, and angular second moment (i.e. uniformity), are among the ones most commonly used

in previous studies [33]. They are generally considered effective texture discriminators, and

maintain invariance regarding scale and shift [38]. In order to gain orientation invariance, the

results were averaged over four bidirectional axes, and mean range over the orientations was

added [36].

Since GLCM requires a discrete source image, the images needed prior normalization

depending on source type. All images were quantized by uniform scaling to 32 gray levels,

based on previous studies [33, 37, 38]. The image type specific source intensity ranges for
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scaling were manually defined by observing prostate volume histograms. In total 324–420

GLCM related features with sliding window approach were extracted per image type (T2w,

ADCm, ADCk, K, T2).

In addition to the sliding window approach, the same GLCM-based features were also

extracted using the minimum bounding box (MBB) around the whole lesion area of each

image slice as the window, while ignoring any non-lesion voxels. This procedure is similar to

the method used in a study by Vignati et al. [20]. The MBB-GLCM features were averaged

over slices, and 48 features in total were extracted per image type.

Local binary patterns (LBP) [40] is a method that compares every voxel intensity value to a

certain number of neighboring values on a circle around it. Each comparison result is stored

as a single bit that tells whether the neighbor is larger or smaller than the center. The bit pat-

terns are collected from the neighborhood and encoded as numbers, and the resulting histo-

gram can then be used as a feature vector invariant to gray scale. In this study, the LBP were

calculated within each window, observing eight interpolated neighboring points at the maxi-

mum radius allowed by window size. The different orientations of the uniform patterns were

combined into rotation-invariant groups, and all non-uniform patterns were treated as a single

pattern. Pattern frequency histograms were then used as features resulting in 70–90 different

features per image type.

The Gabor function [41] is a Gaussian modulated by a sinusoidal wave. Gabor filter banks

can be used for texture characterization, as each filter, shaped by its parameters, responds to

specific local spatial frequency properties of the image [42]. Gabor filters are sensitive to edges

in the image, so given that different lesions contain different regions, the detected edges

between the regions could yield different responses. In this study, the texture extraction

scheme described by Tüceryan et al. [43] was applied, which uses the sliding window on the

Gabor-filtered complex images.

Based on experimentation and data visualization, the filter bank included the combinations

of five different frequencies for the sinusoidal (f = 0.1, 0.2, x. . ., 0.5 per voxel), three sizes for a

circular Gaussian envelope (σ = 1, 2, 3), and four bidirectional orientations. A number of

derived features have been suggested [44–46]. Here, the extracted features included mean of

the real part, variance of the real part, mean of the absolute of the real part, and mean of the

magnitude. Various ways to achieve orientation invariance have been proposed [47–50],

although not all are equally suitable for texture classification. In this study, the simple method

of summing filtered images over orientations was used [48], yielding 420–540 features per

image type.

The Haar transform is a simple wavelet decomposition of the image. Providing local spatial

frequency information, it is useful as a tool of texture analysis [51]. In this study, a four-level

Haar transform was first done for each image slice, and the three higher frequency coefficient

planes were used, upscaled to the original size. For each sliding window, the mean absolute

value and the standard deviation were then extracted as features [51], resulting in 168–216 fea-

tures per image type.

Image moments are weighted averages that describe the distribution of intensity within

image. A few variations are widely used as object shape descriptors, but they have also been

applied to texture analysis [52]. In this study, logarithms of the absolute values of the seven Hu

moments [53], and the magnitude values of the complex Zernike moments [54] up to the 8th

degree were calculated for each window. The Hu moments are invariant regarding translation,

scaling, rotation, and reflection [55]. The Zernike moment magnitudes are rotation invariant,

robust to noise, and, due to their orthogonality, have minimal redundancy [56, 57]. In total,

49–63 Hu moments and 175–225 Zernike moments were extracted from each image type.
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The histogram of oriented gradients [58] is an algorithm developed primarily for object rec-

ognition. It describes an object as a set of local gradient direction distributions. In this study, it

was applied for texture analysis, using a single cell with eight directions for each window. The

average over windows was then used as a feature, resulting in one feature per window size and

7–9 features in total per image type.

The Sobel operator [59] is a simple convolution filter that emphasizes edges in image. The

shape of the kernel window is 3×3 by definition, so no other window sizes were used. Instead,

the median of the whole lesion-wide texture map was used, both with the lesion edge voxels

included and excluded, resulting in 2 features.

In addition, first-order statistical features were calculated over the whole lesion. First-order

statistics observe only the probabilistic distribution of intensity values, ignoring their spatial

relations. Existing literature typically utilizes averages and some of the percentiles [60]. Here,

18 features were included, namely mean, standard deviation, range, minimum, maximum,

quartiles, deciles, kurtosis, and skewness.

2.6 Classification

For image types ADCm, ADCk, and K, a corresponding data set of 100 data points and 1281

features were used to build models for predicting prostate lesion aggressiveness based on Glea-

son score, while for T2w and T2 the number of features was 1631. The features were normal-

ized to zero mean and unit variance. The data points were divided into two groups by Gleason

score, low and high (3+3 and>3+3, respectively).

Logistic regression with either L1 or L2 regularization [61] implemented by Python Scikit-

learn library [62] were used to train the low vs high Gleason score classifiers. Both regulariza-

tion mechanisms compensate the high dimensionality of the data by penalizing large coeffi-

cient values of the inferred linear models, which in turn makes them less likely to overfit to the

training data and more able to generalize to data unseen in the training phase.

L1 regularization has the additional property of shrinking the coefficients of the least useful

features down to zero, and hence it also performs feature selection [63]. The number of coeffi-

cients ending down to zero depends on the amount of regularization. However, regularizing

too strongly might lose valuable features and lead to underfitting. Therefore, it was also tested

whether the simultaneous use of the classical filtering based feature selection approach would

improve the prediction performance.

The predictive performance of the models built by the regularized logistic regression algo-

rithms was estimated by a nested cross validation strategy [64], which consisted of an outer

leave-pair-out cross-validation (LPOCV) [65] and an inner 10-fold cross validation (10FCV)

for hyperparameter selection. In LPOCV every possible pair of data points were held out at a

time as test set, while the remaining data formed the training set used to build the model for

predicting on the held out pair. Both the filter based feature selection and the hyperparameter

selection were performed for each round on LPOCV using the training set.

For selecting the best features, their performance was estimated using the receiver operating

characteristic (ROC) curve, summarized as the area under the ROC curve (AUC). Ranked by

AUC, the highest-performing 1% of all features (including statistical ones) were used to train

the classifier.

After selecting the features the training set was transformed accordingly and the optimum

regularization hyperparameter value was selected from ω = {0.001, 0.01, 0.1, 1, 10}, as mea-

sured by the AUC in stratified 10FCV. A classifier was then trained with the selected features

and the regularization hyperparameter, and used for performing predictions on the two data

points held out during the LPOCV round.
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Afterwards, each data point was assigned an LPOCV score according to the ordering-by-

the-number-of-wins method, in which the score of a data point is the number of times it

obtains a larger predicted value than the other point during the LPOCV rounds when it is one

of the two held out points. These LPOCV scores were then used to perform the ROC curve

analysis, whose validity was previously demonstrated by Balcan et al. [66]. More precisely,

using the LPOCV scores of the data points and their corresponding true label, the AUC and

95% confidence interval (CI) were calculated using the R package by LeDell et al. [67].

The feature selection and hyperparameter selection process as part of the LPOCV is illus-

trated in Pseudo code 1. The algorithm starts with a loop referred as LPOCV. During this loop

the indices associated with the test pair in turn, (i, j) with i 6¼ j, are not included in the index

set C of training data. Every feature AUC is calculated using data from matrix X and label vec-

tor y. The notation X[C, k] refers to the submatrix of X containing the rows indexed by C and

the columns by k, that is, the vector with the values for kth feature in the training data. The top

1% independent features are indexed by B. The optimum regularization hyperparameter value

α 2 ω is calculated using 10FCV on data (y[C], X[C, B]), which is then used to train a model f
to make predictions on the test pair (X[i, B], X[j, B]). The last line of the pseudo code describes

the calculation of LPOCV score using ordering-by-the-number-of-wins method.

Pseudo code 1 LPOCV with inner feature selection by AUC filtering and hyperpara-

meter selection.
Input: X, matrix of n lesions × F features
Input: y, vector of labels (1 high, -1 low)
Input: ω = {0.001, 0.01, 0.1, 1, 10}, set of hyperparameters
Output: LPOCV scores
for i, j 2 {1, 2, . . ., n} do {All possible lesion pairs}
C  {1, 2, . . ., n}\{i, j} {All lesions except i, j}
auc  vector of length F
for k 2 {1, 2, . . ., F} do
auc[k]  AUC(X[C, k], y[C]) {Calculate AUC for each feature}
auc[k]  max(auc[k], 1 − auc[k]) {Handle inverse correlation}

end for
B  arg sort(auc)[1. . .(0.01 × F)] {Get indices of the best

features}
α  gridSearch(y[C], X[C, B], ω) {Grid search with 10FCV,

returns the best hyperparameter}
f  A(y[C], X[C, B], α) {Train model f with algorithm A and

hyperparameter α}
Wij  H(f(X[i, B]) − f(X[j, B])) {Matrix W stores results from

Heaviside function (H) of i and j prediction difference}
end for
~y  W1 {Score of each element obtained by summing along axis j}
return ~y {Returns LPOCV scores}

2.7 Addressing bias and imbalance

It is important to note that the nested cross-validation scheme allows feature selection and

hyperparameter tuning while avoiding bias in the performance estimate [64]. In each round of

LPOCV, the pair of data points left for testing does not affect the feature selection nor the

hyperparameter tuning of the predictive model in turn.

The ratio between low and high Gleason score is 1:4 in the data set, so there is some degree

of imbalance between classes. However, the model performance was estimated using LPOCV

together with AUC, and that degree of imbalance in the classes has low effect on these methods

[65, 68]. LPOCV is an unbiased estimate of the prediction performance of a model [65], and
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the ROC AUC is not affected by imbalance as it measures how accurately a model ranks a ran-

dom positive unit from a negative one [69].

3 Results

The highest ranking features for differentiating Gleason scores are summarized by texture

extraction method in Table 1. Features based on Gabor filters were included in all image

types. GLCM features were selected for T2w and T2, and Zernike moments for K and T2. Fea-

tures from the Hu moments and LBP were also selected for T2, in which the top 1% had more

variability than other image types, regarding both the texture extraction method and window

size.

3.1 Univariate analysis

ROC analysis was performed for each texture feature. The resulting best features are shown in

Table 2. The best one was MBB-GLCM homogeneity in T2w with AUC = 0.84.

A similar analysis was performed for the first-order statistical features; results are shown in

Table 3. Although the best statistical features had good performance for most of the modalities,

they did not out-perform the best texture features.

Some of the high-ranking features are visualized in Fig 3. ROC curves for best statistical

and texture features are presented in Fig 4.

Table 1. Texture methods ranked in the best one percent.

Image type Window sizes Texture extraction methods AUC range

T2w 27 MBB-GLCM, GLCM, Gabor 0.71–0.84

ADCm 11 Gabor 0.79–0.80

ADCk 11 Gabor 0.79–0.80

K 7, 9 Zernike, Gabor 0.78–0.83

T2 15, 19, 27, 31, 35 Zernike, Hu, MBB-GLCM, LBP, GLCM, Gabor 0.71–0.75

https://doi.org/10.1371/journal.pone.0217702.t001

Table 2. Best texture feature per image type.

Image type Window sizes Type of Texture feature AUC

T2w NA MBB-GLCM: homogeneity, d = 3, range 0.84

ADCm 11 Gabor: σ = 1, f = 0.3, mean 0.80

ADCk 11 Gabor: σ = 2, f = 0.1, mean 0.80

K 7 Zernike: index = 7 0.83

T2 35 Zernike: index = 3 0.75

https://doi.org/10.1371/journal.pone.0217702.t002

Table 3. Best statistical feature per image type.

Image type Statistical feature AUC

T2w Minimum 0.72

ADCm Minimum 0.79

ADCk Minimum 0.79

K Range 0.78

T2 20th percentile 0.55

https://doi.org/10.1371/journal.pone.0217702.t003
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Some of the top features were highly correlated between different image types. See Table M

in S1 File for Spearman rank correlation coefficients for the features listed in Tables 2 and 3,

calculated across image types. In addition, Table N in S1 File contains similar correlation met-

rics for all feature pairs, where top five features were taken from each image type.

Fig 3. An example of texture feature maps. These are extracted from DWI parametric maps (ADCm, ADCk, K), T2-weighted imaging (T2w), and

parametric map of T2 relaxation values (T2). Source image type, window size, and texture descriptor parameters are shown above the images. The two

lesions are outlined; their Gleason scores are 4+3 (lower) and 3+4 (upper).

https://doi.org/10.1371/journal.pone.0217702.g003

Fig 4. ROC curves within each image type (T2w, ADCm, ADCk, K, T2). A: The best statistical feature. B: The best texture feature. The final model of the best selected

features from ADCm, K, and T2w obtained using L1 regularized logistic regression and validated with leave-pair-out cross-validation (LPOCV) is also included in both A

and B.

https://doi.org/10.1371/journal.pone.0217702.g004
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3.2 Multivariate analysis

The prediction performance of the models trained using regularized logistic regression was

estimated by LPOCV. Both L1 and L2 regularization methods were utilized separately.

Table 4 contains the results for models within each image type using all of the features and

top 1% of them. The results are presented as ROC AUC values along with 95% confidence

intervals.

Similar performance estimates of the models combining features from different image

types are presented in Table 5.

3.2.1 All features within individual image types. When using all features and L1 regular-

ization (Table 4), T2w had AUC = 0.82, DWI derived parametric maps (ADCm, ADCk, K) had

AUC range 0.64–0.71, and T2 derived features had AUC = 0.58.

In contrast to L1, L2 regularization yielded better performance for all image types except

T2w where AUC dropped to 0.68. DWI-derived parametric maps (ADCm, ADCk, K) had AUC

range 0.69–0.73, and T2 derived features had AUC = 0.70.

These results indicate that, when it comes to logistic regression models, all features

weighted by L2 regularization may perform better than fewer features selected by L1, with the

exception of T2w images. With T2w, L1 regularization performed better than L2, suggesting

that a subset of features would perform better than all of them.

3.2.2 Selected features within individual image types. The feature selection was based

on filtering features by AUC. Only the best 1% of features (12 or 16 features, depending on

image modality) with highest ranking AUC were selected in each image type. When using L1

regularization, the best T2w features showed better performance (AUC = 0.80) than the fea-

tures of DWI-derived parametric maps (ADCm, ADCk, K), which had AUC range 0.71–0.78.

The best T2 features had AUC = 0.51 which is the lowest performance among the modalities.

The estimated AUC values using L2 regularization and the best 1% features, compared with

L1 regularization, were lower for T2w and K.

The texture features did not substantially out-perform the 18 statistical features the corre-

sponding image type (Table 4), except in T2w where the texture feature model obtained with

L1 regularization had the best performance among all other models. The highest AUC value

based on statistical features was 0.79, achieved using L1 regularization and ADCm. The corre-

sponding value for the best 1% texture features was 0.71.

Table 4. Performance figures for each image type alone. They are ROC AUC (receiver operating characteristic, area under curve) values estimated using outer leave-

pair-out cross-validation (LPOCV) and different feature subsets.

Image type ML algorithm All features Top 1% features 18 statistical

N AUC (95% CI) N AUC (95% CI) AUC (95% CI)

T2w Log. Reg. L1 1631 0.82 (0.72–0.92) 16 0.80 (0.69–0.90) 0.67 (0.56–0.77)

Log. Reg. L2 0.68 (0.55–0.82) 0.75 (0.64–0.87) 0.71 (0.60–0.81)

ADCm Log. Reg. L1 1281 0.67 (0.55–0.79) 12 0.71 (0.60–0.82) 0.79 (0.68–0.90)

Log. Reg. L2 0.69 (0.57–0.81) 0.75 (0.65–0.86) 0.75 (0.63–0.86)

ADCk Log. Reg. L1 1281 0.71 (0.58–0.83) 12 0.74 (0.63–0.84) 0.78 (0.69–0.88)

Log. Reg. L2 0.73 (0.63–0.83) 0.76 (0.65–0.86) 0.73 (0.61–0.84)

K Log. Reg. L1 1281 0.64 (0.52–0.77) 12 0.78 (0.67–0.89) 0.75 (0.61–0.88)

Log. Reg. L2 0.73 (0.60–0.85) 0.76 (0.64–0.87) 0.73 (0.60–0.86)

T2 Log. Reg. L1 1631 0.58 (0.45–0.71) 16 0.51 (0.37–0.65) 0.67 (0.55–0.79)

Log. Reg. L2 0.70 (0.59–0.82) 0.56 (0.43–0.69) 0.56 (0.43–0.68)

https://doi.org/10.1371/journal.pone.0217702.t004
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The AUC values for the top-1% texture features based on T2w, ADCm, ADCk, K, and T2 are

shown in Tables B, D, F, H, and J in S1 File, respectively. Similarly, AUCs for the statistical fea-

tures for each image type are shown in Tables C, E, G, I, and K in S1 File.

3.2.3 All features of combined image types. No substantial improvements of AUC values

were present when combining all features of all image types (Table 5). The AUCs were within

range 0.53–0.82 with L1 regularization and within 0.69–0.80 with L2.

3.2.4 Selected features of combined image types. In contrast to the use all features, a bet-

ter model performance was present when combining the best 1% features of all image types

(T2w, ADCm, ADCk, K, T2). The best performing model with AUC = 0.88 was obtained when

selecting the best 1% features based on ADCk, K and T2w. The combinations of features

extracted from DWI parametric maps (ADCm, ADCk, K) and those extracted from T2w and

T2 together with the feature selection method lead to improved prediction performance

regardless of the regularization method (L1, L2).

The final model proposed to differentiate low from high Gleason score PCa includes the

features from ADCm, K, and T2w listed in Table L in S1 File. The expected performance ROC

is presented in Fig 4.

4 Discussion

There is an increasing number of research groups studying and developing CAD of prostate

cancer. The topic was recently reviewed by Lemaı̂tre et al. [31]. Most of the publications have

Table 5. Performance figures for image type combinations. They are ROC AUC (receiver operating characteristic, area under curve) values estimated using outer leave-

pair-out cross-validation (LPOCV) and different feature subsets.

Image types ML algorithm All features Top 1% features

N AUC (95% CI) N AUC (95% CI)

ADCk, K Log. Reg. L1 2562 0.61 (0.49–0.74) 25 0.82 (0.72–0.92)

Log. Reg. L2 0.72 (0.60–0.83) 0.81 (0.70–0.91)

ADCm, K Log. Reg. L1 2562 0.57 (0.45–0.70) 25 0.81 (0.71–0.91)

Log. Reg. L2 0.72 (0.60–0.84) 0.79 (0.68–0.89)

ADCm, ADCk, K Log. Reg. L1 3843 0.58 (0.44–0.72) 38 0.83 (0.74–0.92)

Log. Reg. L2 0.69 (0.56–0.81) 0.79 (0.70–0.88)

ADCm, ADCk, K, T2 Log. Reg. L1 5474 0.61 (0.47–0.74) 54 0.84 (0.75–0.92)

Log. Reg. L2 0.77 (0.66–0.87) 0.79 (0.70–0.88)

ADCm, ADCk, K, T2w Log. Reg. L1 5474 0.78 (0.68–0.89) 54 0.88 (0.81–0.95)

Log. Reg. L2 0.70 (0.58–0.82) 0.86 (0.78–0.93)

ADCm, ADCk, K, T2, T2w Log. Reg. L1 7105 0.74 (0.62–0.86) 71 0.88 (0.81–0.95)

Log. Reg. L2 0.79 (0.69–0.90) 0.86 (0.78–0.93)

ADCm, K, T2 Log. Reg. L1 4193 0.69 (0.56–0.82) 41 0.83 (0.74–0.91)

Log. Reg. L2 0.78 (0.68–0.88) 0.82 (0.73–0.90)

ADCm, K, T2w Log. Reg. L1 4193 0.81 (0.71–0.91) 41 0.88 (0.82–0.95)

Log. Reg. L2 0.70 (0.59–0.82) 0.86 (0.79–0.93)

ADCm, K, T2, T2w Log. Reg. L1 5824 0.76 (0.65–0.87) 58 0.87 (0.81–0.94)

Log. Reg. L2 0.79 (0.68–0.89) 0.85 (0.77–0.92)

ADCk, K, T2 Log. Reg. L1 4193 0.53 (0.40–0.66) 41 0.81 (0.72–0.91)

Log. Reg. L2 0.80 (0.71–0.89) 0.81 (0.71–0.91)

ADCk, K, T2w Log. Reg. L1 4193 0.81 (0.72–0.91) 41 0.85 (0.77–0.93)

Log. Reg. L2 0.72 (0.61–0.84) 0.84 (0.76–0.92)

T2, T2w Log. Reg. L1 3262 0.82 (0.73–0.91) 32 0.66 (0.52–0.79)

Log. Reg. L2 0.78 (0.68–0.88) 0.61 (0.48–0.74)

https://doi.org/10.1371/journal.pone.0217702.t005
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focused on the task of cancer detection rather than characterization. However, both are

required for proper treatment decision planning. In this study, we built a classifier for prostate

cancer characterization utilizing texture features extracted from T2w, the monoexponential

and kurtosis models of high-b-value DWI, and T2 maps.

Several studies have demonstrated correlation between ADCm values and Gleason score

based on biopsy [8, 70] or prostatectomy specimens [9, 18, 71–73]. Most of the studies evaluat-

ing the performance of DWI for Gleason score prediction have used first-order statistical fea-

tures, which do not consider the spatial relationships between voxels. Analyzing the texture

may add useful information regarding tumor heterogeneity and other structural properties. In

our previous studies we observed rectangular, fixed-shape regions-of-interest, and each tumor

was characterized by only one variable per image type [9, 10, 23]. However, in this study we

measured the texture properties of each of the image types (T2w, ADCm, ADCk, K, T2). We

have shown that the characterization performance of prostate cancer can be improved by com-

bining texture features from the monoexponential and kurtosis models, and the T2w.

Most studies on texture analysis of PCa include only a small number of texture descriptors

and configurations [14–16]. In this study, we utilized a large number of both, from multipara-

metric source. This allows evaluating a huge number of feature combinations, as the regulari-

zation prevents overfitting caused by high dimensionality.

Texture analysis of multiparametric MRI has previously seen limited use in PCa characteri-

zation. Fehr et al. [21] evaluated PCa characterization with the whole-lesion first order statis-

tics and GLCM texture features from a similar-size dataset of ADC and T2w. They used

oversampling to ward off effect of class imbalance. Similarly to our study, they integrated

dynamic feature selection as part of the training (using the recursive feature selection support

vector machine, RFE-SVM). In our study, we included a much more diverse and numerous set

of features, as one of our goals was to evaluate various texture extraction methods. Moreover,

we have for the first time demonstrated that using texture features from K (kurtosis function)

provided improvements to ADCm (monoexponential function). This is important since first

order statistics of parameters derived from kurtosis function do not lead to improved perfor-

mance of ADCm (monoexponential function). The effect of noise remains to be explored in

future studies.

Tiwari et al. [17] classified PCa using GLCM and simple gradient features from T2w and

MR spectroscopy (MRS). A multi-kernel classifier with graph embedding was used to reduce

dimensionality. Compared to the current study, they had fewer patients, and the classification

was done on equally-sized, rectangular metavoxels.

Furthermore, Wibmer et al. [19] studied the associations of Gleason scores and individual

GLCM features from ADC and T2w of PZ lesions, using generalized linear regression and gen-

eralized estimating equations; and Vignati et al. [20] tested Gleason score differentiation using

two of the GLCM features (contrast and homogeneity) from T2w and ADC individually.

Contrarily to previous approaches to performing non-rigid deformation and co-registra-

tion of datasets with subsequent resampling to common space and resolution [15, 16], in the

current study the prostate and tumor masks were done for each MR imaging method (T2w,

DWI, T2) individually, allowing us to perform texture analyses at their original native resolu-

tions. Estimating the effect of co-registration and resampling on texture extraction is not triv-

ial, and the process could cause loss of information. However, the accuracy of the delineations

in this study could be potentially improved by an added step of co-registering MRI to histology

images [74].

We highlight the limitation of performing re-slicing and non-rigid deformation of MR data

sets to common space and then co-registering with whole mount prostatectomy sections. As

noted by Bourne et al. [74], co-registration of whole mount prostatectomy sections to MRI
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data sets is important. However, the effect of re-slicing and non-rigid deformation of MR data

sets to common space remains to be explored.

The gray-level co-occurrence matrix may well be the most widely used tool for texture anal-

ysis of prostate MRI data sets. The Sobel operator, Gabor filters, Haar transform, and local

binary patterns have already been extensively applied for texture analysis of prostate MRI, as

have a few others [31] not included in this study.

The image moments, on the other hand, have been used more often for global morphologi-

cal analysis like shape recognition rather than local texture analysis, although they have been

used for texture as well [52, 75, 76]. To the best of our knowledge, there are no published stud-

ies using moment-based texture analysis for detection or characterization of prostate cancer

using MRI data sets. Tahmasbi et al. [56] used Zernike moments to characterize breast cancer,

but as a global mass descriptor and not for texture. Our results suggest that moment-based tex-

ture features might be valuable for PCa characterization. More specifically, the best 1% features

of the image types K and T2, and the final model ADCm, K, and T2w combined included some

of the texture features based on Hu or Zernike moments.

The GLCM summarizes pixel intensity occurrences, the Gabor descriptors detect gradients

of certain frequencies, and the LBP responds to point-like intensity transformation patterns.

The image moments describe the mass distribution of the image content which is seen as a

function that is integrated over space. Given the supposed difference in tissue heterogeneity, it

makes sense that a metric based on mass distribution would discriminate lesions of varying

Gleason scores.

Most of the texture extraction methods in this study use the sliding window algorithm with

seven or nine different window sizes depending on image resolution. Usually, the window

should be large enough to provide reliable statistical information about its contents to charac-

terize the texture, yet small enough so that patches of different classes do not overlap too much

[36, 38]. The nature of each texture extraction algorithm also affects the specific role and use-

fulness of each window configuration. The optimal window size depends on method and data,

and typically cannot be estimated in practice without experimentation [77]. Most of the previ-

ous studies have utilized a very small number of different window sizes, often without present-

ing validation for the choice. In this study, we explored several window sizes simultaneously.

This approach greatly increases the number of features, which is usually something to be

avoided in order to produce an effective classifier. However, the machine learning method we

used scales well to a large number of features.

In addition to texture features, shape descriptors might provide information useful for

Gleason score characterization [78]. However, we decided to leave them out of this study and

focus on texture features only. Including shape features would have required to treat lesions of

different prostate regions differently, since lesions in peripheral zone might spread differently

than lesions in central/transitional zone.

We have evaluated an extensive number of MRI texture features in multivariate setting for

their ability to predict the Gleason score of prostate cancer. Moreover, we have presented a

machine learning system that, from a very large number of candidate features, searches for a

relevant subset for the task and alternatively weights the features accordingly.

The single feature with highest prediction performance estimate (AUC = 0.84) was a gray-

level co-occurrence matrix homogeneity of T2w. The Gabor transform features performed well

with the ADC and K parameters. The lowest percentile statistics were useful with ADC and

T2w. The features based on Hu and Zernike moments performed well for K and T2. Our results

imply that a specific set of features and feature extraction methods is needed to obtain maximal

information from DWI, T2w, and T2.
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The highest overall performance estimate (AUC = 0.88) was obtained for the model utiliz-

ing a small subset of texture features from the ADCm, K, and T2w parameters. These features

included texture descriptors based on gray-level co-occurrence matrix, Gabor transform, and

the Zernike and Hu moments.

Our study has several limitations. First of all, only 62 patients were included and further val-

idation of our results in large patient cohort is needed. All of the patients had gone through

prostatectomy, and therefore it is biased on the high Gleason score group with 80% of the

lesions. As is the case with many previous studies, only one MRI data set per imaging method

per patient was evaluated. Therefore, the repeatability of the texture features cannot be evalu-

ated. Ideally, quantitative imaging methods would have high reliability and repeatability,

allowing the use of derived features for disease characterization [79].

Many of the texture extraction methods used in this study could be further refined. Varia-

tions of the methods and the derived features have been proposed, for example for Gabor fil-

ters [44], and local binary patterns [80, 81]. For Gabor filters, schemes for unsupervised tuning

of optimal parameters have been proposed [82]. The Zernike moments can be provided scale

and transformation invariance [83].

In the cross-validation process the set of selected features was slightly different in every

round, implying that some of the features may convey similar information. This is natural

since we tested such a large number of feature candidates.

In this study, we focused on the characterization of histologically confirmed and manually

delineated cancer lesions. In a more practical setting, this process should be preceded by auto-

matic segmentation of the prostate and detection of cancerous tissue. This limitation should

be addressed in future studies.

Studies show increased risk of PCa specific mortality for Gleason score 4+3 in comparison

to 3+4 [84]. Differentiating these scores in the characterization process would be useful in

addition to the 3+3 vs >3+3 threshold that was considered in this study.

Our results suggest that the use of texture features extracted from T2w, ADCm, and K

parametric maps leads to improved PCa characterization accuracy compared to the more com-

monly used statistical features of DWI. In contrast, adding features from T2 did not improve

the classification accuracy. The results point out certain features and feature combinations that

were succesful, out of a very numerous set that includes various source image types, texture

extraction methods, window sizes, and method-specific configurations. Most of the useful

methods have already performed well in other studies (GLCM, Gabor, LBP). However, the

image moment based texture features (Hu, Zernike) appear to be novel in the context of PCa

characterization.

Supporting information

S1 File. Supporting tables. Patient characteristics; best features of each image type; features in

final proposed model; best features’ correlation coefficients among image types.

(PDF)

S2 File. Supporting figures. Files DWI-Mono-ADCm-xxx.png, T2-fitted-xxx.png, and T2w-

std-xxx.png correspond to ADCm and T2 parametric maps, and T2-weighted images of each

patient, respectively. On the first row of slices they show positions of regions of interest placed

on the prostate cancer lesions (red, yellow) and around whole prostate (white). The prostate

mask is on the second row, while the remaining rows are lesion masks. Files histology-xx.jpg

contain the whole mount prostatectomy sections of each patient, with tumor outlines in green.

Please note that identical MRI acquisition protocol has been used on all patients, including
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slice thickness. Here all prostate cancer masks are show with corresponding whole mount

prostatectomy sections.

(ZIP)

S3 File. Lesion radiomics. This file contains the 7105 radiomics calculated for each of the 100

lesions from all 62 patients in CSV format (comma-separated values). The first column con-

tains the patient ID number. The second column contains the Gleason score group used for

classifying: –1 for low score group, 1 for high score group. The rest of the columns are the cal-

culated feature averages over each lesion. The first row with column descriptions contains the

feature names.

(ZIP)
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76. Tüceryan M, Jain AK. Texture segmentation using Voronoi polygons. IEEE Transactions on Pattern

Analysis and Machine Intelligence. 1990; 12(2):211–216. https://doi.org/10.1109/34.44407

77. Puig D, Garcı́a M. Determining optimal window size for texture feature extraction methods. In: IX Span-

ish Symposium on Pattern Recognition and Image Analysis. vol. 2; 2001. p. 237–242.

78. Hoeks CMA, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SWTPJ, et al. Prostate Can-

cer: Multiparametric MR Imaging for Detection, Localization, and Staging. Radiology. 2011; 261(1):46–

66. https://doi.org/10.1148/radiol.11091822 PMID: 21931141

79. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychological bulletin.

1979; 86(2):420–8. https://doi.org/10.1037/0033-2909.86.2.420 PMID: 18839484

80. Guo Z, Li Q, You J, Zhang D, Liu W. Local directional derivative pattern for rotation invariant texture

classification. Neural Computing and Applications. 2012; 21(8):1893–1904. https://doi.org/10.1007/

s00521-011-0586-6
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