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Abstract

The software-defined networking (SDN) paradigm has simplified the management of com-

puter networks by decoupling data and control planes. Moreover, the separation of the data

and control planes has transitioned network complexity from traditional devices to control-

lers; therefore, controllers have become indispensable entities in SDN. Controllers have

multiple features and direct the network from a central point and respond to updates to topo-

logical changes. However, the supportive capability of these features is strong in one con-

troller but weak in another. Due to several controllers and each controller having a set of

features, selecting an optimal SDN controller can be considered to be a multi-criteria deci-

sion-making (MCDM) problem. Herein, a two-step approach is proposed for SDN controller

selection. First, the controllers are ranked with analytical network process (ANP) according

to their qualitative features which influence the performance of these controllers and then a

performance comparison is performed to check for the QoS improvement. The controller

with a high-weight value from the feature-based comparison is quantitatively analysed by

experimental analysis. The main contribution of this paper is checking the applicability of the

ANP for controller selection in SDN considering its features and performance analysis in

real-world Internet and Brite topologies. The simulation results show that the controller com-

puted through the proposed approach outperforms the controller selected with existing

approaches. The selection of an optimum controller with ANP results in a reduction of topol-

ogy discovery time and delay in the normal and traffic load scenario. Similarly, an increase

in throughput with a reasonable utilization of the central processing unit (CPU) is observed

for the proposed controller.

Introduction

The Contemporary computer networks have been revolutionized owing to the ease of

programmability, innovation, flexibility, and centralized management spearheading concepts

broached by SDN. Its abstraction has reduced the complexity of traditional network devices by
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shifting the distributed control logic from these devices to a central controller, i.e., separating

data and control planes. The data flow is controlled by the centralized controller logic along

with the applications running and interacting with the controller through its northbound

interface and the data plane devices. This control is managed by a protocol known as Open-

Flow [1].

The innovative features of flexibility management and the support for network function vir-

tualization (NFV) [2] broached by SDN have made it an exquisite choice for the Internet of

Things (IoT) and 5G. Similarly, megacorp IT firms such as Google, Amazon, and Facebook

have already adopted SDN and are contributing to the Open Networking Foundation (ONF)

[3] for the standardization of SDN protocols and architecture. A well-known project called B4

[4] was initiated by Google to connect its international data centers by leveraging innovative

SDN features. This allowed its hardware to no longer be vendor dependent, provided central-

ized management, and created flexibility in network management through well-defined ap-

plication programming interfaces (APIs) and the virtualization of network functions. All

of this has resulted in a reduction in cost, increased efficiency, and fast deployment of new

services.

The novel centralized management paradigm introduced by SDN has resulted in an escala-

tion in the importance of the SDN controller. The SDN controller presents a global view of the

network under its obligation; therefore, operators can program the data plane devices and

apply the policies from a central point in contrast to the distributed and classical internet pro-

tocol (IP) networks. However, aside from the many advantages of SDN, its modelling, evalua-

tion, and testing present several challenges. One of the challenges is the selection of an

optimum SDN controller, as every controller has multiple supporting features. The obligatory

role of the controller in a standard SDN stipulates the selection of an optimum controller.

The comparative study of SDN controllers has been the focus of many studies due to the

significant role of the controller. These studies select a controller among a set of controllers

based on the performance of the SDN controllers using Cbench [5] or Mininet [6]. The study

presented in [7] compared five SDN controllers, NOX, POX, RYU, BEACON, and FLOOD-

LIGHT [8–12], to increase the number of threads and switches in both throughput and latency

modes. A similar performance comparison study added two more controllers: MUL and

MAESTRO [13–14]. This study can be found in [15], and the authors used Cbench to measure

the throughput and latency of each.

The SDN controller performance study in [16] was conducted by first creating a network

topology using Mininet and then running it on the controller. Then, the IPERF and PING util-

ities were utilized to conduct TCP throughput and latency comparisons. The authors com-

pared four controllers, ODL [17], POX, ONOS [18], and RYU, based on their throughput and

latency by creating a tree topology with 16 hosts and a fanout of 4. The same performance

parameters were considered in [19] using a single topology with one switch and three hosts. In

[20], the authors compared the performance of the POX and FLOODLIGHT controllers by

using single, linear, and tree topologies.

These works focused on controller selection based on certain performance parameters

(throughput and latency) using Cbench or Mininet. However, these studies did not focus any

significant attention on the supporting features of these controllers during the selection pro-

cess neither they have evaluated the performance of these controllers using a real-internet

topology. These supporting features can include the following: OpenFlow support, representa-

tional state transfer (REST) API, graphical user interface (GUI), Open-stack networking, clus-

tering ability, or modularity and multi-threading. Therefore, the researchers realized the need

to consider the features of these controllers and how they contribute to the selection process of

an SDN controller.

Optimum controller selection for software-defined networks
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To the best of our knowledge, this is the first study that evaluates the performance of the

controllers selected based on their feature set in the real internet topologies from zoo dataset

[21] and Brite [22] topology generator. In this paper, we propose a hybrid approach for SDN

controller selection, and we solve our computations in two stages. The first stage performs

controller selection using the ANP MCDM. The second stage conducts a quantitative perfor-

mance analysis of the top controller based on the high-weight values obtained from stage 1.

The quantitative analysis consists of a comparison of topology discovery time, delay, through-

put and CPU utilization with controller obtained through Analytical Hierarchy Process (AHP)

by emulating the real-world internet and Brite topologies in Mininet. The ANP takes the feed-

back from the other cluster elements and dependency between them. The AHP has no mecha-

nism for feedback and dependency between components [23]. We have used ANP which

covers the feedback and dependency between components in the same and different clusters.

The performance of the controller shall be validated in the real-world Internet and Brite topol-

ogies. In our previous work [24], we compared the performance of the POX and RYU control-

lers in various topologies. These topologies included Single, Linear, Tree, Dumbbell, and data

center networks (DCNs). Herein, the approach is extended by first computing the optimum

controller with respect to its supporting features using ANP and then conducting a perfor-

mance analysis of the controller.

The rest of the paper is organized as follows: Section 2 describes work related to the selec-

tion of an SDN controller from a set of controllers. Section 3 presents a motivation for the fea-

ture-based controller selection. The proposed approach and contribution of the study is

discussed in Section 4. Our proposed model for SDN controller selection, the analytical net-

work process (ANP) approach, and the feature-based results are presented in Section 5. In Sec-

tion 6, performance metrics, experimental setup and design are being discussed. In Section 7,

the performance of two feature-based optimum controllers computed using our proposed and

AHP approach is evaluated in real-Internet and Brite topologies. Finally, the paper is con-

cluded in Section 8 based on the findings of the results.

Literature review

In the literature, different approaches have been used for SDN controller selection. These

approaches can be broadly classified into three categories. The first category involves compar-

ing controllers based on their features, the second compares controllers based on their perfor-

mance, and the third is a hybrid approach. The hybrid approach selects an optimum controller

by combining the results of a feature and performance-based comparison. These approaches

are discussed below.

The research studies presented in [7], [15–16] and [19–20] simply compare the perfor-

mance of SDN controllers. The performance-based approaches only consider the performance

merely neglecting the features of SDN controllers. Secondly, these approaches consider the

performance in a general topology using Mininet or by creating virtual switches and hosts in

Cbench. Therefore, the realistic scenario of real-world internet is not considered in their

experiments.

The studies conducted in [25–28] considered features of controllers and provide a compari-

son of these controllers with respect to the supporting features that they offer. Examples of

supporting features include the following: platform, REST API, clustering, and OpenFlow sup-

port. The goal of all approaches was to select an optimum SDN controller. However,

approaches solely based on the feature set neglected the performance of SDN controllers.

Another drawback of these approaches was that they only provide a theoretical analysis of the

feature set provided by the controllers. Therefore, a comparative evaluation of these controllers
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can’t be made. The selection of an optimum controller considering its features presents several

challenges. If we base our selection solely on the feature table of the controller, this will lead to

cognitive overload. In this scenario, optimal decisions cannot be made owing to a limitation of

the human capacity for information processing, which is commonly known as the 7 ± 2 prob-

lems, or Miler’s law [29].

A comparative study of four SDN controllers based on a hybrid approach was presented in

[30]. The authors selected two controllers based on a heuristic decision from the controller fea-

ture table. They listed nine features supported by these controllers and selected two controllers

based on a review of the features table. Then, they evaluated the performance of these control-

lers using Cbench by running it in throughput and latency mode. Their study didn’t provide

the explicit ranking of these controllers as they have simply analyzed the feature table. There, a

precise selection is not possible with their approach. Secondly, they have not considered the

performance comparison in real-world Internet topologies. The study presented in [31] com-

pared six SDN controllers, OPENDAYLIGHT (ODL), NOX, BEACON, MAESTRO, RYU,

and LIBFLUIED RAW [32], to increase the number of threads and switches in both through-

put and latency modes. A similar performance comparison study examined four controllers:

RYU, Open Network Operating system (ONOS), ODL, and FLOODLIGHT. This study can be

found in [33], and the authors used Cbench to measure the throughput and latency of each.

In [34], a comparative study of five SDN controllers, RYU, TREMA [35], FLOODLIGHT,

ODL, and ONOS, was performed for aerial networks using qualitative and quantitative analy-

sis. First, a qualitative study of these controllers was made with respect to two features i.e. clus-

tering support and state handling mechanism. The state management information for five

controllers was tabulated for checking how each controller gather, store the network state

information and the status of this information in case a switch or the controller fails itself. i.e.

whether the controller will reload this information from the previously saved state, or it will

relearn the network status. Similarly, the information about the clustering mechanism for each

controller was tabulated to check if these controllers support clustering and how different con-

trollers share the information of the cluster they are managing. In their study, the top two con-

trollers were selected based on the two feature that fulfilled the requirements of the aerial

networks. A performance evaluation was conducted through an experimental scenario emu-

lated in Mininet. However, their controller selection process was based on a heuristic decision

and could lead to cognitive overload if the number of controllers and features scaled.

Multi-criteria decision-making (MCDM) is a mathematical decision-making technique

where selection among several alternatives is made based on a set of criteria [36]. It has been

widely used in various fields, such as in software development for selection of strategy [37], for

managing natural resource [38], for network selection in heterogeneous networks [39], and

several others. Different approaches are used for the selection process depends on a set of crite-

ria to get the desired objective, for example, AHP, ANP, and several others. The selection of

SDN controllers using an MCDM method such as AHP was proposed in [40]. The study con-

sidered ten controllers and ten features to select the controller based on their features. How-

ever, they did not consider any quantitative comparison of these controllers, and their paper

does not provide any details on the approach they used.

A hybrid approach for controller selection based on AHP was described in [41]. In that

study, the top three controllers were considered for performance test using Cbench; however,

they didn’t evaluate the performance in real-Internet topologies. The authors did not provide

the mathematical details of their methodology. In AHP, the feedback of the alternatives was

not considered. Therefore, this feedback property is ignored in AHP, and it only focuses on

the criteria for selection. Another drawback of AHP is that the criteria are treated indepen-

dently, so a precise selection cannot be made. In [42], the ANP has been used for modeling
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risk factors in megaprojects using risk index. Similarly, Shah Nazir et al [43] applied it for

selection of software component using the quality as a criteria. The ANP has been used for

wireless sensors used in the selection of an optimum cluster head [44], we deduce that ANP

approach can also be employed to analyze the systems with complex behavior and structure.

The complexity of the systems has increased the dependency among them; therefore, the study

of the interdependent systems is a burning matter in the network systems [45]. The ANP is a

long-established tool in the decision-making process depends on several criteria.

Motivations

The software-defined networking (SDN) is composed of data, control and management

planes. However, the control plane plays the main role because it manages the data plane

which is the actual network topology. Therefore, SDN controllers and their features are impor-

tant for the performance of SDN. Each controller has several features. In this section, ten fea-

tures are discussed which influence the performance of the SDN.

1. OpenFlow:—OpenFlow protocol (also known as the southbound API) manages the flow

request messages sent by the data plane to the control plane and vice versa. The data plane

is the actual network topology or the underlying network, and the control plane consists of

the SDN controller. In response to the flow requests (PACKET_IN messages), the flow

response (PACKET_OUT messages) are sent by the controller. Therefore, communication

between these two planes is managed by the OpenFlow [1]. The research work presented in

[46] has described that the request and response messages influence the delay of the con-

troller. Therefore, they have proposed an efficient clustering approach for minimizing the

overall end to end delay of the SDN by placing multiple controllers in the clusters with

many switches. However, the OpenFlow version each controller supports is different e.g.

The higher versions, i.e. v1.3 supports load balancing which helps in improving the perfor-

mance during the generation of high traffic load.

2. GUI:—The GUI helps in viewing statistics of the underlying topology, configuration of the

OpenFlow switch entries and applications management. The GUI is one of the key features

in the selection of the SDN controller while making the qualitative and quantitative analysis

of the controllers as illustrated in [30]. The SDN controllers have a command line interface

(CLI) and GUI support. The GUI of the controller helps in viewing statistics such as the

number of hosts and switches, OpenFlow entries, OpenFlow tables and the making of the

SDN topologies [47]. The statistics are viewed in a user-friendly format which is easy to

analyze. Similarly, flows can be pushed to the OpenFlow switches via this interface. How-

ever, the GUI feature influences the performance because GUI execution is slower than

CLI. In the SDN controller scenario, there are two types of GUI support in each controller.

One is Python-based and other is java supported web-based. The python coded controllers

have less support for multithreading and memory access management; therefore, their exe-

cution speed is slower than the controllers having Java-based support. Therefore, the con-

troller’s performance is influenced by the GUI support of the controller.

3. Northbound REST API:—The communication between the controller and the applications

in the management plane takes place through the REST API also known as the northbound

interface. Similarly, the operational statistics about the OpenFlow switches and the topology

are gathered via this API. The controller acts as a bridge between the data plane and man-

agement planes using the REST API. Therefore, this feature plays an important role while

the selection of the SDN controller because of its direct communication with the controller.

The fast response of the API will result in a reduction of delay and improvement of
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throughput. Therefore, REST API plays a key role in the SDN performance and it is consid-

ered by [40, 41] for the SDN controller selection.

4. Clustering:—The innate support for clustering helps in scalability, reliability and improving

the performance of the control plane. Controllers with support of clustering resulted in

improved performance with respect to delay [48]. Similarly, the delay reduction with

increasing the number of OpenFlow switches and during the high traffic loads was also

observed with clustering.

5. Quantum API:—The users take advantage of the cloud services by invoking it remotely via

the Internet. Therefore, competition has been found between the cloud service providers

(CSPs) and network service providers (NSPs). A new economic model has been proposed

in [49] which distinguishes the contest between the CSPs and NSPs. Similarly, the authors

in [50] proposed an approach for provisioning the end to end performance with a cloud

service composition model. The support of quantum API enables the SDN controller to

leverage cloud computing. The controllers having built-in support for this API can leverage

the cloud for high-performance computing and OpenStack networking using the Quantum

API. Thus, controllers having quantum support has capabilities for parallel processing and

fast memory access. As a result, the performance improves with an increase in the scalabil-

ity of the SDN, i.e., with an increase in the number of OpenFlow switches. This feature was

included in the research studies [40] for the SDN controller selection.

6. Synchronization:—This shows how efficiently the controller responds and stores the infor-

mation for the OpenFlow switches in the data plane. This influences the topology discovery

time which is an important metric in measuring the performance of the SDN [34]. The con-

trollers have less topology discovery time improves the performance of the SDN.

7. Productivity:—is related to the ease of applications development and is related to the pro-

gramming language in which the controller is coded. Although the application development

is easy with python coded controllers however the lack of platform support and multi-thread-

ing makes them slow. Therefore, productivity has an inverse relation with the performance of

the controller [31]. The python coded are more productive due to their ease of application

development however java supported being less productive have high performance. This is

due to the high-performance capability of java coded controllers such as multithreading,

cross-platform support, fast memory access and inter-process communication (IPC).

8. Partnership support:—Several multinational and national organizations support different

controllers. Therefore, IT organizations not only look for the technical considerations while

selecting a controller but also on some key aspects such as the financial resources and the

technical strengths associated with the development of the controller. An organization may

not want to affect their SDN based solutions from a vendor who is not able to adapt itself

according to the changing needs of the SDN market. Therefore, this feature has a vital role

in controller selection, and it is considered by the research studies [31] while selecting the

controller.

9. Platform support:—The platform support shows the compatibility of a controller to run

across different operating systems such as Windows, Linux or Mac. Running through dif-

ferent platforms makes the controller able for multithreading, fast memory access, and flex-

ible memory management which influence the performance of a controller. Running across

different platforms also makes the clustering more efficient, because controllers can make a

cluster through different platforms. Therefore, the delay reduces during the normal and

high traffic load and the QoS improves [48].
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10. Modularity:—The capability of making the main program into subroutines is known as

modularity. The modularity support makes a controller more viable when dealing with

large scale systems. The sub-modules can run in parallel resulting in faster execution and

less response time. Especially it will help in improving the performance when the scalabil-

ity increases. Therefore, this feature was considered in the literature [31] for the SDN con-

troller selection.

Proposed approach

The proposed approach for controller selection is based on the qualitative and quantitative

analysis of the SDN controllers. A bird’s-eye view of the proposed method is illustrated in Fig

1. First, ANP is applied for the qualitative feature-based comparison of the SDN controllers.

The ANP sorts the controllers with the provided feature set controllers by calculating weights

for each controller. Further, the quantitative analysis of the high-weight controller is per-

formed through several simulations in Mininet. The procedure to choose the optimum SDN

controller is described below:

1. The SDN controllers are listed along with their features.

2. Then, features are categorized according to their support level in the SDN controller. Fea-

ture categorization is discussed in Section 5.2.

3. ANP is to be applied to rank the controllers i.e. from high weight to low weight values.

4. Then, the performance of the high-weight controller obtained through ANP was will be

evaluated through several simulations.

5. Further, the performance comparison is to be done with the high-weight controller com-

puted with AHP based approach for SDN controller selection.

6. The QoS parameters of the proposed controller with ANP and AHP based SDN controllers

will be evaluated. Finally, the controller with optimum features and performance is selected.

The paper contributes to the controller selection problem while comparing SDN controllers

by utilizing the features of the SDN controller using ANP. Secondly, the performance compari-

son of the controller selected with ANP and AHP was done for real-world and Brite topologies.

The real-world and Brite generated topologies were converted to Mininet, and an experimental

scenario was designed for topology discovery and delay evaluation. Furthermore, a delay cal-

culation module was added for performance evaluation. Moreover, throughput and delay were

evaluated with traffic generation scenario. Finally, the CPU utilization was reported for the

controllers during the experiment of high traffic load evaluation.

Analytical network process

The ANP was proposed by saaty [51]. It can be applied to the quantitative and qualitative data

about a network. It can evaluate the feedback and dependency relationship between the criteria

and alternatives. The ANP process for SDN controller selection is described in this subsection.

The general procedure [52] for applying the ANP is given below.

1. The goal is set by formulating the problem, and then the criteria or sub-criteria needed to

achieve the goal are identified. The goal is to rank the controllers according to their opti-

mum features. Criteria are the feature list (F) of controller and alternatives are SDN control-

lers (C). The selection of an alternative depends upon the criteria or its features. Table 1 and
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Table 2 describes the parameters of criteria and alternatives. The alternatives are ranked

and assigned a weight based on their importance concerning the goal. The ANP model for

controller selection is shown in Fig 2.

2. A qualitative scale is created for the criteria and alternatives that show the relative impor-

tance of each, and a quantitative range is defined for the qualitative scale described by saaty

in [51], as shown in Table 3.

3. A pairwise comparison matrix is created where the rows i and columns j of the matrix have

a value corresponding to (i, j), which is derived from the scale table. This table shows the

Fig 1. The proposed approach for selection of an optimum SDN controller.

https://doi.org/10.1371/journal.pone.0217631.g001
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relative importance of the criterion over another. A value of (i, j) represents the relative

importance of the criteria in the ith row from the jth column. The index (j, i) shows the

importance of the criterion in the jth column from the criterion in the ith row. These values

show the relative importance of the criteria or alternative to the goal. A value of 1 represents

that both criteria are equally crucial whereas a value of 9 represents the extreme importance

of one criterion over another.

4. The eigenvector, also known as the priority vector, shows the ranking of criteria or sub-cri-

teria. It is computed by normalizing the columns of the comparison matrix and then taking

the row averages.

5. The next step after calculating the eigenvector is to calculate the two most important

parameters. These parameters are the consistency index (CI) and consistency ratio (CR),
proposed by satty in [53]. These parameters determine the reliability of the judgments, i.e.,

whether the results of the pairwise comparison matrix are consistent or not. Suppose we

state that API is more significant than clustering support and clustering support is more

critical than the GUI of a controller. Then, saying that GUI is more important than API

would lead to an inconsistent judgment. Thus, to avoid such inconsistencies while making

judgments, these two mentioned parameters are calculated for each pairwise comparison

matrix. A CR of 0.1 or less implies that judgments are consistent. Otherwise, the pairwise

comparisons are untrustworthy, and the process must be repeated.

6. The priority vectors obtained from the pairwise comparison matrix for both alternatives

and criteria form an unweighted super-matrix, which will be converted to a weighted

super-matrix by making the sum of each column equal to one.

7. The final output will be the limit super-matrix, that is to be obtained from the weighted

super-matrix by taking its power until the matrix converges. Then, each block of the limit

Table 1. Parameters for criteria.

Serial# Name Terminology Description

1 OpenFlow support F1 OpenFlow 1.0–1.5

2 Graphical user interface F2 Python based, Web based.

3 Northbound API support F3 REST API.

4 Clustering support F4 To avoid single point of failure (reliability)

5 Openstack networking F5 Enabling different network technologies via Quantum API.

6 Synchronization F6 State synchronization of the network.

7 Productivity F7 For developing software.

8 Partnership support F8 Cisco, IBM, Intel, Linux Foundation and Juniper.

9 Platform support F9 Windows, Linux, Mac.

10 Modularity support F10 The extent of dividing the code in submodules.

https://doi.org/10.1371/journal.pone.0217631.t001

Table 2. Parameters for alternatives.

Serial# Name Terminology

1 FLOODLIGHT C1
2 ODL C2
3 ONOS C3
4 POX C4
5 RYU C5
6 TREMA C6

https://doi.org/10.1371/journal.pone.0217631.t002
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matrix is normalized to obtain the final weightage or priorities of all nodes (criteria and

alternatives) under consideration. The high-weight value represents the controller with

optimum features considered during the selection process.

Problem formulation

The performance of SDN depends on the controller directly. Therefore, the selection of an

optimum SDN controller will ensure effective network utilization, thus improving the quality

of service (QoS). Each controller has several features such as OpenFlow, Platform support,

South bound, and North bound Interface. Similarly, each controller has different platform

support, such as POX supports Linux, Windows, and Mac, while TREMA only supports

Linux. Likewise, each controller has a different OpenFlow version support (e.g., 1.0, 1.1, 1.2,

etc.). The controller plays a prominent role in SDN; therefore, it should be selected carefully.

Fig 2. ANP Model for SDN controller selection.

https://doi.org/10.1371/journal.pone.0217631.g002

Table 3. Scale of importance.

Scale Description

1 Equally important

2 Equally to moderately more important

3 Moderately more important

4 Moderately to significantly more important

5 Significantly more important

6 Significantly to remarkably more important

7 Remarkably more important

8 Remarkably to excessively more important

9 Excessively more important

https://doi.org/10.1371/journal.pone.0217631.t003
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As each controller has several features; therefore, computing an optimum controller is con-

sidered as an MCDM problem. ANP is widely used in multi-criteria decision-making prob-

lems where the feedback of alternatives and dependency among criteria elements is

considered. Before deployment of controller, the ANP algorithm will select the optimum con-

troller among a set of controllers. Fig 3 shown the whole procedure for applying ANP in com-

puting an optimum SDN controller based on their features, which will be evaluated

experimentally in next section concerning the QoS metrics. Therefore, the controller which

has an optimum feature set and improved QoS will be selected. The procedure for ranking

these controllers according to their optimum feature set is as follows:

Application of ANP in SDN controller selection

The ANP MCDM problem is formulated by first setting the goal or objective, then by defining

the parameters for criteria or sub criteria, and finally the alternatives under evaluation are set,

as shown in Fig 2. In this study, our objective is to select the optimum SDN controller with

respect to the ten features as shown in Table 1 and Table 2. The criteria and alternatives are

represented by Eqs (1) and (2). The available features offered by the different SDN controllers

are denoted by F, and the alternatives from Eq (2) are denoted by C. A network model is made

representing the criteria and alternatives as well as the relationship among them. The network

model compares each alternative with respect to each criteria and vice versa.

F ¼ ðF1; F2; F3; . . . ; FNÞ ð1Þ

C ¼ ðC1;C2;C3; . . . ;CNÞ ð2Þ

The 10 essential features that should be considered in SDN controller selection as a criteria

Fig 3. Step by step procedure for applying ANP in SDN controller selection process.

https://doi.org/10.1371/journal.pone.0217631.g003
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were described in [54]. Therefore, we assume that all these features are required for the con-

troller selection process. However, as controllers are always evolving, we considered the latest

information about these features from the controller documentation and research in [40, 41].

Herein, these important features are utilized and considered in the optimum controller selec-

tion process using ANP. Therefore, the importance of a feature in every controller is identified

by categorizing these features.

Features supported by a controller are divided into two types: (1) Ordinal and (2) Regular

categorical. Ordinal features are those that have an inherent ordering while regular categorical

features don’t have an inherent ordering to them. Categorization of the feature set gives a clear

insight into the support level of that feature in each controller. For example, C4 and C6 support

only OpenFlow v1.0 therefore with respect to this feature (F1) they are kept in the low category

as shown in Table 4. C1 support is medium, C2 and C3 support v1.0,1.1,1.3, therefore, they are

kept in the high category, C5 supports higher versions of OpenFlow i.e. 1.5, therefore, it is

placed in very high category for this feature. F2 represents the GUI feature of a controller. C1
has support for java supported web-interface and it executes faster because of the basic graphi-

cal functions for application and data plane management. Therefore, it is placed in the ‘Very

High’ category concerning F2 because it leverages the Java multithreading. Similarly, C2 and C3
has support for Java-based interface and supports QoS parameters settings for the data plane

devices. They have more functions for applications management and topology configuration

which makes their GUI comparatively slow than C1. Therefore a ‘High’ category is assigned to

them. The C4 supports python-based interface, and its execution speed is faster than C5 and C6
because of its preliminary functions; therefore, it is placed in the ‘Medium’ category. C5 and C6
support only python-based interface; however, they run slowly due to more functions for han-

dling the data plane and management plane and lack of multithreading.

F3, F4, and F5 are the regular categorical features, i.e. a particular feature which can’t be fur-

ther divided into further levels. For example, a controller may or may not have the support for

REST API, open stack networking and clustering. Therefore, these features (F3, F4, and F5)
doesn’t have an inherent ordering. These features are represented with a ’Yes’ or ’No’ in

Table 4. Like C4, C5 and C6 don’t have built-in support for REST API; therefore a ‘No’ is placed

for them in Table 4 corresponding F3 field. Similarly, C1, C2, and C3 have built-in support for

the REST API; therefore a ’Yes’ is written in the F3 column. F4 shows the Quantum API fea-

ture. C1, C2, C3, C5, and C6 have an innate Quantum API support, therefore ’Yes’ is shown in

the column F4 for them. C4 doesn’t have support for the Quantum API; therefore ‘No’ is writ-

ten in F4 corresponding to this controller. F5 denotes the clustering feature. The controllers C1,
C4, C5, and C6, does not have built-in support for clustering; therefore a ‘No’ is placed in

Table 4 for them in F5 field. In contrast, C2 and C3 support clustering; therefore, they are repre-

sented with ’Yes’.

Table 4. Features for SDN controller selection.

Alternatives Criteria/Features

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
C1 Medium Very High Yes Yes No Medium Medium Low Low Medium

C2 High High Yes Yes Yes Medium Medium Very High High High

C3 High High Yes Yes Yes Low Medium High High High

C4 Low Medium No No No Low High Low High Low

C5 Very High Low No Yes No High High Medium Low Medium

C6 Low Low No Yes No Low High Low Low Medium

https://doi.org/10.1371/journal.pone.0217631.t004
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F6 represents the synchronization feature which influences the topology discovery and

response from the data plane. C1, C5, and C6 have a medium level, i.e. their interaction is rela-

tively slower. The C2 and C3 have high level because of their fast discovery of the underlying

topology while C4 has a low level because of the slowest interaction between the data and con-

trol plane. F7 denotes the productivity level of a controller. Productivity is related to the ease of

applications development and is associated with the programming language in which the con-

troller is coded. Although the application development is easy with python coded controllers;

however, the lack of platform support, memory management and multi-threading makes them

slow. C1, C2, and C3 have a medium productivity level while C4, C5, and C6 have a high level of

productivity.

F8 denotes the support from different vendors C2 has support from Cisco, NEC, IBM, and

Linux foundation whose membership spans to 40 companies; therefore, it is placed in the

‘Very high’ category. C3 is supported by Sk telecom (South Korean telecommunication), Cisco

and NEC; therefore, it is placed in the ‘high’ category. C1, C4, and C6 are supported by Big

Switch Networks, Nicira, and NEC, i.e., therefore, they are placed in the ‘Low’ category with

respect to their support level. Although it is not directly related to performance, However,

good support from the vendor eventually results in improving the performance as discussed in

section 3. F9 represents platform support. C2, C3, and C4 have support in three platforms, i.e.

Linux, Mac, and windows, therefore are placed in the high category. However, C1, C5, and C6
are supported in only one platform i.e. Linux, therefore a low category is assigned to them. As

discussed in section 3 the cross-platform support enables multithreading and clustering sup-

port resulting in improved QoS. F10 denotes modularity support. C1, C5, and C6 have a

medium level for modularity while C2 and C3 have a high level because of C2 and C3 controllers

can make a call to the submodules from the main function resulting in parallel processing and

consequently increase the performance. Feature categorization is done as a preprocessing step

before making the comparison matrix.

Pairwise comparison matrix for criteria and alternatives. The pairwise comparison

matrix is made according to the 9-point scale proposed by saaty [51]. It shows the relative

importance of different components (criteria or alternatives) regarding an element. The same

matrix is also employed to extrapolate the effect of the components on the objective using the

9-point scale as shown in Table 3. The values in the matrix are assigned to the criteria as well

as alternatives represents personal judgments. For example, how much C1 is important from

C2, C3, C4, and C5 with respect to F1 component is assigned a value from the scale table. The

value of a(i,j) represents the relative significance of a component corresponding to the ith row

and row jth column. The value of a(i,j) = 1 in the pairwise comparison matrix shows the equal

importance of the component corresponding to ith row and jth column. The diagonal compo-

nents correspond to the comparison of the same components; therefore, their values are 1. The

values below the diagonal are the reciprocal of the values above the diagonal. The value of,

a(5,1) = 6 in the matrix (4) shows that component in the 5th row is significant to remarkably

more important than the component in the 1st column. The value of að1;5Þ ¼ 1

að5;1Þ
¼ 1

6
is the

reciprocal of a(5,1), denotes that component in the 1st row is significant to remarkably less

important than component in the 5th column. The values are incorporated prudently for all

the components in the pairwise comparison matrix.

Pairwise comparison of alternatives with respect to criteria components. Alternatives

are pairwise compared for each criteria component. The general form of the pairwise compari-

son matrix is denoted in the matrix (3). The rows and columns of the matrix are represented

asM1 toMn and N1 to Nn. First, the alternatives are pairwise compared with respect to F1 crite-

rion. The values have been incorporated in (3) based using the 9-point scale defined in
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Table 3. The resultant values are shown in a matrix (4). The nonreciprocal and reciprocal val-

ues indicate the relative importance of the row and column components respectively. In matrix

(4) the comparison of C1 is made with C2, C3, C4, C5, and C6 considering F1 criterion. C1 is of

the same importance with itself therefore a(1,1) = 1. Then C2 and C3 are moderately more

important than C1. i.e. að1;2Þ ¼ að1;3Þ ¼ 1

3
. C1 moderately more important than C4 and C6, e.g.

a(1,6) = 3 shows that alternative in this row (C1) is moderately more important than the alterna-

tive in the corresponding column (C6). að1;5Þ ¼ 1

6
shows that C5 is significantly to remarkably

more important than C1. Similarly, the values are filled for C2, C3, C4, C5, and C6.

N1 N2 N3 � � � Nn

M1 1 að1;2Þ að1;3Þ � � � að1;nÞ

M2

1

að1;2Þ
1 að2;3Þ � � � að2;nÞ

M3

1

að1;3Þ

1

að2;3Þ
1 � � � að3;nÞ

..

. ..
. ..

. ..
. . .

. ..
.

Mn
1

að1;nÞ

1

að2;nÞ

1

að3;nÞ
� � � 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð3Þ

matrix (4) is the resultant of all comparisons of the alternatives for F1 criterion. Each column

in the matrix (4) is summed up and each value is divided by the sum of the total values of the

column according to the matrix (5). The result is a normalized matrix illustrated in the matrix

(6).

C1 C2 C3 C4 C5 C6

C1 1
1

3

1

3
3

1

6
3

C2 3 1 1 6
1

3
6

C3 3 1 1 6
1

3
6

C4

1

3

1

6

1

6
1

1

9
1

C5 6 3 3 9 1 9

C6

1

3

1

6

1

6
1

1

9
1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð4Þ

að1;1Þ
Pn

i¼1
aði;1Þ

� � �
að1;nÞ

Pn
i¼1
aði;nÞ

..

. . .
. ..

.

aðn;1Þ
Pn

i¼1
aði;1Þ

� � �
aðn;nÞ

Pn
i¼1
aði;nÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð5Þ
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C1 C2 C3 C4 C5 C6

C1

1

13:67

0:33

5:67

0:33

5:67

3

26

0:167

2:06

3

26

C2

3

13:67

1:00

5:67

1:00

5:67

6

26

0:33

2:06

6

26

C3

3

13:67

1:00

5:67

1:00

5:67

6

26

0:33

2:06

6

26

C4

0:33

13:67

0:167

5:76

0:167

5:76

1

26

0:11

2:06

1

26

C5

6:00

13:67

3

5:76

3

5:76

9

26

1

2:06

9

26

C6

0:33

13:67

0:167

5:76

0:167

5:76

1

26

0:11

2:06

1

26

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð6Þ

The Eigenvector X is obtained from this normalized matrix (6) according to Eq (7).

Xi ¼
1

n
Pn

j¼1
aði;jÞ; where i ¼ 1; 2; 3; . . . ; n ð7Þ

C1 C2 C3 C4 C5 C6 X1

C1 0:073 0:059 0:059 0:115 0:081 0:115 0:084

C2 0:220 0:176 0:176 0:231 0:162 0:231 0:199

C3 0:220 0:176 0:176 0:231 0:162 0:231 0:199

C4 0:024 0:029 0:029 0:038 0:054 0:038 0:036

C5 0:439 0:529 0:529 0:346 0:486 0:346 0:446

C6 0:024 0:029 0:029 0:038 0:054 0:038 0:036

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð8Þ

The result from Eq (7) which is considered as the eigenvector X1 is represented in matrix (8).

To verify whether the judgments made while making the pairwise matrix are consistent, the

next step is to find the CI and CR values. However, before making the consistency analysis, the

consistency measure (CM) vector is to be calculated.

Consistency Measure: The CM vector is a prerequisite for calculation of CI and CR. The

consistency measure is calculated according to Eq (9). TheMj denotes the row of the compari-

son matrix (4). The X and xi represents the Eigenvector and the corresponding element of the

Eigenvector as shown in the matrix (8). TheMj and X are multiplied and then divided by the

component in the Eigenvector corresponding toMj. The procedure to find the CM is shown in

Fig 4. The CM vector is averaged for computing λmax.

Yj ¼
Mj � X
xi

; where j ¼ 1; 2; 3; . . . ; n ð9Þ

lmax ¼
1

n
Pn

j¼1
Yj ð10Þ

Consistency Index: The CI denotes the deviation or the inconsistency [51] of the pairwise

comparison matrix for an element. The CI of the pairwise comparison matrix for F1 criterion

is calculated using Eq (11) by putting the value of λmax. The value of λmax = 6.07 and n = 6 is
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put in Eq (11).

CI ¼
ðlmax � nÞ
ðn � 1Þ

ð11Þ

In Eq (11), n represents the criterion number for controller selection in the comparison

matrix. Herein, six alternatives are considered; therefore, n is equal to 6. The resultant value

for CI = 0.01 according to Eq (11).

Consistency Ratio: The reliability of the pairwise comparison matrix is verified by calculat-

ing the CR value. The CR is calculated according to Eq (12). In Eq (12) the ratio index (RI)
denotes the index ratio. The value of RI = 1.24 is derived from Table 5, based on the order of

the matrix. If the rank of the matrix is three (the actual number of alternatives being com-

pared), then a value corresponding to three is selected for RI. In this case, the number of crite-

ria under consideration is 6. Therefore, a value corresponding to 6 will be inserted from

Table 5. The CR is derived by putting CI value from Eq (11) in Eq (12).

CR ¼
CI
RI

ð12Þ

The CR value is 0.09. A CR of 0.1 or less is accepted for the inconsistent judgments of the com-

parison matrix; otherwise, the inconsistency is considered to be high and pairwise judgments

must be made again to satisfy the condition, i.e. CR� 0.1. The CR for matrix (13) is 0.09

which is less than 0.1; therefore, the judgments are pairwise consistent in the comparison

matrix. The alternatives are pairwise compared for remaining criteria, i.e. F2, F3, F4, F5, F6, F7,

Fig 4. Calculation of consistency measure.

https://doi.org/10.1371/journal.pone.0217631.g004

Table 5. Ratio index for different number of criteria.

No. of Criteria 1 2 3 4 5 6 7 8 9 10

Ratio Index 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

https://doi.org/10.1371/journal.pone.0217631.t005
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F8, F9 and F10 as shown in matrix (14)-(22). The CI and CR values are computed using the

same process for each of these matrices. The CR value is shown in each matrix.

C1 C2 C3 C4 C5 C6 X1

C1 0:073 0:059 0:059 0:115 0:081 0:115 0:084

C2 0:220 0:176 0:176 0:231 0:162 0:231 0:199

C3 0:220 0:176 0:176 0:231 0:162 0:231 0:199

C4 0:024 0:029 0:029 0:038 0:054 0:038 0:036

C5 0:439 0:529 0:529 0:346 0:486 0:346 0:446

C6 0:024 0:029 0:029 0:038 0:054 0:038 0:036

CR 0:09

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð13Þ

C1 C2 C3 C4 C5 C6 X2

C1 1 3 3 6 7 9 0:421

C2

1

3
1 1 4 5 9 0:207

C3

1

3
1 1 4 5 9 0:207

C4

1

6

1

4

1

4
1 3 9 0:091

C5

1

7

1

5

1

5

1

3
1 5 0:049

C6

1

9

1

9

1

9

1

9

1

5
1 0:020

CR 0:09

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð14Þ

C1 C2 C3 C4 C5 C6 X3

C1 1 1 1 9 9 9 0:300

C2 1 1 1 9 9 9 0:300

C3 1 1 1 9 9 9 0:300

C4

1

9

1

9

1

9
1 1 1 0:333

C5

1

9

1

9

1

9
1 1 1 0:333

C6

1

9

1

9

1

9
1 1 1 0:333

CR 0:00

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð15Þ

C1 C2 C3 C4 C5 C6 X4

C1 1 1 1 9 1 1 0:195

C2 1 1 1 9 1 1 0:195

C3 1 1 1 9 1 1 0:195

C4

1

9

1

9

1

9
1

1

9

1

9
0:021

C5 1 1 1 9 1 1 0:195

C6 1 1 1 9 1 1 0:195

CR 0:00

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð16Þ
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C1 C2 C3 C4 C5 C6 X5

C1 1 1
1

3
6

1

3
3 0:139

C2 1 1 3 6
1

3
3 0:190

C3 3
1

3
1 3

1

6
1 0:128

C4

1

6

1

6

1

3
1

1

9

1

3
0:030

C5 3 3 6 9 1 6 0:439

C6

1

3

1

3
1 3

1

6
1 0:071

CR 0:09

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð17Þ

C1 C2 C3 C4 C5 C6 X6

C1 1
1

6

1

6
1 1 1 0:045

C2 6 1 1 9 9 9 0:409

C3 6 6 1 9 9 9 0:409

C4 1
1

9

1

9
1 1 1 0:045

C5 1
1

9

1

9
1 1 1 0:045

C6 1
1

9

1

9
1 1 1 0:045

CR 0:00

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð18Þ

C1 C2 C3 C4 C5 C6 X7

C1 1 1 1
1

3

1

3

1

3
0:083

C2 1 1 1
1

3

1

3

1

3
0:083

C3 1 1 1
1

3

1

3

1

3
0:083

C4 3 3 3 1 1 1 0:250

C5 3 3 3 1 1 1 0:250

C6 3 3 3 1 1 1 0:250

CR 0:00

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð19Þ
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C1 C2 C3 C4 C5 C6 X8

C1 1
1

9

1

6
1

1

3
1 0:043

C2 9 1 3 9 6 9 0:507

C3 6
1

3
1 6 3 6 0:251

C4 1
1

9

1

6
1

1

3
1 0:043

C5 3
1

6

1

3
3 1 3 0:109

C6 1
1

9

1

6
1

1

3
1 0:043

CR 0:02

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð20Þ

C1 C2 C3 C4 C5 C6 X9

C1 1
1

6

1

6

1

6
1 1 0:047

C2 6 1 1 1 6 6 0:285

C3 6 1 1 1 6 6 0:285

C4 6 1 1 1 6 6 0:285

C5 1
1

6

1

6

1

6
1 1 0:047

C6 1
1

6

1

6

1

6
1 1 0:047

CR 0:00

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð21Þ

C1 C2 C3 C4 C5 C6 X10

C1 1
1

3

1

3
3 1 1 0:111

C2 3 1 1 6 3 3 0:311

C3 3 1 1 6 3 3 0:311

C4

1

3

1

6

1

6
1

1

3

1

3
0:042

C5 1
1

3

1

3
3 1 1 0:111

C6 1
1

3

1

3
3 1 1 0:111

CR 0:004

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð22Þ

The Eigenvectors corresponding to F1, F2, F3, F4, F5, F6, F7, F8, F9 and F10 are X1, X2, X3, X4,
X5, X6, X7, X8, X9, and X10, respectively as shown in each matrix along with the CR values. X1
represents the Eigenvector corresponding to F1 criterion. Similarly, X2 represents the Eigen-

vector for the F2 criterion, X3 for F3 and so on. The CR value for calculating each eigen vector

was verified to be less than 0.1.

Pairwise comparison of criteria with respect to alternatives. The ten features F1, F2,
F3, . . ., F10 of the criteria are pairwise compared for all alternatives C1, C2, C3, C4, C5, and C6.
The corresponding Eigenvectors for these alternatives are X11, X12, X13, X14, X15 and X16 as
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shown in matrices (23)-(28). The Eigenvectors for alternatives were calculated using similar

calculations as we have done for criteria elements. The CM, CI, λmax and the CR values for

each matrix were calculated. The CR value for each eigenvector was checked and verified to be

less than 0.1 for maintaining consistency among judgments. The result of comparisons for C1
and C2 alternatives with respect to each criterion are shown in matrix (23) and (24) respec-

tively. The CR values satisfies the condition for the inconsistency in judgments, i.e., 0.09 and

0.04 both are less than 0.1; therefore, the judgments are pairwise consistent.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 X11

F1 1
1

5
1 1 9 1 1 5 5 1 0:104

F2 5 1 1 1 9 5 5 7 7 5 0:290

F3 1 1 1 1 9 1 1 1 1 1 0:097

F4 1 1 1 1 9 1 1 1 1 1 0:097

F5

1

9

1

9

1

9

1

9
1

1

9

1

9

1

9

1

9

1

9
0:012

F6 1
1

5
1 1 9 1 1 5 5 1 0:104

F7 1
1

5
1 1 9 1 1 5 5 1 0:104

F8

1

5

1

7
1 1 9

1

5

1

5
1 1

1

5
0:041

F9

1

5

1

7
1 1 9

1

5

1

5
1 1

1

5
0:041

F10 1
1

5
1 1 9 1 1 5 5 1 0:104

CR 0:09

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð23Þ

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 X12

F1 1 1 1 1 1 3 3
1

3
1 1 0:101

F2 1 1 1 1 1 3 3
1

3
1 1 0:101

F3 1 1 1 1 1 1 1 1 1 1 0:094

F4 1 1 1 1 1 1 1 1 1 1 0:094

F5 1 1 1 1 1 1 1 1 1 1 0:094

F6

1

3

1

3
1 1 1 1 1

1

4

1

3

1

3
0:054

F7

1

3

1

3
1 1 1 1 1

1

4

1

3

1

3
0:054

F8 3 3 1 1 1 4 4 1 3 3 0:201

F9 1 1 1 1 1 3 3
1

3
1 1 0:101

F10 1 1 1 1 1 3 3
1

3
1 1 0:101

CR 0:04

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð24Þ
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The pairwise consistency of the judgments with respect to each C3 and C4 alternatives were

verified from the corresponding CR values. For each matrix the CR values fulfill the condition

for pairwise consistency. i.e. 0.04�0.1and 0.07�0.1 as shown in matrix (25) and (26).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 X13

F1 1 1 1 1 1 5 3 1 1 1 0:122

F2 1 1 1 1 1 5 3 1 1 1 0:122

F3 1 1 1 1 1 1 1 1 1 1 0:093

F4 1 1 1 1 1 1 1 1 1 1 0:093

F5 1 1 1 1 1 1 1 1 1 1 0:093

F6

1

5

1

5
1 1 1 1

1

3

1

5

1

5

1

5
0:043

F7

1

3

1

3
1 1 1 3 1

1

3

1

3

1

3
0:063

F8 1 1 1 1 1 5 3 1 1 1 0:122

F9 1 1 1 1 1 5 3 1 1 1 0:122

F10 1 1 1 1 1 3 3 1 1 1 0:122

CR 0:04

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð25Þ

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 X14

F1 1
1

3
9 9 9 9

1

5
1

1

5
1 0:088

F2 3 1 9 9 9 9
1

3
3

1

3
3 0:152

F3

1

9

1

9
1 1 1 1

1

9

1

9

1

9

1

9
0:015

F4

1

9

1

9
1 1 1 1

1

9

1

9

1

9

1

9
0:015

F5

1

9

1

9
1 1 1 1

1

9

1

9

1

9

1

9
0:015

F6

1

9

1

9
1 1 1 1

1

9

1

9

1

9

1

9
0:015

F7 5 3 9 9 9 9 1 5 1 5 0:261

F8 1
1

3
9 9 9 9

1

5
1

1

5
1 0:088

F9 5 3 9 9 9 9 1 5 1 5 0:261

F10 1
1

3
9 9 9 9

1

5
1

1

5
1 0:088

CR 0:07

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð26Þ
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 X15

F1 1 7 9 1 9 3 3 4 7 4 0:268

F2

1

7
1 9 1 9

1

5

1

5

1

3
1

1

3
0:052

F3

1

9

1

9
1

1

9
1

1

9

1

9

1

9

1

9

1

9
0:011

F4 1 1 9 1 9 1 1 1 1 1 0:106

F5

1

9

1

9
1

1

9
1

1

9

1

9

1

9

1

9

1

9
0:011

F6

1

3
5 9 1 9 1 1 3 5 3 0:159

F7

1

3
5 9 1 9 1 1 3 3 3 0:159

F8

1

4
3 9 1 9

1

3

1

3
1 3 1 0:088

F9

1

7
1 9 1 9

1

5

1

5

1

3
1

1

3
0:052

F10

1

4
3 9 1 9

1

3

1

3
1 3 1 0:088

CR 0:08

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð27Þ

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 X16

F1 1 9 9 1 9 1
1

5
1 1

1

3
0:090

F2

1

9
1 1

1

9
1

1

9

1

9

1

9

1

9

1

9
0:013

F3

1

9
1 1

1

9
1

1

9

1

9

1

9

1

9

1

9
0:013

F4 1 9 9 1 9 1 1 1 1 1 0:121

F5

1

9
1 1

1

9
1

1

9

1

9

1

9

1

9

1

9
0:013

F6 1 9 9 1 9 1
1

5
1 1

1

3
0:090

F7 7 9 9 1 9 5 1 5 5 3 0:294

F8 1 9 9 1 9 1
1

5
1 1

1

3
0:126

F9 1 9 9 1 9 1
1

5
1 1

1

3
0:090

F10 3 9 9 1 9 3
1

3
3 3 1 0:145

CR 0:07

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð28Þ

The comparison matrices and the CR values for the last two alternatives, i.e. C5 and C6 are

shown in matrix (27) and (28). The next step in the ANP model is the calculation of

unweighted and weighted super-matrix.

Optimum controller selection for software-defined networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0217631 May 31, 2019 22 / 37

https://doi.org/10.1371/journal.pone.0217631


Fig 5. Calculation and representation of the eigenvectors in the weighted super-matrix.

https://doi.org/10.1371/journal.pone.0217631.g005

Fig 6. Limit super-matrix.

https://doi.org/10.1371/journal.pone.0217631.g006
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Calculation of weighted super-matrix. The Eigenvectors (which show the weight of each

criterion concerning each alternative and vice versa) were calculated as shown in matrices

(13)-(28) are combined and represented in an unweighted super-matrix. Then, the unweighted

super-matrix is revised to become column stochastic such that the sum of each column is

equal to one. This action turns the matrix into a weighted super-matrix. The weighted super-

matrix showing the comparison of the alternatives for criteria and vice versa is shown in Fig 5.

The unweighted super-matrix is the same as the weighted super-matrix; However, the only dif-

ference between them is that the weighted super-matrix is column stochastic. Therefore, only

the weighted super-matrix is shown in Fig 5. X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 are the

Eigenvectors corresponding to F1, F2, F3, F4, F5, F6 F7, F8, F9, F10 represent the priority values

of the criteria (features) for each alternative. Similarly, X11, X12, X13, X14, X15, X16 are the Eigen-

vectors corresponding to C1, C2, C3, C4, C5, and C6 represent the priority values of the alterna-

tives (controllers) concerning each feature. To obtain the final stable weights of the alternatives

the next step in the ANP model is the calculation of limit super-matrix.

Fig 7. Alternatives weights from the limit super-matrix.

https://doi.org/10.1371/journal.pone.0217631.g007
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Calculation of limit super-matrix. The weighted super-matrix was processed by raising

it to a larger power until it was converged to a matrix with stable values. The stable matrix is

called a limit super-matrix. The limit matrix shows the weights of the alternatives and the crite-

ria, i.e., the final prioritized values. The limit matrix is the resultant matrix that contains the

final weights measured against each element in the criteria and alternative clusters. It was

obtained from the weighted super-matrix where the values were raised to the power of 2k to

obtain same value for each row, where k represents any random number. The limit super-

matrix summarizes the pairwise comparisons of all matrices. It also shows the indirect rela-

tionship between components. Fig 6 represents the limit super-matrix, where higher value rep-

resents the standing alternative. Final stable weights of all alternatives from Fig 6 are shown in

Fig 7. It illustrates that C2 have the highest weights; therefore, this is the most suitable control-

ler. The next suitable controllers are C3, C5, C1, C4, and C6 according to their final weights cal-

culated from the limit super-matrix. Fig 7 shows the final alternatives weights and the stability

of the results was verified through the limit matrix. According to the results, C2 have high-

weight value and therefore the SDN controller corresponding to it is the proposed controller

Fig 8. Experimental framework.

https://doi.org/10.1371/journal.pone.0217631.g008

Table 6. Real-world and Brite topologies.

Topology Nodes Edges

Abilene 11 14

ER_Net 37 57

US_Net 24 42

OS3E 34 41

B_1 100 200

B_2 200 400

https://doi.org/10.1371/journal.pone.0217631.t006
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with ANP model. Further, the performance of the proposed controller was evaluated with sim-

ulations and compared with the controller proposed with AHP model. In the next section the

results of the simulations for both controllers are discussed.

Experimental setup design

Fig 8 shows the experimental framework used for the performance evaluation. The perfor-

mance analysis was conducted for C2 controller computed using the proposed approach, i.e.

ANP. A performance comparison was made with the controller (RYU) calculated through

AHP. First, the network topologies considered for experiments were converted to Mininet

environment. The source and destination pairs of routers were selected in each topology and

shortest path discovery time was calculated. i.e. the time a controller took for discovering the

shortest path. After this, two hosts were attached with source and destination. Furthermore,

the delay was computed for the request and response time taken by a controller for that path

in the normal and a traffic generation scenario. Likewise, the throughput and CPU utilization

were recorded for each controller. The experiments were performed for both controllers.

Experimental scenario design and performance evaluation are discussed below;

Network topologies

The standard network topologies, i.e. Abilene, European reference network (ER_Net) [55],

USA backbone IP network (US_Net) [56] and open Science, scholarship and services exchange

(OS3E) [57], were considered for analysis. The topologies were represented as graph G = (V,

E), where V represents the vertices and E represents the edges of the topology. The information

provided in graphical form was used to build the topologies. Besides this, two large scale topol-

ogies named as B_1 and B_2 were created with Brite topology generator. A well-known Wax-

man [58] model was used for connecting the routers. The routers distribution in the plane is

Fig 9. Path calculation example between source and destination OpenFlow switches using Abilene topology.

https://doi.org/10.1371/journal.pone.0217631.g009
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based on Eq (29);

Pðe; vÞ ¼ bexp
� dðe;vÞ
Ma ð29Þ

In Eq (29) α> 0 and β� 1. Herein, the d shows the distance between e and v. TheM shows

maximum the distance of any two given routers between them. The links and edges are related

to α and β. The link number is directly proportional with α and distance between edges

increases when the β is incremented. The output file containing information about the topol-

ogy generation model, nodes and edges number was parsed with Fast Network Simulation

Setup (FNSS) [59]. FNSS core python library and adapters were used to export the Brite gener-

ated output file to Mininet. Table 6 shows the topologies evaluated for performance analysis.

Mininet

Mininet Python API was used for emulating the network topologies on the two controllers

computed with proposed and AHP approach. This network emulator has been used widely for

Fig 10. Delay in path discovery process.

https://doi.org/10.1371/journal.pone.0217631.g010
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prototyping SDN-based experiments. The Mininet latest version 2.3.0d1 and an OpenvSwitch

(OVS) version of 2.5.4 was installed in Ubuntu 16.04 LTS. Further, the Xming server was

started to generate and visualize traffic between the source and destination hosts.

Experiment example

A simple example herein explains how the experiment was performed for a real-world topol-

ogy Abilene as shown in Fig 9. First, the topology was converted and emulated in Mininet

using the topology conversion module. Then source Ss (Seattle) and Ds destination (New

York) are chosen and the shortest path between them is computed using the Dijkstra

Fig 11. Delay measurement process.

https://doi.org/10.1371/journal.pone.0217631.g011
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Algorithm [60]. The algorithm returns the following route.

SeattleðS1Þ!DenverðS2Þ!KansasðS6Þ!IndianapolisðS8Þ!ChicagoðS9Þ!New YorkðS10Þ

In case multiple routes were returned by the algorithm, then one of them was chosen ran-

domly. After that those hosts (H1 and H2) were attached with source and destination Open-

Flow switches (Seattle and New York City). Eqs (30) and (31) represent the shortest path and

all possible set of paths returned by Dijkstra algorithm between source Ss and destination Ds.
For network topology with a graph G = (V,E), where V and E denote the vertices and edges. In

Eq (31), The P represents shortest route between Ss and Ds, where P = D(PSs,PDs) denotes hop

count distance from Ss to Ds.

PðSs;DsÞ ¼ shortest � pathðSs;DsÞ ð30Þ

Pset ¼ fPj8Ss;Ds 2 V : P ¼ DðPSs; PDsÞg ð31Þ

Performance evaluation

Topology discovery

The discovery time is the time taken by a controller to discover the shortest route between

source and destination in each topology. Therefore, it is the time taken by the controller before

pushing flow entries into the OpenFlow switches. The discovery time for the two controllers

Fig 12. Request and response time measurement for (A) Abilene topology (B) US_Net topology (C) ER_Net topology (D) OS3E topology (E) B_1 topology (F)

B_2 topology.

https://doi.org/10.1371/journal.pone.0217631.g012
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have been computed for the six topologies as shown in Fig 10. The results indicate that the pro-

posed controller has a less topology discovery time than the controller computed with the AHP

approach. The topologies generated with Brite have a more substantial topology discovery than

real-world Internet topologies. In the small topologies with lesser number of nodes such as Abi-

lene, US_Net, OS3E, and ER_Net the shortest path length is 7% of the total nodes. However, it

is up to 12% in Brite generated topologies (B_1 and B_2) and therefore the discovery time for

these topologies is large. The proposed controller has fast state synchronization capability, i.e.

the way it stores and handles the information of the underlying topology. The percentage

decrease in topology discovery time with proposed controller is 28.57% in Abilene, 18.91% in

US_Net, 17.07% in OS3E, 16.94% in ER_Net, 12.5% in B_1 and 7.53% in B_2 topology.

Delay measurement

The delay was measured for each topology by selecting the source and destination OpenFlow

switches. The shortest path between source and destination was calculated. Flow entries were

pushed in the route via REST API after the hosts were attached with source and destination

OpenFlow switches.

The delay for an IP packet was measured by statically setting the address resolution protocol

(ARP) cache, therefore, the ARP requests and responses were not sent in the network topology.

An IP packet was then sent from the source to destination host and the delay was recorded.

The request and response time of each packet was measured with tcpdump. The procedure is

shown in Fig 11. The Dijkstra’s algorithm [60], has a complexity of O(|V|+|E| log |V|). The

graph size (V × E) and time complexity for the Dijkstra’s algorithm are directly proportional.

Fig 13. Traffic generation methodology between source and destination hosts.

https://doi.org/10.1371/journal.pone.0217631.g013
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Therefore, the number of search space increases as the distance between the Ss and Ds increase

[61]. The delay calculated for each topology is shown in Fig 12A–12F. The topologies gener-

ated with Brite has more delay due to the complexity of the structure and increase in distance

between Ss and Ds. It is evident from Fig 12E and 12F where the request and response time gap

is larger than the other topologies. The average number of nodes between Ss and Ds increases

from 7% in the real-world Internet topologies to 12% in the Brite topologies. Therefore, the

number of search space increase for Dijkstra Algorithm resulting in increased delay. The delay

for the proposed controller is less than the controller selected via AHP. The percentage

decrease is 44.18%, 41.37%, 38%, 30%, 26.66% and 16.66% for B_2, B_1, OS3E, ER_Net, Abi-

lene and US_Net topologies respectively. It is due to the less time of the flow rules insertion

during the path setup via the fast-responsive REST API of the proposed controller. Conse-

quently, the delay of the proposed controller is less than the AHP controller.

Delay measurement with traffic load

The distributed Internet traffic generator (D-ITG) [62] has been used for traffic generation

between the source and destination nodes in each topology. The procedure for generating traf-

fic between source and destination hosts is described in Fig 13. A listening socket is opened for

Fig 14. Delay calculated by putting the controllers to traffic load.

https://doi.org/10.1371/journal.pone.0217631.g014
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transmission control protocol (TCP) traffic coming from the other nodes through ITGRecv on

the destination host (H2). On the source host (H1), ITGSend is used to send TCP traffic having

a payload of 10000 bytes for 100 seconds (sec) constantly with the rate of 100000 packets/sec,

to the destination IP address. The experiment performed for each topology was repeated ten

times, and the average results for delay are shown in Fig 14.

The results indicate that delay calculated with high traffic generation between source and

destination hosts for the proposed controller is lesser than AHP controller. It is due to the delay

reduction in topology discovery and flow insertion for the optimum controller. The results for

the large-scale B_1 and B_2 topologies have a long path discovery, and path setup delays due to

their complex structure and increased hop count between source and destination hosts. This

results in the delay increase for these topologies as compared to real-world internet topologies.

Throughput

The throughput was computed using Cbench by sending PACKET_IN messages to the con-

troller and calculating the number of PACKET_OUT (responses/second). Herein, the number

Fig 15. Throughput calculated with respect to increasing the number of switches.

https://doi.org/10.1371/journal.pone.0217631.g015
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of MACs emulated per switch were kept in 2000. The number of switches was varied up to

200, and each test was performed ten times. The average results show that the throughput of

the proposed controller does not degrade and has a quick start as compared to the controller

proposed with AHP. The result for the performance is shown in Fig 15.

CPU utilization

The CPU utilization was measured with sysbench [63] tool while testing both controllers, i.e.

selected via AHP and the proposed approach during the traffic generation. Fig 16 shows the

results for CPU utilization at 20 seconds intervals. The graph shows that during the peak usage

the utilization does not surpass from 30% and 45% for a controller with AHP and the proposed

approach. During the normal condition, this utilization does not exceed 19% for the controller

proposed with AHP and 26% for the controller with the proposed method.

Fig 16. CPU utilization (percentage).

https://doi.org/10.1371/journal.pone.0217631.g016
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Conclusion and future work

The objective of this study was to select the optimum SDN controller regarding its features

and the performance analysis of the controller in real-world and Brite network topologies.

Because the controller selection process was based on multiple features, which include plat-

form support, southbound interface, northbound interface, modularity, and productivity, it

was considered to be an MCDM problem. Therefore, the ANP approach was used to solve this

problem. The objectives were identified first, and criteria parameters were established based

on which the proposed controller was computed using ANP model. Next, a pairwise compari-

son matrix was created to compare every element in the criterion cluster with every alternative

in the alternative cluster, and vice versa. The final resultant matrix, known as a limit matrix,

prioritizes the alternatives. Thus, controller with high-priority value was proposed for further

quantitative analysis. The results from the limit super-matrix showed that C2 controller pro-

vides the optimum features, therefore its performance was validated in Mininet.

To verify the performance of the two feature-based optimum controllers, i.e. proposed

approach and AHP, a quantitative comparison of the two controllers was performed by mea-

suring the QoS of the two controllers, such as topology discovery time, delay, throughput, and

CPU utilization. The experimental results validated through Mininet showed that C2 outper-

forms C5 for both the Internet and Brite topologies. Through the proposed methodology, we

selected the controller with high-priority value with respect to its supporting features com-

pared to other controllers considered in the experiment. In this case, C2 is the optimum con-

troller because it fulfils the maximum required features and it is also quantitatively better than

AHP based controller. The ANP can also be used for the optimization of criteria parameters

therefore, in the future, we want to see its results for criteria optimization problems in SDN.
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