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Abstract

Background

Hypercholesterolemia is a major risk factor for ischemic heart disease including acute myo-

cardial infarction. However, long-term effects of hypercholesterolemia in a rodent myocar-

dial ischemia-reperfusion injury model are unknown. Therefore, the effects of diet-induced

hypercholesterolemia on cardiac function and remodeling were investigated up to eight

weeks after myocardial ischemia-reperfusion (MI-R) injury which was induced in either nor-

mocholesterolemic (NC-MI) or hypercholesterolemic (HC-MI) APOE*3-Leiden mice.

Methods

Left ventricular (LV) dimensions were serially assessed using parasternal long-axis echo-

cardiography followed by LV pressure-volume measurements. Subsequently, infarct size

and the inflammatory response were analyzed by histology and fluorescence-activated cell

sorting (FACS) analysis.

Results

Intrinsic LV function eight weeks after MI-R was significantly impaired in HC-MI compared to

NC-MI mice as assessed by end-systolic pressure, dP/dtMAX, and -dP/dtMIN. Paradoxically,

infarct size was significantly decreased in HC-MI compared to NC-MI mice, accompanied

by an increased wall thickness. Hypercholesterolemia caused a pre-ischemic peripheral

monocytosis, in particular of Ly-6Chi monocytes whereas accumulation of macrophages in

the ischemic-reperfused myocardium of HC-MI mice was decreased.
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Conclusion

Diet-induced hypercholesterolemia caused impaired LV function eight weeks after MI-R

injury despite a reduced post-ischemic infarct size. This was preceded by a pre-ischemic

peripheral monocytosis, while there was a suppressed accumulation of inflammatory cells in

the ischemic-reperfused myocardium after eight weeks. This experimental model using

hypercholesterolemic APOE*3-Leiden mice exposed to MI-R seems suitable to study novel

cardioprotective therapies in a more clinically relevant animal model.

Introduction

Hypercholesterolemia plays an important role in the occurrence of atherosclerosis [1] and is a

major risk factor for ischemic heart disease [2]. Several clinical studies demonstrated an

adverse effect of hypercholesterolemia on coronary heart disease events and left ventricular

(LV) systolic function after suffering a myocardial infarction (MI) [3,4] and reported positive

effects of lipid lowering therapies [5,6].

Experimental MI studies have reported controversial findings regarding the effect of diet-

induced hypercholesterolemia on cardiac function following myocardial-ischemia reperfusion

(MI-R). Acute cholesterol feeding, up to three weeks, is associated with increased MI-R injury

in animals [7,8]. Also, prolonged exposure to diet-induced hypercholesterolemia, during up to

20 weeks, followed by MI-R injury with reperfusion periods up to 24 hours showed a reduced

hemodynamic performance [9] and a negative inotropic effect in animals [10]. In addition,

myocardial injury was exacerbated by increased cardiomyocyte apoptosis [11], upregulation of

the myeloperoxidase-related inflammatory response [12,13], reduced myocardial nitric oxide

synthesis [14], and increased myocardial necrosis [15]. Conversely, other studies reported

hypercholesterolemia to cause an improved mechanical recovery [9,10], a positive inotropic

effect [16], and decreased cardiac necrosis [17]. However, information on follow-up periods

longer than 24 hours is lacking.

To realistically study the effects of hypercholesterolemia on cardiovascular outcome after

MI, animal models should mimic the clinical setting of expedited reperfusion therapy upon

acute coronary artery occlusion. This was also underscored by a recent position paper of the

ESC which emphasizes the importance of studying novel cardioprotective therapies in animal

models more closely mimicking the clinical situation in order to improve final successful

translation to the clinical setting [18]. In this perspective, the APOE�3-Leiden transgenic

mouse seems a particularly appropriate animal model [19]. APOE�3-Leiden mice develop

advanced aortic atherosclerotic lesions resembling their human counterparts when exposed to

cholesterol feeding [20,21] and proved to be useful in studying the environmental and genetic

factors in the occurrence of hyperlipidemia [21,22] and the development of atherosclerosis

[21,23]. In addition, APOE�3-Leiden mice have been used to study the effects of various lipid

lowering therapies [24–26]. Although APOE�3-Leiden mice differ from the human situation,

because of the absence of coronary atherosclerosis resulting in coronary plaque formation and

the lack of rupture followed by thrombus formation, it does provide an excellent model to

study the effects of hypercholesterolemia on the pathophysiological processes in an animal

model after surgical interventions [27–30] including induction of MI. Furthermore, hypercho-

lesterolemia-induced atherosclerosis itself is considered to be an inflammatory disease which

contributes to and affects the post-ischemic inflammatory response [1,31].
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The aim of the present study was to investigate the long-term effects of hypercholesterol-

emia on MI-R induced injury in APOE�3-Leiden mice, concomitantly studying the effectivity

and reproducibility of a small animal model more closely mimicking the clinical situation.

Therefore, we employed a follow-up period of eight weeks after MI-R, focusing on cardiac

function, infarct size, and the post-ischemic inflammatory response.

Materials and methods

A schematic overview of the complete study protocol shown as a timeline can be found as a

supplemental figure online (S1 Fig).

Animals and diets

Transgenic female APOE�3-Leiden mice [19], backcrossed for more than 40 generations on a

C57Bl/6J background, aged 10–12 weeks at the start of a dietary run-in period (bred in the ani-

mal facility of the Leiden University Medical Center), were used for this experiment. Mice

were randomly assigned to either a normal chow (normocholesterolemic, NC) or a semisyn-

thetic Western-type diet supplemented with 0.4% cholesterol (hypercholesterolemic, HC) (AB

Diets, Woerden, The Netherlands). Female rather than male APOE�3-Leiden mice were used

because of their higher and stable plasma cholesterol and triglyceride levels, confined to the

VLDL/LDL-sized lipoprotein fraction [32,33]. The diet was started four weeks prior to surgery,

earlier proven to attain a stable hypercholesterolemic phenotype, and was continued until the

end of the experiment. Mice were housed under standard conditions in conventional cages

and received food and water ad libitum. All animal experiments were approved by the Institu-

tional Committee for Animal Welfare of the Leiden University Medical Center (approval ref-

erence number 09131) and conformed to the Guide for the Care and Use of Laboratory
Animals (NIH Publication No. 85–23, revised 2011). All surgery was performed under isoflur-

ane anesthesia, and all efforts were made to minimize suffering by using buprenorfine

analgesia.

Plasma lipid analysis

Plasma total cholesterol (TC) and triglyceride (TG) levels were determined prior to diet expo-

sure, before induction of MI, and four and eight weeks after surgery. After a 4-hour fasting

period, blood was obtained via tail vein bleeding (~50μl) and assayed for plasma total choles-

terol (TC) and triglyceride (TG) levels using commercially available enzymatic kits according

to the manufacturer’s protocols (11489232 and 11488872; Roche Diagnostics, Mannheim, Ger-

many, respectively)

Surgical myocardial ischemia-reperfusion protocol

Surgical ligation of the left anterior descending (LAD) coronary artery followed by permanent

reperfusion was performed at day 0 in 12–14 weeks old female APOE�3-Leiden mice as

described previously [34]. Briefly, mice were pre-anesthetized with 5% isoflurane in a gas mix-

ture of oxygen and room air and placed in a supine position on a heating pad (37˚C). After

endotracheal intubation and ventilation (rate 160 breaths/min, stroke volume 190μl; Harvard

Apparatus, Holliston, MA, USA), mice were kept anesthetized with 2% isoflurane during

approximately 60 minutes. Subsequently, a left thoracotomy was performed in the 4th intercos-

tal space and the LAD coronary artery was ligated using a 7–0 prolene suture. A knot was tied

on a 1mm section of a plastic tube placed on top of the LAD to occlude the coronary artery for

45 minutes. Ischemia was confirmed by myocardial blanching and ECG changes. Muscle flaps
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were folded back, covered with a pre-warmed wet surgical mesh, and body temperature was

kept constant between 35–37˚C during this period. After 35 minutes of ischemia mice received

an intraperitoneal injection of lidocaine (6mg/kg) [35] to prevent cardiac arrhythmias caused

by reperfusion. After 45 minutes of ischemia permanent reperfusion was established. The tho-

rax was closed in layers with 5–0 prolene suture and mice were allowed to recover. Analgesia

was obtained with buprenorfine s.c. (0.1mg/kg) pre-operative and 12h post-operative. The

experimental protocol consisted of a normal diet MI-R group (NC-MI, n = 16) and choles-

terol-enriched diet MI-R group (HC-MI, n = 18).

Echocardiography

To evaluate LV function, in vivo transthoracic echocardiography was performed in anesthe-

tized (2% isoflurane) mice using a 15-45MHz RMV707B probe interfaced with a Vevo 770

imaging system (VisualSonics Inc, Toronto, Canada). Two-dimensional echocardiography

was achieved in all mice before induction of MI (week 0) to assess baseline cardiac function

and serve as an internal control. Subsequently, LV function was measured at one, three, and

eight weeks after MI-R during circa 10 minutes per analysis. Mice were placed on a heating

table in a supine position, with their extremities fixed to four electrocardiography leads. The

chest was shaved to minimize ultrasound attenuation and warmed Aquasonic gel (Parker Lab-

oratories Inc, Fairfield, USA) was applied to optimize visibility.

Parasternal long-axis B-Mode, M-Mode, and EKG-gated Kilohertz Visualization (EKV)

images were obtained with appropriate angulation and acquisition of maximum LV length,

from apex to aortic valve. Datasets were analyzed in a blinded manner, using Visual Sonics

software version 3.0.0 (2008). After tracing the end-systolic and end-diastolic endocardial LV

area of parasternal long-axis EKV images [36] LV end-diastolic volume (EDV), LV end-sys-

tolic volume (ESV), LV ejection fraction (EF), and cardiac output (CO) were calculated.

Hemodynamic measurements

After eight weeks, hemodynamics and LV function indices were determined by invasive LV

pressure-volume (PV) relationships. After induction of anesthesia (2% isoflurane) a midline

neck incision was performed, and a 1.2F PV catheter (FTS-1212B-4518; Scisense Inc, Ontario,

Canada) connected to an ADV signal processor (Scisense Inc) was inserted via the right

carotid artery and positioned optimally into the LV to generate high-fidelity PV signals. On-

line display and acquisition of the signals (2000 samples�s-1) was obtained with a PowerLab 8/

30 system and LabChart Pro software (AD Instruments GmbH, Spechbach, Germany). Parallel

conductance was obtained with the hypertonic saline method using intravenous bolus injec-

tions of ~5μl 10% saline [37] and calibrated with corresponding echocardiographic values of

CO. Total execution of hemodynamic measurements took about 25 minutes. All data were

analyzed off-line in a blinded fashion with custom-made software.

PV signals were obtained in steady state to measure heart rate (HR), CO, ESV, EDV, end-

systolic and end-diastolic pressure (ESP and EDP), maximal and minimal rates of LV pressure

change (dP/dtMAX and dP/dtMIN), isovolumetric relaxation time constant (Tau), stroke work

(SW), effective arterial elastance (EA), end-systolic peak isovolumic pressure (ESPiso), end-sys-

tolic elastance (EES), end-systolic intercept volume (ESVint), end-diastolic stiffness (EED), and

end-diastolic intercept volume (EDVint).

After measurements, the heart and lungs were quickly excised. Hearts were immersion-fix-

ated in 4% paraformaldehyde for 24 hours and embedded in paraffin. The body weight and

wet lung weight were measured from all animals and lungs were then freeze-dried. The differ-

ence between wet and dry lung-weight was used as a measure of pulmonary congestion.

Hypercholesterolemia affecting myocardial ischemia-reperfusion injury
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Infarct size, LV wall thickness and vascular density

Paraffin-embedded hearts were cut into serial transverse sections of 5μm along the entire

long-axis of the LV and subsequently mounted on slides (n = 8 for each group). To analyze col-

lagen deposition as an indicator of the fibrotic area, every 50th section of each heart was stained

with Sirius Red resulting in approximately 15 stained sections of each heart. Infarct size was

determined by planimetric measurement of all sections and calculated as fibrotic area divided

by the total LV wall surface area including the interventricular septum. LV wall thickness was

measured in five different sections equally distributed through the infarcted area. Per section,

wall thickness was analyzed in the mid-infarcted area, both border zones, and interventricular

septum. Measurements were performed perpendicular to the ventricular or septal wall.

To determine the vascular profile, serial sections were stained for PECAM-1 (CD31, clone

MEC13.3, 550274; BD Pharmingen, San Diego, CA, USA). Subsequent to incubations with an

appropriate biotinylated secondary antibody and the signal amplifying ABC system (Vectas-

tain; Vector Laboratories, Burlingame, CA, USA), the reaction product was visualized with

3,3‘-diaminobenzidine and counterstained with Mayer’s hematoxillin. Vascular density was

determined by quantifying the number of PECAM-1 positive blood vessels per 0.25mm2 per

section, differentiating between small (<20μm) and large (>20μm) vessels, in the infarcted

border zones (4 areas), and infarcted myocardium (5 areas). All measurements were per-

formed by an observer blinded to the groups, using the Image-Pro Plus software package

(Media Cybernetics Inc, Bethesda, MD, USA).

Inflammatory response

To study the in vivo effects of the cholesterol-enriched diet and MI-R injury, whole blood was

analyzed for peripheral monocytosis one week before induction of MI (NC-MI, n = 11, and

HC-MI, n = 15) and three weeks after MI-R (NC-MI, n = 6, and HC-MI, n = 7). Hematological

values obtained were white blood cell counts (WBC, x106/ml), red blood cell counts (RBC,

x109/ml), and platelets (PLT, x106/ml) using a semi-automatic hematology analyzer F-820

(Sysmex; Sysmex Corporation, Etten-Leur, The Netherlands). For FACS analysis, 35μl of

whole blood was incubated for 30 minutes on ice with directly conjugated antibodies directed

against Ly-6C-FITC (AbD Serotec, Dusseldorf, Germany), Ly-6G-PE (BD Pharmingen, San

Diego, CA, USA), CD11b-APC (BD Pharmingen, San Diego, CA, USA), CD115-PerCP (R&D

Systems, Minneapolis, MN, USA), and CD45R-APC-Cy7 (eBioscience, San Diego, CA, USA).

Monocytes were gated based on their expression profile: Ly-6G-negative, CD11b-positive, and

CD115-positive. Pro-inflammatory monocytes were identified based on high Ly-6C expression

levels.

For analysis of the local cardiac inflammatory response eight weeks after MI-R, paraffin sec-

tions of the mid-infarct region of the heart were stained using antibodies against leukocytes

(anti-CD45, 550539; BD Pharmingen, San Diego, CA, USA) and macrophages (anti-Mac-3,

550292; BD Pharmingen, San Diego, CA, USA). The number of leukocytes and macrophages

were expressed as a number per 0.25mm2 in the septum (2 areas), border zones (2 areas), and

infarcted myocardium (5 areas).

Statistical analysis

Values were expressed as means ± SEM. Comparisons of parameters between the NC-MI and

HC-MI groups were made using independent samples t-test or 2-way analysis of variance with

repeated measures and Bonferroni’s posttest in case of multiple time points. A value of P<0.05

was considered to represent a significant difference. All statistical procedures were performed

Hypercholesterolemia affecting myocardial ischemia-reperfusion injury
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using SPSS 23.0.0 (SPSS Inc–IBM, Armonk, NY, USA) and GraphPad Prism 6.02 (GraphPad

Software Inc, La Jolla, CA, USA).

Results

Plasma lipid profiles and animal characteristics

Total cholesterol plasma levels in the HC-MI group were increased after exposure to the cho-

lesterol-enriched diet for four weeks compared to the normal chow diet group (18.2

±1.1mmol/L vs. 2.0±0.3mmol/L, P<0.001) and remained stable during the experimental pro-

tocol. Triglycerides levels (3.0±0.1mmol/L vs. 2.5±0.3mmol/L) were not significantly different

between groups (Fig 1).

No difference in body weight (BW) was observed between groups prior to the induction of

MI-R. However, eight weeks after MI-R weight gain as expressed by BW change was increased

in HC-MI as compared to NC-MI mice. No difference in the amount of lung fluid was

observed between both groups (Table 1). In addition, surgical survival rates were 84.0% in the

Fig 1. Lipid profiles. Plasma (A) total cholesterol and (B) triglycerides levels in the NC-MI (open bars) and HC-MI

(closed bars) group. Data are means ± SEM. ���P<0.001 vs. NC-MI group.

https://doi.org/10.1371/journal.pone.0217582.g001
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HC-MI vs. 79.2% in the NC-MI group and 85.7% vs. 84.2% respectively during subsequent fol-

low-up period of 8 weeks.

Echocardiography

Serial echocardiography eight weeks post MI-R revealed an increase in LV dimensions in both

groups as compared to baseline cardiac function before MI-R. In the HC-MI group EDV (49.6

±2.1μl vs. 41.4±0.5μl, P<0.001) and ESV (27.4±1.7μl vs. 16.6±0.6μl, P<0.001) were increased.

In the NC-MI group the EDV (52.0±2.7μl vs. 39.4±0.9μl, P<0.001) and ESV (30.3±2.7μl vs.

14.5±0.5μl, P<0.001) were increased as well (Fig 2A and 2B). This was accompanied by a pro-

gressive impairment of LV function eight weeks after MI-R as indicated by a decrease in EF

(Fig 2C) in the HC-MI (45.0±2.0% vs. 60.1±1.3% before MI-R, P<0.001) and NC-MI group

(43.3±2.5% vs. 63.3±0.7% before MI-R, P<0.001). There were no differences observed between

the HC-MI and NC-MI group during the experiment.

Hemodynamic measurements

The functional PV loop-derived data of the groups are presented in Table 2. In accordance

with the echocardiographic data, LV volumes did not differ between the HC-MI and NC-MI

group. However, when compared to the NC-MI group, a marked impaired intrinsic LV func-

tion was found in the HC-MI group as demonstrated by a significantly depressed ESP, dP/

dtMAX, and -dP/dtMIN. Summarized schematic PV loops are demonstrated in Fig 3.

Infarct size, LV wall thickness, and vascular density

Histological evaluation eight weeks after MI-R showed a smaller infarct area in the HC-MI

group compared to the NC-MI group (12.7±2.0% vs. 22.2±2.9%, P = 0.017, Fig 4A). The sub-

endocardial and epicardial surviving borders of cardiomyocytes in the HC-MI group (Fig 4D)

were larger compared with the NC-MI group (Fig 4C). This resulted in an increased LV wall

thickness in the mid-infarct area in the HC-MI group as compared to the NC-MI group (0.81

±0.05mm vs. 0.57±0.05mm, P = 0.007, Fig 4B).

Analysis of the vascular profile in HC-MI and NC-MI groups showed no significant differ-

ences in the number of small capillaries (<20μm) and large vessels (>20μm) between the

groups (Fig 4E).

Table 1. Animal characteristics. Body weight (BW), heart weight (HW). Values are means ± SEM. ��P<0.01 vs.

NC-MI.

Normal Cholesterol

T (wk) NC-MI HC-MI

N 16 18

age (days) 0 86 ± 3 88 ± 2

BW (g) 0 20.9 ± 0.3 20.5 ± 0.4

8 22.4 ± 0.4 22.9 ± 0.4

BW change (%) 7.3 ± 1.3 12.1 ± 1.1��

HW (mg) 8 191 ± 16 176 ± 5

HW/BW ratio (mg/g) 8.2 ± 0.6 7.5 ± 0.2

lung fluid (mg) 208 ± 11 205 ± 11

https://doi.org/10.1371/journal.pone.0217582.t001
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Inflammatory response

After a dietary run-in period, the HC-MI group revealed a pre-ischemic peripheral monocyto-

sis as compared to the NC-MI group as expressed by the percentage of monocytes (41.6±2.1%

vs. 33.6±1.6% of total leukocytes, P = 0.009, Fig 5A), which was normalized three weeks after

MI-R. Furthermore, the HC-MI group showed a higher percentage pro-inflammatory Ly-6Chi

monocytes of the total monocyte population in peripheral blood prior to MI-R (40.8±2.7% vs.

30.6±2.2% of total monocytes, P = 0.01, Fig 5B), which was normalized three weeks after MI-R

as well. These results suggest a loss of total and in particular Ly-6Chi monocytes from periph-

eral blood of HC-MI mice due to MI-R. In contrast, eight weeks after MI-R a non-significant

decreased number of infiltrated CD45+ leukocytes was observed in the infarct area of the

HC-MI group as compared to the NC-MI group (4.7±0.4 vs. 7.0±2.0 cells per 0.25mm2,

P = 0.27, Fig 5C) whereas the number of macrophages was significantly reduced (7.9±1.8 vs.

20.7±5.4 cells per 0.25mm2, P = 0.049, Fig 5D).

Fig 2. Serial echocardiography. (A) End-diastolic volume, (B) end-systolic volume, (C) ejection fraction, and (D) cardiac output in NC-MI (open bars) and HC-MI

(closed bars) groups at baseline, 1, 3, and 8 weeks after MI-R (n = 16–18). Data are means ± SEM. �P<0.05, ��P<0.01, ���P<0.001 all vs. week 0.

https://doi.org/10.1371/journal.pone.0217582.g002
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Discussion

Key findings of the present study are that diet-induced hypercholesterolemia in

APOE�3-Leiden mice caused a pre-ischemic peripheral monocytosis, in particular of the Ly-

6Chi pro-inflammatory monocytes, and impaired intrinsic LV function eight weeks after acute

MI-R. Paradoxically, this was accompanied by a reduced infarct size and a suppressed accumu-

lation of infiltrated inflammatory cells in the ischemic-reperfused myocardium after eight

weeks. To our knowledge this study is the first to extend follow-up after MI-R to a period of

eight weeks regarding the effects of hypercholesterolemia. Furthermore, this experimental

model using hypercholesterolemic APOE�3-Leiden mice exposed to MI-R seems suitable to

study novel cardioprotective therapies in a more clinically relevant animal model aiming for

improved translation into the complex clinical reality of reperfused STEMI patients in the end

as was also suggested in a recent ESC position paper [18].

Impaired cardiac function as a result of hypercholesterolemia

In the present study, hypercholesterolemia resulted in impaired intrinsic LV function eight

weeks after MI-R as reflected by a reduced left ventricular ESP, dP/dtMAX, and dP/dtMIN.,

whereas no differences of LV dimensions were observed. These results are in line with previ-

ous studies reporting that unreperfused MI in HC animals results in depressed LV function in

Table 2. Pressure-volume loops-derived LV function indices.

NC-MI HC-MI

HR (beats min-1) 551 ± 18 531 ± 20

CO (ml min-1) 13.5 ± 2.5 11.4 ± 1.0

ESV (μl) 29 ± 5 28 ± 5

EDV (μl) 53 ± 7 49 ± 6

ESP (mmHg) 89 ± 2 73 ± 3���

EDP (mmHg) 4.4 ± 0.6 5.9 ± 0.8

dP/dtMAX (mmHg ms-1) 8.3 ± 0.4 6.1 ± 0.4���

-dP/dtMIN (mmHg ms-1) 6.8 ± 0.2 5.3 ± 0.4��

Tau (ms) 9.8 ± 0.3 11.1 ± 0.8

SW (mmHg.ml) 1.9 ± 0.2 1.6 ± 0.0

EA 4.8 ± 1.1 3.7 ± 0.3

ESPiso 164 ± 5 131 ± 5���

ESPVR

slope: EES (mmHg μl-1) 3.8 ± 0.6 2.8 ± 0.3

intercept: ESVint (μl) 26.3 ± 4.9 29.9 ± 5.1

EDPVR

slope: EED (mmHg μl-1) 0.18 ± 0.03 0.26 ± 0.05

intercept: EDVint (μl) 61.1 ± 10.9 46.7 ± 4.0

CO, cardiac output; dP/dtMAX, maximum rate of pressure increase; -dP/dtMIN, maximum rate of pressure decrease;

EA, effective arterial elastance; EDP, end-diastolic pressure; EDPVR, end-diastolic pressure-volume relationship;

EDV, end-diastolic volume; EDVint, end-diastolic intercept volume; EED, end-diastolic stiffness; EES, end-systolic

elastance; ESP, end-systolic pressure; ESPiso, end-systolic peak isovolumic pressure; ESPVR, end-systolic pressure-

volume relationship; ESV, end-systolic volume; ESVint, end-systolic intercept volume; HR, heart rate; SW, stroke

work; Tau, relaxation time constant. Values are means ± SEM.

��P<0.01

���P<0.001 vs. NC-MI.

https://doi.org/10.1371/journal.pone.0217582.t002
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rabbits [38] and exacerbated LV diastolic dysfunction in rats [39] at least eight weeks after

ischemia. Hypercholesterolemia itself was suggested to cause cardiomyopathy by formation of

myocardial cholesterol deposits. Shifting of ATP production from glucose to free fatty acids

increased free radicals which resulted in myocardial injury [40]. A subsequent resulting

reduced hemodynamic performance caused by hypercholesterolemia may lead to a decreased

metabolic demand. This is proposed to confer a cardioprotective state [9,41] that may lead to

improved post-ischemic functional recovery in rabbit hearts. Hypercholesterolemia may

therefore increase myocardial tolerance against ischemia [10].

Reduction of infarct size

The reduced infarct size accompanied by a preserved LV wall thickness of the infarcted myo-

cardium in the HC animals may have been caused by the abovementioned reduced myocardial

metabolic demand resulting in increased tolerance against myocardial ischemia. Another

explanation could be a difference in the post-ischemic inflammatory response since we showed

a concomitantly reduced influx of leukocytes and macrophages in the post-ischemic myocar-

dium. This is supported by previous studies in humans and rats which reported a positive cor-

relation between infiltrated inflammatory cells and infarct size [42,43].

In accordance to our long-term results eight weeks after MI-R, MI-R in HC mice also

resulted in smaller infarcts two hours after onset of reperfusion and was concluded to provide

cardioprotection in mice [17]. On the other hand, experimental studies using HC MI-R mod-

els with a short-term follow-up (24 hours or less) reported an increased infarct size in rabbits

[15], as well as increased myeloperoxidase expression in rats [13] and rabbits [12] and

increased cardiomyocyte apoptosis [11]. In addition permanent ischemia in hypercholesterol-

emic rabbits [38] or rats [39] caused no difference in infarct size eight weeks after MI, endors-

ing conflicting results from current literature.

Fig 3. Pressure-volume loops. PV loops 8 weeks after MI-R of the NC-MI and HC-MI groups. The oblique lines

represent the end-systolic (EES) and end-diastolic (EED) pressure-volume relations.

https://doi.org/10.1371/journal.pone.0217582.g003
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Fig 4. Infarct size, LV wall thickness, and vascular profile 8 weeks after MI-R. Infarct size (n = 8) was significantly smaller in the HC-MI group compared with the

NC-MI group (A). Wall thickness of the infarct area was significantly larger in the HC-MI group (B). Sirius red staining in the HC-MI group showed a more

pronounced subendocardial and epicardial border of surviving cardiomyocytes in the HC-MI group (D) compared to the NC-MI group (C). Vascular analysis showed
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Pre-ischemic monocytosis followed by reduced integrated inflammatory

cells in the ischemic-reperfused myocardium

A reduced influx of leukocytes and macrophages was observed in the ischemic-reperfused

myocardium of HC mice, preceded by a pre-ischemic hypercholesterolemia-associated periph-

eral monocytosis. Hypercholesterolemia has been reported to cause a peripheral monocytosis

with regard to the Ly-6Chi subset in HC mice [44]. In addition, the inflammatory response

after MI-R is more complex as compared to unreperfused MI, since reperfusion itself induces

a pathophysiological process of reperfusion injury [45]. The pro-inflammatory state resulting

from this monocytosis could affect the inflammatory response following MI-R mediated by

no differences in number of small capillaries (<20μm) or large vessels (>20μm) in the border zone (BZ) or infarct area (MI) between both groups (E). Data are

means ± SEM. �P<0.05, ��P<0.01.

https://doi.org/10.1371/journal.pone.0217582.g004

Fig 5. Inflammatory response as a result of the cholesterol-enriched diet and MI-R. Quantification of monocytes as a percentage of total leukocytes (A) and

activated (Ly-6Chi) monocytes as a percentage of total monocytes (B) in whole blood 1 week before induction of MI-R (n = 11–15) and 3 weeks after MI-R (n = 6–7).
��P<0.01 vs. time-corresponding NC-MI group. Quantification of leukocytes (C) and macrophages (D) 8 weeks after MI-R in the infarct area, border zone and

septum, expressed as the number per area. Data are means ± SEM. �P<0.05.

https://doi.org/10.1371/journal.pone.0217582.g005
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cytokines and chemokines, since Ly-6Chi monocytes are involved in the initial inflammatory

response following ischemia. Previous studies demonstrated that within the first hours after

MI, monocytes and their lineage descendant macrophages infiltrate the infarcted myocardium

resulting in the release of cytokines and growth factors, phagocytosis of debris, clearance of

apoptotic cells, and the release of proteases [46,47]. Especially the pro-inflammatory Ly-6Chi

monocyte subset is known to promote digestion of infarcted tissue and clearance of necrotic

debris [48]. After myocardial ischemia, a baseline Ly-6Chi monocytosis could therefore favor-

ably affect the subsequent Ly-6Clo-mediated reparative phase accelerating repair thereby limit-

ing tissue damage on the long-term. Conversely, atherosclerosis-related leukocytosis was

found to disturb the acute post-ischemic healing process [31]. Following permanent ischemia,

Ly-6Chi monocytosis has also been reported to disturb infarct healing and enhance left ventric-

ular remodeling after three weeks [49]. This could probably be explained by a clearly different

post-ischemic inflammatory response after unreperfused MI compared to the more complex

inflammatory response after MI-R [46].

In summary, hypercholesterolemia in an in vivo APOE�3-Leiden mouse model causes a

pre-ischemic peripheral monocytosis and impaired systolic and diastolic cardiac function

eight weeks after myocardial ischemia-reperfusion injury. This is accompanied however with a

decreased myocardial infarct size and a reduced accumulation of inflammatory cells in the

ischemic-reperfused myocardium.

Supporting information

S1 Fig. Timeline of the complete study protocol. A schematic overview of the complete study

protocol shown as a timeline.
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