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Abstract

Accurately predicting reference evapotranspiration (ET0) with limited climatic data is crucial

for irrigation scheduling design and agricultural water management. This study evaluated

eight machine learning models in four categories, i.e. neuron-based (MLP, GRNN and

ANFIS), kernel-based (SVM, KNEA), tree-based (M5Tree, XGBoost) and curve-based

(MARS) models, for predicting daily ET0 with maximum/maximum temperature and precipi-

tation data during 2001–2015 from 14 stations in various climatic regions of China, i.e., arid

desert of northwest China (NWC), semi-arid steppe of Inner Mongolia (IM), Qinghai-Tibetan

Plateau (QTP), (semi-)humid cold-temperate northeast China (NEC), semi-humid warm-

temperate north China (NC), humid subtropical central China (CC) and humid tropical south

China (SC). The results showed machine learning models using only temperature data

obtained satisfactory daily ET0 estimates (on average R2 = 0.829, RMSE = 0.718 mm

day−1, NRMSE = 0.250 and MAE = 0.508 mm day−1). The prediction accuracy was

improved by 7.6% across China when information of precipitation was further considered,

particularly in (sub)tropical humid regions (by 9.7% in CC and 12.4% in SC). The kernel-

based SVM, KNEA and curve-based MARS models generally outperformed the others in

terms of prediction accuracy, with the best performance by KNEA in NWC and IM, by SVM

in QTP, CC and SC, and very similar performance by them in NEC and NC. SVM (1.9%),

MLP (2.0%), MARS (2.6%) and KNEA (6.4%) showed relatively small average increases in

RMSE during testing compared with training RMSE. SVM is highly recommended for pre-

dicting daily ET0 across China in light of best accuracy and stability, while KNEA and MARS

are also promising powerful models.

Introduction

Accurate prediction of reference evapotranspiration (ET0) is significant for irrigation sched-

ules design, crop growth modeling and agricultural water management [1–5]. Various
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mathematical models have been proposed to estimate ET0 from meteorological variables,

among which the FAO-56 Penman–Monteith (FAO-56 PM) equation is suggested by the

Food and Agriculture Organization of the United Nations as a reference model in various

regions and climates [6], because it considerers both the thermodynamic and aerodynamic

items. However, the FAO-56 PM model needs a variety of climatic parameters as model inputs

for calculation, e.g., maximum and minimum ambient temperatures, wind speed, relative

humidity and net radiation [7–11], which significantly restricts the application of the FAO-56

PM model in many worldwide regions. Therefore, the simplified empirical models with fewer

climatic variables is becoming increasingly popular in the absence of compete data [12–15],

such as temperature-based models [16], mass transfer-based models [17] and radiation-based

models [18]. However, evapotranspiration is a complex and highly nonlinear phenomenon

dependent on several climatic parameters. Therefore, it is difficult to establish empirical mod-

els that can consider all those complicated processes. In recent years, much attention has been

drawn to use alternative techniques such as machine learning models for ET0 prediction as a

result of their excellent performance in tackling the nonlinear relationship between the model

inputs and output [19–21].

The neuron-based machine learning models, i.e. artificial neural networks (ANNs), are the

earliest and most widely used models for ET0 prediction. [22] compared the multi-layer per-

ceptron (MLP) model and (semi) empirical models to estimate daily ET0 in the Basque Coun-

try of Spain with different input combinations, and revealed that the MLP model obtained

better ET0 estimates than the locally calibrated empirical models. [23] also investigated the

potential of three ANNs models, including the MLP model, radial basis function neural net-

works (RBNN) along with generalized regression neural networks (GRNN) for estimating ET0

at two weather stations in USA using ambient temperatures, relative humidity, wind speed

and solar radiation. It was concluded that the MLP and RBNN models attained satisfactory

ET0 estimates. [14] evaluated the potential of four ANNs models, including the generalized

feedforward (GFF), linear regression (LR), probabilistic neural network (PNN) and MLP mod-

els for short-term ET0 prediction using forecasted weather data (minimum/maximum temper-

atures and net solar radiation). It was also found that the MLP model was generally superior to

the other three ANNs models. [24] assessed the ANFIS and ANNs models for predicting daily

ET0 in two locations in South Korea based on temperature, sunshine hours, wind speed and

relative humidity. They found that the proposed machine learning models performed well for

ET0 estimation. [25] compared the capability of three ANNs models (MLP, RBNN and

GRNN) with the adaptive neuro fuzzy inference system (ANFIS) and gene expression pro-

gramming (GEP) for monthly ET0 estimation in two locations in the Mediterranean Region of

Turkey with only temperature data. They found that the GRNN and GEP models performed

better than the other models at one station, while the performance of the RBNN and ANFIS

models was best at the other station.

The kernel-based machine learning modes have become increasingly popular for ET0 pre-

diction. [26] compared the capability of the kernel-based support vector machine (SVM) with

the multiple linear regression (MLR), multiple nonlinear regression (MNLR), ANFIS and

empirical models for predicting ET0 in the semi-arid regions of Iran. The results indicated that

the SVM and ANFIS models performed better than the other models. [13]Wen et al. (2015)

predicted daily ET0 using the SVM model with few climatic variables in arid China. It was

found that the SVM model outperformed the ANNs and empirical models. [27] evaluated the

capabilities of the least-squares support vector machine (LS-SVM), multivariate adaptive

regression spline (MARS) and M5 model tree (M5Tree) for the estimation of ET0 in Mediter-

ranean Turkey, and found that the kernel-based LS-SVM model was superior to the other two

models. [28] assessed the potential of the kernel-based extreme learning machine (ELM) to
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predict daily ET0 in Iraq, and found it exhibited good efficiency and generalization perfor-

mances. [29] estimated daily ET0 with the ELM and GRNN models based on air temperatures

along in southwestern China. They found that the ELM model was superior to the GRNN

model. The kernel-based SVM, LS-SVM and ELM models are also coupled with pre-treatment

or optimization algorithms such as wavelet transform (WT) [30] and genetic algorithm (GA)

[31] to improve the prediction accuracy. Recently, an improved version of kernel-based

machine learning models, i.e., kernel-based nonlinear extension of Arps decline model

(KNEA) has been developed and successfully applied in various fields [32–33]. However, this

new powerful model has not yet been tested in evapotranspiration studies.

The tree-based machine learning models have recently started to draw researchers’ atten-

tion due to their relative simplicity but powerful capability in time-series prediction [34]. [35]

evaluated the performance of the M5Tree model for estimating daily ET0 in California of USA,

and found the M5Tree model gave satisfactory ET0 estimates. [36] evaluated the M5Tree and

feedforward ANNs models to predict ET0 in the arid regions. It was concluded that ET0 values

predicted by the M5Tree and ANNs models agreed well with the FAO-56 PM values. [37]

compared the M5Tree and ANNs models to predict ET0 at two sites in USA. They found that

the M5Tree model outperformed the ANNs models for estimation of ET0 when the input and

output data at the target station were not available. [38] compared the random forest (RF) to

the GRNN model for prediction of daily ET0 in southwestern China, and concluded that the

RF model gave better daily ET0 estimates than the GRNN model. [39] further used a hybrid RF

model with the wavelet algorithm for daily ET0 estimation in Southern Iran. They indicated

that the new coupled RF model outperformed the classic RF model. [40] explored the perfor-

mance of two kernel-based models and four tree-based models for daily ET0 estimation with

limited meteorological data across China. They found that the extreme gradient boosting

(XGBoost) and gradient boosting decision tree (GBDT) exhibited similar accuracy and stabil-

ity compare with the kernel-based SVM and ELM models.

Other machine learning models, such as the curve-based MARS model, have also been

applied to predict ET0. [27] modeled monthly ET0 in Mediterranean Turkey using the MARS,

LSSVM and M5Tree models. It was found that the MARS model outperformed the least-

squares support vector regression (LSSVR) and M5Tree models. [41] predicted monthly ET0

in Iran using the MARS, SVM, GEP and empirical models. The results showed that the MARS

and SVM-RBF models were generally superior to the GEP and SVM-Poly models. [42] has

also evaluated the performances of the GEP model and the (semi)empirical models for predict-

ing daily ET0 in the hyper-arid regions of Iran, and revealed that the superiority of the GEP

model for ET0 estimation over the (semi)empirical models.

Although the neuron-based, kernel-based, tree-based and curve-based machine learning

models have been widely used to predict ET0 around the world, their performances are incon-

sistent in various ET0 studies. Particularly, there is still lack of direct and comprehensive com-

parison of various categories of machine learning models for prediction of ET0 in a specific

region or country such as China with a vast territory and diverse climates. Due to the limited

availability of complete climatic variables, the applicability of these machine learning models

for estimation of ET0 with more cheaply and reliably measured meteorological variables (e.g.

temperature and precipitation) should be explored. In addition, although the utmost attention

is usually paid to prediction accuracy when applying machine learning models, model stability

is another major factor to consider because unstable models may produce inaccurate ET0 esti-

mates if new data are included [34]. Thus, the objectives of this study are to: (1) determine the

effects of temperature and precipitation (a variable representing relative humidity to some

extent) on the prediction accuracy of daily ET0 in different climatic zones of China, and (2)

further compare both the prediction accuracy and model stability of eight machine learning
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models in four categories (MLP, GRNN, ANFIS, SVM, KNEA, M5Tree, XGBoost and MARS)

for predicting daily ET0 across China as a case study.

Materials and methods

Case study and site description

According to multiple-year mean temperatures, precipitation and altitude (Table 1), China is

classified as seven climatic regions (Fig 1), i.e. the arid desert of northwest China (NWC), the

semi-arid steppe of Inner Mongolia (IM), the Qinghai-Tibetan Plateau (QTP), the (semi-)

humid cold-temperate northeast China (NEC), the semi-humid warm-temperate north China

(NC), the humid subtropical central China (CC), and the humid tropical south China (SC)

[43–44]. The mean daily air temperature in NWC, IM, QTP, NEC, NC, CC and SC varied

between -13.2˚C and 26.2˚C, -10.5˚C and 21.1˚C, between -9.6˚C and 19.8˚C, between

-19.3˚C and 25.7˚C, between -4.0˚C and 28.4˚C, between 1.5˚C and 30.7˚C and between

3.5˚C and 35.6˚C, respectively. The average annual precipitation were 269 mm in NWC, 302

mm in IM, 382 mm in QTP, 637 mm in NEC, 658 mm in NC, 1538 mm in CC and 1964 mm

in SC.

Data collection and analysis

Long-term daily maximum (Tmax) and minimum (Tmin) temperatures, relative humidity (Hr),

wind speed (U) and horizontal global solar radiation (Rs) from 2001–2015 were obtained at 14

representative stations across various climatic regions of China (Fig 1). The geographical loca-

tions and meteorological values of the 14 stations are presented in Table 1. These meteorologi-

cal data are provided by the National Meteorological Information Center (NMIC) of China

Meteorological Administration (CMA), who has rigorously examined the data quality. The

daily data were further excluded if any of the above meteorological data were missing. Overall,

missing data accounted for only 0.08% of the database, ranging from 0 to 0.53% at various

weather stations.

Table 1. The geographical locations and annual mean values (± standard deviation) of meteorological data during 2001–2015 for each of the 14 weather stations

used in the present study.

Station ID Station name Latitude (N) Longitude (E) Altitude (m) Tmax (˚C) Tmin (˚C) P (mm yr−1) ET0 (mm d−1)

51463 Urumqi 43.8 87.7 935 12.9±13.6 2.8±12.8 271±75.7 2.9±2.3

52418 Dunhuang 40.2 94.7 1139 18.3±14.6 2.2±11.5 42±5.1 3.3±1.7

53614 Yinchuan 38.5 106.2 1111 16.2±10.5 3.6±9.3 203±58.6 2.9±1.8

53068 Erenhot 43.7 112.0 965 11.9±11.4 -2.2±10.7 142±31.2 3.3±1.7

50953 Harbin 45.8 126.8 142 10.2±15.2 -0.9±14.8 479±132.1 2.3±1.8

54342 Shenyang 41.7 123.5 49 14.1±13.4 3.1±12.4 656±150.3 2.4±1.6

54511 Beijing 39.8 116.5 31 18.1±11.4 7.4±10.5 510±145.7 2.9±1.9

57083 Zhengzhou 34.7 113.7 110 20.4±13.5 9.8±11.6 626±154.5 2.9±1.9

52818 Geermu 36.4 94.9 2808 13.1±9.7 -1.2±9.6 44±5.6 3.3±1.8

55591 Lasa 29.7 91.1 3649 16.0±6.0 1.8±7.1 416±132.8 3.4±1.4

57494 Wuhan 30.6 114.1 23 21.4±9.7 13.2±9.2 1241±201.4 2.5±1.7

57957 Guilin 25.3 110.3 164 23.3±8.2 16.0±8.7 1856±248.3 2.7±1.4

59287 Guangzhou 23.2 113.3 41 26.5±6.3 19.0±6.4 1921±270.1 2.7±1.3

59758 Haikou 20.0 110.3 64 28.1±5.7 21.6±6.0 2067±401.7 3.2±1.3

https://doi.org/10.1371/journal.pone.0217520.t001
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FAO-56 Penman–Monteith equation

The FAO-56 Penman–Monteith model was utilized to calculate daily ET0 (mm day-1) and pro-

vide the reference data for the training and testing of machine learning models in this paper:

ET0 ¼
0:408DðRn � GÞ þ g 900

Tmeanþ273
U2ðes � eaÞ

Dþ gð1þ 0:34U2Þ
ð1Þ

where, Rn: net radiation (MJ m-2 day-1); G: soil heat flux (MJ m-2 day-1); Tmean: average ambi-

ent temperature (˚C); U2: wind speed at 2 m height (m s-1); es: saturation vapor pressure (kPa);

ea: actual vapor pressure (kPa); Δ: slope of the vapor pressure curve (kPa ˚C-1); γ: psychromet-

ric constant (kPa ˚C-1). Detailed calculation procedures can be found in [6].

Machine learning models for predicting daily reference evapotranspiration

Multilayer perceptron neural networks (MLP). The MLP model is one of the widely

used ANNs models, which is a feed-forward neural network for nonlinear function approxi-

mation. The MLP model consists of three layers: the input, hidden and output layers. The hid-

den layer often has only one layer, and the number of neural unit has to be determined by the

trial and error approach. In the present study, a three-layer neural network was developed: the

Fig 1. The distribution of different climatic regions across China and the geographical locations of 14 weather stations used in this study. NWC: arid

desert of northwest China, IM: semi-arid steppe of Inner Mongolia, QTP: Qinghai-Tibetan Plateau, NEC: (semi-)humid cold-temperate northeast China, NC:

semi-humid warm-temperate north China, CC: humid subtropical central China, and SC: humid tropical south China; the South China Sea Islands are

presented in the bottom right-hand corner; the same below.

https://doi.org/10.1371/journal.pone.0217520.g001
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first layer was input layer, the neural number was equal to the input numbers and the output

layer has one neural unit. The MLP model is trained by the Levenberg–Marquardt algorithm,

which interpolates between the Gauss–Newton algorithm (GNA) and the gradient descent

algorithm. It is more robust than the GNA but still can stick with local, rather than global min-

ima. Further details on the MLP model refer to [4].

Generalized regression neural network (GRNN). The GRNN model is proposed by [45]

and is one of the radial basis function neural network (RBF) models. This model can approxi-

mate non-linear function of the input and output vectors with a function estimate obtained

from the training dataset. It shows a parallel structure and no iterative process is required for

model learning between the inputs and outputs. The GRNN model does not need iterative

training procedures compared with the back propagation method. Further details on the

GRNN model is given by [46].

Adaptive neuro-fuzzy inference system (ANFIS). The ANFIS model is proposed by [47],

which is a multi-layer adaptive network coupled with neural networks with the fuzzy inference

system. The first-order Sugeno fuzzy model with two fuzzy if-then rules is applied in the

ANFIS model to approximate the nonlinear function in this study. The ANFIS model is con-

sisted of five layers: the fuzzification, product, normalization, de-fuzzification and output lay-

ers. The model uses different node functions to learn and adjust the parameters in a fuzzy

inference system, where the forward and backward passes are applied to decrease the com-

puted errors. More details about the ANFIS model is given by [47].

M5 model tree (M5Tree). The M5Tree model is firstly established by [48], which is a

powerful learning method to estimate the true values in a large dataset. It has a series of linear

regression functions at the terminal nodes, which develops relationships between the indepen-

dent variables and a dependent variable. The model firstly constructs a regression tree by split-

ting the instance space in a recursive manner, and selects the one maximizing the expected

errors reduction following all the potential splits. The over-grown trees are then pruned and

the sub-trees are then replaced by the linear regression functions. Further details of the

M5Tree model refer to [49].

Extreme gradient boosting (XGBoost). The XGBoost model is proposed by [50] and is

originated from the idea of "boosting". The XGBoost model integrates all the predictions of a

series of “weak” learners to develop a “strong” learner via an additive training process. It is

supposed to avoid the over-fitting issue and reduce the computational time. This can be

obtained by simplifying the objective functions and combining the predictive and regulariza-

tion terms, while it maintains optimum computation efficiency at the same time. Parallel cal-

culation is also automatically implemented during the training period. More details about the

XGBoost model refer to [50].

Support vector machine (SVM). The SVM model is developed by [51], which is widely

used for classification, pattern recognition and regression analysis. The SVM model can esti-

mate the regression on the basis of a set of kernel functions, which are capable of implicitly

converting the original, lower-dimensional input dataset to a higher-dimensional feature

space. The SVM model has been successfully applied in predicting ET0 [31, 41]. The radial

basis function (RBF) nonlinear kernel function was utilized in the present study as a result of

its outstanding performance for predicting ET0 relative to other kernel functions [19](Kisi,

2015), such as linear, polynomial and sigmoid functions. Further information about the SVM

model is given by [51].

Kernel-based nonlinear extension of Arps decline model (KNEA). The KNEA model is

a newly nonlinear model initially proposed by [32]based on the Arps decline model and kernel

method. Compared with the non-parametric and “Black-Box” kernel-based models such as

least-squares SVM, the KNEA model is based on the idea of “Grey-Box” and uses the semi-

Comparison of machine learning models for predicting daily reference evapotranspiration

PLOS ONE | https://doi.org/10.1371/journal.pone.0217520 May 31, 2019 6 / 27

https://doi.org/10.1371/journal.pone.0217520


parametric formulation to build the nonlinear models [52]. The kernel-based grey system

models are more efficient with small samples [53–54], while the KNEA model performed bet-

ter with larger samples since samples are not accumulated in the model.

The KNEA model can be described as:

f ðxÞ ¼ af ðx � 1Þ þ gðuðxÞÞ þ m ð2Þ

where f(x) is the output at this time, f(x−1) is the output at the last step time. u(x) represents

the factors affecting the output, g(u(x)) can be interpreted as the relationship between u(x) and

f(x), μ is the bias. From this model, we can see that the output of this time is the result of joint

action between the output from last time step and the influencing factors at this time.

The nonlinear function g(u(x)) is difficult to determine and can be translated to:

gðuðxÞÞ ¼ oTφðuðxÞÞ ð3Þ

This means mapping the original influencing factors into the new space. Therefore, the for-

mula (2) can be written as:

f ðxÞ ¼ af ðx � 1Þ þ oTφðuðxÞÞ þ m ð4Þ

Although we still can’t solve Eq (4), we can find a very small value so that the difference

between the left and right side of the equation is as small as possible:

ex ¼ f ðxÞ � af ðx � 1Þ � oTφðuðxÞÞ � m ð5Þ

min
a;o;e

Bða;o; eÞ ¼
1

2
a2 þ

1

2
kok

2
þ
g

2

Xn

x¼2

e2

x ð6Þ

s:t: f ðxÞ ¼ af ðx � 1Þ þ oTφðuðxÞÞ þ mþ ex ð7Þ

where γ is the regularization term, it can control the model smoothness. Like SVM, this opti-

mization problem can be solved by Lagrangian multiplier method:

Lða;o; m; e; lÞ ¼ Bða;o; eÞ �
Xn

x¼2

lxfbf ðx � 1Þ þ oTφðuðxÞÞ þ mþ ex � f ðxÞg ð8Þ

where λx is the Lagrangian multiplier. The Karush–Kuhn–Tucker (KKT) conditions for
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optimality of the Lagrangian multiplier method are as follows:

@L
@a
¼ 0 a ¼

Xn

x¼2

lxf ðx � 1Þ

@L
@o
¼ 0 o ¼

Xn

x¼2

lxφðuðxÞÞ

@L
@m
¼ 0

Xn

x¼2

lx ¼ 0

@L
@ex
¼ 0 ex ¼ lxg� 1

@L
@lx
¼ 0 f ðxÞ ¼ af ðx � 1Þ þ oTφðuðxÞÞ þ mþ ex

ð9Þ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

0 1T
n� 1

1n� 1 Oþ Qþ
1

g
In� 1

0

B
@

1

C
A

m

l

 !

¼
0

x2jn

 !

ð10Þ

where

In� 1 ¼ ½1; 1; . . . ; 1�
T
n� 1

,

ln� 1 ¼ ½l1; l2; . . . ; ln� 1�
T
n� 1

,

x2|n = [x(2),x(3),� � �,x(n)]T,

Oij = φ(u(i))×φ(u(j)) = K(u(i),u(j)),where In-1 is an n−1 dimensional identity matrix with all

the diagonal elements as 1 and others as 0. λ,μ and a can be obtained by Eq (9). The Oij can be

employed a kernel function K(�,�), which satisfies the Mercer’s theorem, and a Gauss-type ker-

nel function was selected in the present study. Further information about is given by [32].

KðuðiÞ; uðjÞÞ ¼ exp
� ðuðiÞ � uðjÞÞ2

2s2

� �

ð11Þ

Multivariate adaptive regression spline (MARS). The MARS model is a non-parametric

regression approach proposed by [55], which needs no assumption on the relationships

between the independent and dependent variables. In the MARS model, a series of coefficients

and functions defined as basis functions are used for modeling. The basis function of the

MARS model is the outcome of a truncated spline function or multiple spline functions. The

number of basis functions and the determination of basis functions are automatically deter-

mined by data. Meanwhile, the MARS model integrates the merits of the recursive auto-frac-

tional regression method in dividing spatial regions, projection tracking method in processing

high-dimensional data and the advantages of accumulative regression node self-adaptation.

Further details of the MARS model refer to [10].

Input combinations and K-fold cross-validation

Precipitation is not directly correlated to ET0, but it is a manifestation of relative humidity to

some extent and may correct the temperature-based ET0 models. However, the real amount of

precipitation may underestimate or exaggerate its effect on the reduction of daily ET0 due to

large variation range from 0 mm to even hundreds of mm in humid regions. Therefore, a sim-

ple transformed precipitation (Pt, 1 for precipitation > 0 and 0 for precipitation = 0) was
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applied here to represent the general effect of precipitation on ET0 prediction. Two input com-

binations of meteorological variables were thus used in the present study to assess the tempera-

ture and precipitation effects on daily ET0 prediction, i.e., C1: Tmax, Tmin and Ra; C2: Tmax,

Tmin, and Ra. The K-fold cross-validation method was applied, where the obtained tempera-

ture and precipitation data during 2001–2015 were equally partitioned into five periods. Four

periods were used for model training and the last one was used to test the models, which was

run over the five various stages (Table 2). The main parameters of the eight machine learning

models were optimized by using the grid-search method. Fig 2 presents the simple flowchart

of the proposed methodology in the present study.

Statistical evaluation

Four common statistical indicators were used in this study to evaluate the models, i.e., RMSE,

R2, MAE and NRMSE, which can be expressed as [56–57]:

R2 ¼

Xn

i¼1

ðYi;m �
�Y i;mÞðYi;e �

�Y i;eÞ

" #2

Xn

i¼1

ðYi;m �
�Y i;mÞ

2
Xn

i¼1

ðYi;e �
�Y i;eÞ

2

ð12Þ

Table 2. The five cross-validation stages involved in the present study.

Cross validation Training dataset Testing dataset

S1 2004–2015 2001–2003

S2 2001–2003 and 2007–2015 2004–2006

S3 2001–2006 and 2010–2015 2007–2009

S4 2001–2009 and 2013–2015 2010–2012

S5 2001–2012 2013–2015

https://doi.org/10.1371/journal.pone.0217520.t002

Fig 2. Simple flowchart of the proposed methodology in the present study.

https://doi.org/10.1371/journal.pone.0217520.g002
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðYi;m � Yi;eÞ
2

s

ð13Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

ðYi;m � Yi;eÞ

2

v
u
u
t =�Y i;m � 100% ð14Þ

MAE ¼
1

n

Xn

i¼1

jYi;m � Yi;ej ð15Þ

where Yi,m, Yi,e, �Y i;m and �Y i;e are the measured, estimated, mean of measured, mean of esti-

mated reference evapotranspiration, respectively; n is the number of observed data. Higher R2

values indicate high prediction accuracy, whereas lower values of RMSE, MAE and NRMSE

suggest better model performance. Considering the requirements of the MLP and KNEA mod-

els, the raw climatic data were normalized between 0 and 1 as follows:

zn ¼
zi � zmin

zmax � zmin
ð16Þ

where zn and zi is the normalized and raw data; zmax and zmin are the minimum and maximum

raw data.

Results and discussion

Comparison of prediction accuracy of eight machine learning models

across China

The statistical results of the eight machine learning models (MLP, GRNN, ANFIS SVM,

KNEA, M5Tree, XGBoost and MARS) for estimating daily ET0 in NWC (Urumqi and Dun-

huang), IM (Yinchuan and Erenhot), NEC (Harbin and Shenyang), NC (Beijing and Zheng-

zhou), QTP (Geermu and Lasa), CC (Wuhan and Guilin) and SC (Guangzhou and Haikou)

under the two input combinations of climatic variables (C1: Tmax, Tmin and Ra; C2: Tmax, Tmin,

Pt and Ra) during both training and testing periods, are presented in Tables 3–9, respectively.

In terms of R2, RMSE, NRMSE and MAE averaged over the fourteen weather stations

across China, the GRNN model (on average 0.888, 0.578 mm day−1, 0.201 and 0.394 mm

day−1, respectively), XGBoost model (on average 0.882, 0.612 mm day−1, 0.207 and 0.424 mm

day−1, respectively) and M5Tree model (on average 0.873, 0.626 mm day−1, 0.217 and 0.432

mm day−1, respectively) generally produced better prediction accuracy in predicting daily ET0

than the other machine learning models during training in the whole China. The MLP model

(on average R2 = 0.850, RMSE = 0.685 mm day−1, NRMSE = 0.257 and MAE = 0.476 mm

day−1) produced the worst performance in all the climatic zones, followed by the MARS model

(on average R2 = 0.855, RMSE = 0.668 mm day−1, NRMSE = 0.232 and MAE = 0.469 mm

day−1) and SVM model (on average R2 = 0.857, RMSE = 0.662 mm day−1, NRMSE = 0.232 and

MAE = 0.456 mm day−1). On the contrary, the SVM model (on average R2 = 0.860, RMSE =

0.674 mm day−1, NRMSE = 0.234 and MAE = 0.470 mm day−1), KNEA model (on average

R2 = 0.857, RMSE = 0.676 mm day−1, NRMSE = 0.236 and MAE = 0.474 mm day−1) and

MARS model (on average R2 = 0.855, RMSE = 0.685 mm day−1, NRMSE = 0.237 and

MAE = 0.483 mm day−1) generally performed better than the other models for daily ET0 esti-

mation during the testing period in the whole China. The M5Tree model (on average R2 =

Comparison of machine learning models for predicting daily reference evapotranspiration
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0.840, RMSE = 0.716 mm day−1, NRMSE = 0.249 and MAE = 0.504 mm day−1), MLP model

(on average R2 = 0.851, RMSE = 0.698 mm day−1, NRMSE = 0.259 and MAE = 0.487 mm

day−1) and GRNN model (on average R2 = 0.845, RMSE = 0.696 mm day−1, NRMSE = 0.245

and MAE = 0.492 mm day−1) performed worst among the machine learning models. These

results are in good agreement with other machine learning-based ET0 studies. For instance,

[58] found that the LS-SVM model yielded accurate ET0 estimation in the Changwu County,

China. [13] indicated that the SVM model outperformed the ANNs model for the estimation

Table 3. Statistical values of the eight machine learning models with different input parameters during training and testing at Urumqi and Dunhuang in the arid

desert of northwest China.

Station Inputs /

Model

Training Testing (RMSEtes—RMSEtrn)% (RMSEC2—RMSEC1)tes%

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1)

Urumqi C1 (Tmax, Tmin, Ra)

MLP1 0.893 0.833 0.283 0.452 0.889 0.841 0.289 0.491 1.0% -

GRNN1 0.930 0.667 0.224 0.373 0.897 0.829 0.279 0.486 24.3% -

SVM1 0.893 0.824 0.278 0.458 0.895 0.837 0.281 0.490 1.6% -

KNEA1 0.911 0.750 0.252 0.429 0.898 0.822 0.277 0.473 9.6% -

M5Tree1 0.904 0.779 0.262 0.452 0.889 0.863 0.290 0.511 10.8% -

XGBoost1 0.914 0.738 0.248 0.445 0.895 0.836 0.281 0.485 13.3% -

ANFIS1 0.907 0.766 0.258 0.443 0.893 0.840 0.282 0.478 9.7% -

MARS1 0.897 0.807 0.272 0.476 0.897 0.829 0.278 0.492 2.7% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.915 0.785 0.252 0.432 0.917 0.799 0.256 0.440 1.8% 5.0%

GRNN2 0.945 0.628 0.198 0.344 0.905 0.799 0.269 0.465 27.2% 3.6%

SVM2 0.903 0.782 0.263 0.439 0.903 0.806 0.271 0.457 3.1% 3.7%

KNEA2 0.926 0.706 0.231 0.395 0.924 0.781 0.242 0.421 10.6% 5.0%

M5Tree2 0.925 0.732 0.232 0.404 0.915 0.812 0.256 0.453 10.9% 5.9%

XGBoost2 0.940 0.699 0.208 0.364 0.923 0.784 0.244 0.436 12.2% 6.2%

ANFIS2 0.933 0.723 0.220 0.386 0.830 0.789 0.372 0.459 9.1% 6.1%

MARS2 0.917 0.764 0.244 0.434 0.918 0.784 0.250 0.447 2.6% 5.4%

Dunhuang C1 (Tmax, Tmin, Ra)

MLP1 0.889 0.741 0.224 0.468 0.883 0.750 0.233 0.501 1.2% -

GRNN1 0.923 0.603 0.181 0.392 0.884 0.766 0.224 0.502 27.0% -

SVM1 0.889 0.725 0.218 0.482 0.889 0.732 0.220 0.491 1.0% -

KNEA1 0.901 0.683 0.205 0.455 0.890 0.729 0.219 0.490 6.7% -

M5Tree1 0.901 0.681 0.205 0.453 0.881 0.757 0.228 0.516 11.2% -

XGBoost1 0.904 0.669 0.201 0.458 0.887 0.737 0.222 0.502 10.2% -

ANFIS1 0.897 0.695 0.209 0.465 0.886 0.742 0.223 0.501 6.8% -

MARS1 0.888 0.727 0.219 0.487 0.886 0.737 0.222 0.497 1.4% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.893 0.703 0.222 0.487 0.892 0.712 0.223 0.486 1.3% 5.1%

GRNN2 0.926 0.578 0.177 0.382 0.886 0.730 0.223 0.499 26.3% 4.7%

SVM2 0.899 0.688 0.207 0.460 0.899 0.694 0.210 0.471 0.9% 5.2%

KNEA2 0.902 0.649 0.204 0.457 0.897 0.703 0.211 0.477 8.3% 3.6%

M5Tree2 0.905 0.649 0.201 0.448 0.884 0.726 0.225 0.510 11.9% 4.1%

XGBoost2 0.923 0.633 0.181 0.418 0.895 0.710 0.214 0.486 12.2% 3.7%

ANFIS2 0.907 0.662 0.199 0.447 0.885 0.698 0.224 0.498 5.4% 5.9%

MARS2 0.895 0.693 0.212 0.478 0.894 0.705 0.215 0.487 1.7% 4.3%

https://doi.org/10.1371/journal.pone.0217520.t003
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of daily ET0 in an extreme arid region of China. [27] found that the LS-SVM model outper-

formed the MARS and M5Tree models, while the MARS model was superior to the LS-SVM

and M5Tree models in cross-station applications. [59] suggested that the SVM model gave bet-

ter daily ET0 estimation than the tree-based assemble models (RF, M5Tree, GBDT and

XGBoost) under various input combinations across China.

Specifically, the GRNN model outperformed all the other machine learning models in daily

ET0 modeling in the seven climatic zones of China during the training period. However,

Table 4. Statistical values of the eight machine learning models with different input parameters during training and testing at Yinchuan and Erenhot in the semi-

arid steppe of Inner Mongolia.

Station Inputs /

Model

Training Testing (RMSEtes—RMSEtrn)% (RMSEC2—RMSEC1)tes%

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1)

Yinchuan C1 (Tmax, Tmin, Ra)

MLP1 0.873 0.693 0.249 0.477 0.875 0.696 0.251 0.479 0.4% -

GRNN1 0.914 0.566 0.192 0.370 0.873 0.704 0.238 0.477 24.4% -

SVM1 0.881 0.669 0.226 0.444 0.881 0.680 0.230 0.462 1.6% -

KNEA1 0.893 0.629 0.213 0.418 0.882 0.680 0.230 0.456 8.1% -

M5Tree1 0.893 0.632 0.214 0.421 0.863 0.727 0.246 0.494 15.0% -

XGBoost1 0.896 0.625 0.212 0.427 0.878 0.688 0.233 0.469 10.1% -

ANFIS1 0.888 0.647 0.219 0.436 0.880 0.685 0.232 0.460 5.9% -

MARS1 0.879 0.673 0.228 0.458 0.878 0.689 0.233 0.471 2.4% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.892 0.645 0.232 0.449 0.894 0.661 0.238 0.462 2.5% 5.0%

GRNN2 0.924 0.536 0.181 0.354 0.880 0.674 0.231 0.467 25.7% 4.3%

SVM2 0.885 0.637 0.222 0.439 0.873 0.644 0.238 0.475 1.1% 5.3%

KNEA2 0.903 0.601 0.203 0.413 0.900 0.624 0.211 0.431 3.8% 8.2%

M5Tree2 0.906 0.590 0.200 0.406 0.878 0.687 0.232 0.481 16.4% 5.5%

XGBoost2 0.923 0.567 0.182 0.378 0.898 0.632 0.214 0.440 11.5% 8.1%

ANFIS2 0.906 0.591 0.200 0.410 0.884 0.651 0.227 0.456 10.2% 5.0%

MARS2 0.895 0.627 0.212 0.437 0.895 0.642 0.217 0.450 2.4% 6.8%

Erenhot C1 (Tmax, Tmin, Ra)

MLP1 0.896 0.846 0.254 0.555 0.901 0.866 0.259 0.569 2.4% -

GRNN1 0.937 0.656 0.193 0.404 0.899 0.863 0.253 0.568 31.6% -

SVM1 0.900 0.826 0.243 0.538 0.904 0.842 0.247 0.554 1.9% -

KNEA1 0.916 0.752 0.221 0.486 0.907 0.836 0.245 0.553 11.2% -

M5Tree1 0.912 0.774 0.228 0.502 0.891 0.896 0.263 0.588 15.8% -

XGBoost1 0.916 0.751 0.221 0.499 0.904 0.846 0.248 0.560 12.6% -

ANFIS1 0.907 0.788 0.232 0.516 0.901 0.857 0.252 0.558 8.8% -

MARS1 0.901 0.820 0.241 0.539 0.905 0.842 0.247 0.556 2.7% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.908 0.795 0.239 0.523 0.914 0.802 0.240 0.532 0.9% 7.4%

GRNN2 0.943 0.624 0.184 0.385 0.904 0.826 0.248 0.560 32.4% 4.3%

SVM2 0.912 0.774 0.228 0.507 0.917 0.791 0.232 0.526 2.2% 6.1%

KNEA2 0.920 0.716 0.217 0.486 0.920 0.781 0.229 0.520 9.1% 6.6%

M5Tree2 0.919 0.740 0.218 0.485 0.902 0.856 0.251 0.574 15.7% 4.5%

XGBoost2 0.936 0.686 0.193 0.447 0.917 0.794 0.233 0.532 15.7% 6.1%

ANFIS2 0.921 0.730 0.215 0.486 0.909 0.792 0.244 0.547 8.5% 7.6%

MARS2 0.910 0.778 0.229 0.517 0.915 0.801 0.235 0.535 3.0% 4.9%

https://doi.org/10.1371/journal.pone.0217520.t004

Comparison of machine learning models for predicting daily reference evapotranspiration

PLOS ONE | https://doi.org/10.1371/journal.pone.0217520 May 31, 2019 12 / 27

https://doi.org/10.1371/journal.pone.0217520.t004
https://doi.org/10.1371/journal.pone.0217520


during the testing period, the statistical indicators indicated that the KNEA model had the low-

est values of average RMSE, NRMSE, MAE but the highest R2 values in NWC (0.757 mm

day−1, 0.241, 0.476 mm day−1 and 0.899, respectively) and IM (0.732 mm day−1, 0.229, 0.491

mm day−1 and 0.902, respectively). The lowest values of average RMSE, NRMSE, MAE but the

highest R2 values in QTP (0.477 mm day−1, 0.145, 0.339 mm day−1 and 0.914, respectively),

CC (0.757 mm day−1, 0.241, 0.476 mm day−1 and 0.899, respectively) and SC (0.757 mm day−1,

0.241, 0.476 mm day−1 and 0.899, respectively) were obtained by the SVM model. However,

Table 5. Statistical values of the eight machine learning models with different input parameters during training and testing at Harbin and Shenyang in the (semi-)

humid cold-temperate northeast China.

Station Inputs /

Model

Training Testing (RMSEtes—RMSEtrn)% (RMSEC2—RMSEC1)tes%

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1)

Harbin C1 (Tmax, Tmin, Ra)

MLP1 0.861 0.675 0.313 0.439 0.868 0.701 0.326 0.457 3.9% -

GRNN1 0.915 0.528 0.241 0.322 0.873 0.670 0.306 0.434 26.9% -

SVM1 0.875 0.643 0.294 0.409 0.881 0.652 0.298 0.422 1.4% -

KNEA1 0.892 0.595 0.272 0.378 0.877 0.663 0.303 0.427 11.4% -

M5Tree1 0.891 0.595 0.271 0.377 0.861 0.699 0.319 0.448 17.5% -

XGBoost1 0.896 0.586 0.267 0.385 0.879 0.660 0.302 0.431 12.6% -

ANFIS1 0.887 0.608 0.278 0.391 0.880 0.658 0.300 0.423 8.2% -

MARS1 0.876 0.638 0.291 0.416 0.878 0.661 0.302 0.432 3.6% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.884 0.618 0.286 0.397 0.888 0.639 0.287 0.399 3.4% 8.8%

GRNN2 0.926 0.494 0.226 0.300 0.881 0.631 0.297 0.423 27.7% 5.8%

SVM2 0.893 0.598 0.273 0.376 0.895 0.611 0.279 0.389 2.2% 6.3%

KNEA2 0.899 0.556 0.263 0.369 0.894 0.612 0.279 0.396 10.1% 7.7%

M5Tree2 0.902 0.546 0.258 0.358 0.877 0.654 0.298 0.421 19.8% 6.4%

XGBoost2 0.923 0.534 0.230 0.335 0.893 0.615 0.281 0.401 15.2% 6.8%

ANFIS2 0.904 0.560 0.256 0.359 0.888 0.612 0.289 0.404 9.3% 7.0%

MARS2 0.889 0.601 0.274 0.391 0.890 0.626 0.286 0.407 4.2% 5.3%

Shenyang C1 (Tmax, Tmin, Ra)

MLP1 0.829 0.730 0.320 0.487 0.833 0.743 0.325 0.498 1.8% -

GRNN1 0.896 0.571 0.238 0.367 0.837 0.724 0.301 0.490 26.8% -

SVM1 0.838 0.716 0.298 0.468 0.840 0.725 0.301 0.480 1.3% -

KNEA1 0.862 0.653 0.272 0.433 0.849 0.699 0.291 0.474 7.0% -

M5Tree1 0.865 0.648 0.270 0.429 0.827 0.749 0.311 0.504 15.6% -

XGBoost1 0.865 0.647 0.270 0.441 0.840 0.719 0.299 0.487 11.1% -

ANFIS1 0.857 0.666 0.277 0.448 0.841 0.718 0.299 0.484 7.8% -

MARS1 0.840 0.703 0.293 0.478 0.841 0.720 0.299 0.491 2.4% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.851 0.682 0.299 0.459 0.854 0.687 0.301 0.465 0.7% 7.5%

GRNN2 0.907 0.539 0.225 0.346 0.846 0.685 0.293 0.478 27.1% 5.4%

SVM2 0.859 0.666 0.278 0.438 0.861 0.674 0.280 0.449 1.2% 7.0%

KNEA2 0.871 0.614 0.264 0.424 0.865 0.660 0.275 0.445 7.5% 5.6%

M5Tree2 0.878 0.615 0.256 0.410 0.842 0.703 0.297 0.485 14.3% 6.1%

XGBoost2 0.898 0.585 0.235 0.391 0.860 0.671 0.279 0.458 14.7% 6.7%

ANFIS2 0.879 0.614 0.256 0.415 0.860 0.661 0.279 0.454 7.7% 7.9%

MARS2 0.858 0.664 0.277 0.453 0.856 0.685 0.285 0.470 3.2% 4.9%

https://doi.org/10.1371/journal.pone.0217520.t005
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the SVM and KNEA models exhibited very close predication accuracy in NEC (on average R2

= 0.871, RMSE = 0.659 mm day−1, NRMSE = 0.287 and MAE = 0.436 mm day−1) and NC (on

average R2 = 0.806, RMSE = 0.788 mm day−1, NRMSE = 0.273 and MAE = 0.576 mm day−1).

Much lower statistical errors were observed in QTP (on average R2 = 0.907, RMSE = 0.489

mm day−1, NRMSE = 0.154 and MAE = 0.351 mm day−1) compared with those obtained in

the other climatic zones (on average R2 = 0.850, RMSE = 0.685 mm day−1, NRMSE = 0.257

and MAE = 0.476 mm day−1). The results suggested that these machine learning models gave

Table 6. Statistical values of the eight machine learning models with different input parameters during training and testing at Beijing and Zhengzhou in the semi-

humid warm-temperate north China.

Station Inputs /

Model

Training Testing (RMSEtes—RMSEtrn)% (RMSEC2—RMSEC1)tes%

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1)

Beijing C1 (Tmax, Tmin, Ra)

MLP1 0.792 0.840 0.311 0.603 0.792 0.841 0.311 0.603 0.1% -

GRNN1 0.853 0.704 0.244 0.495 0.787 0.849 0.294 0.613 20.6% -

SVM1 0.795 0.836 0.289 0.580 0.797 0.831 0.287 0.588 0.6% -

KNEA1 0.817 0.783 0.271 0.558 0.795 0.835 0.289 0.603 6.6% -

M5Tree1 0.819 0.779 0.269 0.552 0.774 0.877 0.303 0.633 12.6% -

XGBoost1 0.819 0.779 0.270 0.566 0.791 0.842 0.291 0.611 8.1% -

ANFIS1 0.809 0.801 0.277 0.574 0.794 0.842 0.292 0.599 5.1% -

MARS1 0.797 0.826 0.286 0.596 0.793 0.838 0.290 0.608 1.5% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.818 0.787 0.291 0.576 0.816 0.788 0.292 0.578 0.1% 6.3%

GRNN2 0.869 0.667 0.231 0.473 0.799 0.805 0.286 0.601 20.7% 5.2%

SVM2 0.823 0.774 0.268 0.548 0.822 0.780 0.270 0.560 0.8% 6.1%

KNEA2 0.829 0.758 0.262 0.554 0.821 0.785 0.272 0.573 3.6% 6.0%

M5Tree2 0.840 0.733 0.254 0.528 0.798 0.829 0.287 0.606 13.1% 5.5%

XGBoost2 0.860 0.705 0.237 0.508 0.820 0.783 0.271 0.577 11.1% 7.0%

ANFIS2 0.837 0.740 0.256 0.541 0.810 0.784 0.278 0.585 5.9% 6.9%

MARS2 0.819 0.780 0.270 0.575 0.816 0.791 0.274 0.586 1.4% 5.6%

Zheng-

zhou

C1 (Tmax, Tmin, Ra)

MLP1 0.785 0.808 0.310 0.594 0.784 0.822 0.316 0.606 1.7% -

GRNN1 0.845 0.683 0.237 0.482 0.781 0.812 0.282 0.593 18.9% -

SVM1 0.791 0.796 0.277 0.561 0.789 0.806 0.280 0.579 1.3% -

KNEA1 0.811 0.752 0.261 0.541 0.790 0.797 0.277 0.570 6.0% -

M5Tree1 0.815 0.743 0.258 0.534 0.767 0.840 0.292 0.617 13.1% -

XGBoost1 0.814 0.748 0.260 0.549 0.784 0.809 0.281 0.594 8.2% -

ANFIS1 0.804 0.766 0.266 0.556 0.787 0.803 0.279 0.583 4.8% -

MARS1 0.790 0.793 0.276 0.577 0.788 0.800 0.278 0.584 0.9% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.810 0.757 0.291 0.558 0.808 0.761 0.293 0.561 0.5% 7.4%

GRNN2 0.862 0.645 0.224 0.458 0.795 0.767 0.274 0.577 18.9% 5.5%

SVM2 0.812 0.757 0.263 0.535 0.810 0.762 0.265 0.544 0.7% 5.5%

KNEA2 0.828 0.718 0.250 0.528 0.820 0.738 0.257 0.543 2.8% 7.4%

M5Tree2 0.836 0.700 0.243 0.509 0.799 0.781 0.272 0.576 11.6% 7.0%

XGBoost2 0.858 0.681 0.226 0.485 0.818 0.741 0.258 0.549 8.8% 8.4%

ANFIS2 0.835 0.703 0.244 0.518 0.809 0.751 0.265 0.558 6.8% 6.5%

MARS2 0.815 0.745 0.259 0.552 0.811 0.756 0.263 0.560 1.5% 5.5%

https://doi.org/10.1371/journal.pone.0217520.t006
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higher accuracy in the Qinghai-Tibet Plateau. The RMSE values obtained by these best-per-

forming models in each climatic zone were generally smaller than or close to those obtained in

the corresponding regions by previous studies when using only Tmax and Tmin data, e.g., by the

SVM (0.539 mm day−1) and ANN (0.561 mm day−1) models in Ejina City of China [13], by

ELM (0.444–0.498 mm day−1) mode, GANN (0.445–0.499 mm day−1) and WNN (0.443–0.641

mm day−1) models in the humid region of southwest China using Tmax and Tmin [2], by SVM

Table 7. Statistical values of the eight machine learning models with different input parameters during training and testing at Geermu and Lasa in the Qinghai-

Tibetan Plateau.

Station Inputs /

Model

Training Testing (RMSEtes—RMSEtrn)% (RMSEC2—RMSEC1)tes%

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1)

Geermu C1 (Tmax, Tmin, Ra)

MLP1 0.912 0.544 0.193 0.372 0.916 0.558 0.199 0.386 2.6% -

GRNN1 0.935 0.466 0.147 0.305 0.920 0.545 0.173 0.376 17.0% -

SVM1 0.919 0.521 0.165 0.346 0.923 0.535 0.170 0.363 2.7% -

KNEA1 0.925 0.503 0.159 0.336 0.920 0.541 0.172 0.370 7.6% -

M5Tree1 0.927 0.492 0.155 0.328 0.914 0.562 0.178 0.388 14.2% -

XGBoost1 0.929 0.485 0.153 0.333 0.921 0.541 0.172 0.373 11.5% -

ANFIS1 0.925 0.503 0.159 0.338 0.921 0.537 0.171 0.366 6.8% -

MARS1 0.917 0.524 0.166 0.356 0.921 0.542 0.172 0.370 3.4% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.927 0.497 0.176 0.346 0.931 0.520 0.185 0.366 4.6% 6.8%

GRNN2 0.951 0.436 0.128 0.288 0.923 0.512 0.169 0.368 17.4% 6.1%

SVM2 0.927 0.485 0.157 0.335 0.937 0.494 0.154 0.344 1.9% 7.7%

KNEA2 0.934 0.471 0.149 0.323 0.936 0.496 0.157 0.346 5.3% 8.3%

M5Tree2 0.937 0.46 0.145 0.315 0.922 0.528 0.171 0.377 14.8% 6.0%

XGBoost2 0.941 0.445 0.141 0.294 0.930 0.503 0.163 0.353 13.0% 7.0%

ANFIS2 0.939 0.471 0.142 0.312 0.886 0.509 0.202 0.368 8.1% 5.2%

MARS2 0.929 0.485 0.153 0.337 0.932 0.505 0.160 0.354 4.1% 6.8%

Lasa C1 (Tmax, Tmin, Ra)

MLP1 0.885 0.468 0.17 0.347 0.884 0.468 0.170 0.347 0.0% -

GRNN1 0.905 0.422 0.122 0.308 0.885 0.467 0.135 0.345 10.7% -

SVM1 0.891 0.452 0.131 0.331 0.888 0.460 0.133 0.339 1.8% -

KNEA1 0.897 0.441 0.127 0.323 0.885 0.465 0.134 0.344 5.4% -

M5Tree1 0.902 0.427 0.123 0.311 0.873 0.491 0.142 0.364 15.0% -

XGBoost1 0.904 0.424 0.122 0.315 0.887 0.462 0.133 0.342 9.0% -

ANFIS1 0.898 0.437 0.126 0.322 0.883 0.472 0.136 0.344 8.0% -

MARS1 0.889 0.455 0.132 0.336 0.886 0.463 0.134 0.344 1.8% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.904 0.424 0.157 0.325 0.902 0.430 0.156 0.324 1.4% 8.1%

GRNN2 0.931 0.378 0.103 0.27 0.895 0.437 0.129 0.332 15.6% 6.4%

SVM2 0.896 0.411 0.127 0.324 0.909 0.416 0.120 0.311 1.2% 9.6%

KNEA2 0.911 0.408 0.118 0.304 0.907 0.421 0.122 0.314 3.2% 9.5%

M5Tree2 0.916 0.396 0.114 0.293 0.894 0.448 0.129 0.336 13.1% 8.8%

XGBoost2 0.916 0.398 0.115 0.292 0.887 0.433 0.134 0.337 8.8% 6.3%

ANFIS2 0.918 0.394 0.114 0.294 0.892 0.443 0.131 0.325 12.4% 6.1%

MARS2 0.905 0.422 0.122 0.317 0.902 0.429 0.124 0.322 1.7% 7.3%

https://doi.org/10.1371/journal.pone.0217520.t007
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(0.530–0.868 mm day−1), M5Tree (0.637–0.953 mm day−1) and XGBoost (0.532–0.817 mm

day−1) models in different climatic zones of China [40].

The scatter plots of daily FAO-56 PM ET0 values and those predicted by the eight machine

learning models for the capital city of China (Beijing) over the five-fold cross validation peri-

ods under the two input combinations during testing are presented in Figs 3 and 4, respec-

tively. It can be seen that the selected machine learning models had various prediction

accuracies over the five periods. Overall, higher statistical errors were attained during the S4

Table 8. Statistical values of the eight machine learning models with different input parameters during training and testing at Wuhan and Guilin in the humid sub-

tropical central China.

Station Inputs /

Model

Training Testing (RMSEtes—RMSEtrn)% (RMSEC2—RMSEC1)tes%

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1)

Wuhan C1 (Tmax, Tmin, Ra)

MLP1 0.858 0.629 0.286 0.432 0.854 0.645 0.294 0.447 2.5% -

GRNN1 0.886 0.557 0.224 0.375 0.853 0.636 0.256 0.443 14.2% -

SVM1 0.864 0.609 0.245 0.410 0.859 0.623 0.251 0.425 2.3% -

KNEA1 0.871 0.591 0.238 0.401 0.854 0.634 0.255 0.437 7.3% -

M5Tree1 0.879 0.573 0.231 0.390 0.844 0.657 0.265 0.457 14.7% -

XGBoost1 0.878 0.577 0.232 0.408 0.854 0.636 0.256 0.450 10.2% -

ANFIS1 0.870 0.593 0.239 0.405 0.856 0.632 0.254 0.432 6.6% -

MARS1 0.862 0.613 0.246 0.422 0.855 0.632 0.254 0.437 3.1% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.883 0.569 0.259 0.397 0.879 0.585 0.262 0.402 2.8% 9.3%

GRNN2 0.916 0.500 0.193 0.344 0.865 0.580 0.245 0.424 16.0% 8.8%

SVM2 0.890 0.547 0.220 0.377 0.886 0.562 0.226 0.391 2.7% 9.8%

KNEA2 0.891 0.543 0.218 0.378 0.883 0.567 0.228 0.396 4.4% 10.6%

M5Tree2 0.901 0.519 0.209 0.363 0.863 0.594 0.247 0.435 14.5% 9.6%

XGBoost2 0.901 0.510 0.209 0.349 0.882 0.580 0.229 0.402 13.7% 8.8%

ANFIS2 0.900 0.521 0.210 0.365 0.875 0.567 0.236 0.406 8.8% 10.3%

MARS2 0.886 0.557 0.224 0.393 0.880 0.574 0.231 0.405 3.1% 9.2%

Guilin C1 (Tmax, Tmin, Ra)

MLP1 0.777 0.725 0.301 0.551 0.776 0.733 0.305 0.558 1.1% -

GRNN1 0.826 0.634 0.230 0.480 0.778 0.718 0.261 0.548 13.2% -

SVM1 0.791 0.695 0.252 0.524 0.787 0.705 0.256 0.533 1.4% -

KNEA1 0.796 0.684 0.248 0.516 0.775 0.724 0.263 0.548 5.8% -

M5Tree1 0.812 0.657 0.238 0.496 0.750 0.763 0.277 0.580 16.1% -

XGBoost1 0.803 0.673 0.244 0.519 0.774 0.724 0.263 0.559 7.6% -

ANFIS1 0.801 0.676 0.245 0.510 0.783 0.711 0.258 0.538 5.2% -

MARS1 0.781 0.710 0.258 0.546 0.775 0.723 0.262 0.555 1.8% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.813 0.665 0.276 0.509 0.812 0.670 0.278 0.512 0.8% 8.6%

GRNN2 0.86 0.588 0.206 0.435 0.794 0.651 0.251 0.526 10.7% 9.3%

SVM2 0.83 0.626 0.227 0.47 0.827 0.635 0.231 0.479 1.4% 9.9%

KNEA2 0.821 0.641 0.233 0.489 0.814 0.657 0.239 0.502 2.5% 9.3%

M5Tree2 0.841 0.606 0.22 0.456 0.790 0.680 0.254 0.531 12.2% 10.5%

XGBoost2 0.847 0.595 0.216 0.45 0.821 0.645 0.234 0.493 8.4% 10.9%

ANFIS2 0.837 0.612 0.222 0.463 0.808 0.639 0.243 0.504 4.4% 10.1%

MARS2 0.816 0.651 0.236 0.502 0.813 0.660 0.239 0.508 1.4% 8.7%

https://doi.org/10.1371/journal.pone.0217520.t008
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period (2010–2012), and the S5 period (2013–2015) produced higher prediction accuracy.

These differences were largely resulted from the time-series changes in climatic variables

among the five periods. This confirms the needs to apply the K-fold cross-validation method

for accurately estimating daily ET0 in various climates [27, 59]. Nevertheless, the performances

of these machine learning models showed the same tendency at various cross-validation stages,

with better daily ET0 estimates by the SVM, KNEA and MARS models. The dispersion degree

of the data points of the SVM, KNEA and MARS models was lower than that of the M5Tree,

Table 9. Statistical values of the eight machine learning models with different input parameters during training and testing at Guangzhou and Haikou in the

humid tropical south China.

Station Inputs /

Model

Training Testing (RMSEtes—RMSEtrn)% (RMSEC2—RMSEC1)tes%

R2 RMSE NRMSE MAE R2 RMSE NRMSE MAE

(mm d−1) (mm d−1) (mm d−1) (mm d−1)

Guangzhou C1 (Tmax, Tmin, Ra)

MLP1 0.737 0.650 0.268 0.498 0.741 0.663 0.273 0.509 2.0% -

GRNN1 0.784 0.591 0.212 0.444 0.745 0.653 0.234 0.501 10.5% -

SVM1 0.755 0.627 0.225 0.469 0.755 0.637 0.228 0.480 1.6% -

KNEA1 0.767 0.611 0.219 0.462 0.753 0.639 0.229 0.488 4.6% -

M5Tree1 0.780 0.593 0.212 0.448 0.719 0.681 0.244 0.519 14.8% -

XGBoost1 0.775 0.600 0.215 0.459 0.748 0.646 0.232 0.497 7.7% -

ANFIS1 0.768 0.610 0.218 0.462 0.747 0.649 0.232 0.491 6.4% -

MARS1 0.749 0.633 0.227 0.485 0.750 0.645 0.231 0.495 1.9% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.782 0.590 0.243 0.455 0.786 0.592 0.245 0.457 0.3% 10.7%

GRNN2 0.837 0.520 0.183 0.391 0.771 0.592 0.222 0.477 13.8% 9.3%

SVM2 0.802 0.564 0.202 0.426 0.801 0.567 0.207 0.440 0.5% 11.0%

KNEA2 0.796 0.554 0.204 0.437 0.793 0.570 0.210 0.451 2.9% 10.8%

M5Tree2 0.818 0.539 0.193 0.408 0.766 0.615 0.224 0.480 14.1% 9.7%

XGBoost2 0.811 0.534 0.198 0.419 0.797 0.580 0.208 0.447 8.6% 10.2%

ANFIS2 0.814 0.545 0.195 0.417 0.779 0.579 0.218 0.464 6.2% 10.8%

MARS2 0.790 0.568 0.208 0.448 0.789 0.572 0.212 0.460 0.7% 11.3%

Haikou C1 (Tmax, Tmin, Ra)

MLP1 0.738 0.786 0.262 0.621 0.751 0.798 0.264 0.629 1.5% -

GRNN1 0.782 0.710 0.213 0.551 0.752 0.809 0.242 0.641 13.9% -

SVM1 0.750 0.760 0.228 0.595 0.760 0.789 0.239 0.625 3.8% -

KNEA1 0.742 0.772 0.231 0.602 0.735 0.825 0.247 0.648 6.9% -

M5Tree1 0.768 0.735 0.220 0.579 0.729 0.839 0.251 0.660 14.1% -

XGBoost1 0.773 0.724 0.217 0.573 0.756 0.802 0.240 0.636 10.8% -

ANFIS1 0.764 0.738 0.221 0.580 0.739 0.826 0.247 0.642 11.9% -

MARS1 0.741 0.773 0.231 0.611 0.751 0.812 0.243 0.643 5.0% -

C2 (Tmax, Tmin, Pt, Ra)

MLP2 0.805 0.682 0.224 0.524 0.821 0.705 0.236 0.552 3.4% 11.7%

GRNN2 0.859 0.592 0.171 0.444 0.789 0.706 0.227 0.597 19.3% 12.7%

SVM2 0.829 0.632 0.189 0.484 0.837 0.675 0.202 0.524 6.8% 14.4%

KNEA2 0.807 0.668 0.200 0.520 0.814 0.709 0.212 0.556 6.1% 14.1%

M5Tree2 0.835 0.618 0.185 0.474 0.801 0.734 0.220 0.572 18.8% 12.5%

XGBoost2 0.805 0.655 0.202 0.529 0.833 0.678 0.203 0.529 3.5% 15.5%

ANFIS2 0.829 0.628 0.188 0.486 0.779 0.716 0.232 0.566 14.0% 13.3%

MARS2 0.806 0.669 0.200 0.522 0.819 0.709 0.212 0.556 6.0% 12.7%

https://doi.org/10.1371/journal.pone.0217520.t009
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Fig 3. Scatter plots of the ET0 values calculated by the FAO-56 PM equation for China’s capital city of Beijing and the values estimated by the

eight machine learning models during five cross-validation stages under the input combination of Tmax, Tmin and Ra in the testing stage.

https://doi.org/10.1371/journal.pone.0217520.g003
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Fig 4. Scatter plots of the ET0 values calculated by the FAO-56 PM equation for China’s capital city of Beijing and the values estimated by the

eight machine learning models during five cross-validation stages under the input combination of Tmax, Tmin, Pt and Ra in the testing stage.

https://doi.org/10.1371/journal.pone.0217520.g004
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MLP and GRNN models. Figs 5 and 6 show the scatter plots of estimated values of daily ET0

by these machine learning models against the corresponding FAO56-PM values in the arid

NWC (Urumqi and Dunhuang) and the humid SC (Guangzhou and Haikou) during the test-

ing period, while the corresponding scatter plots of IM (Yinchuan and Erenhot), NEC (Harbin

and Shenyang), NC (Beijing and Zhengzhou), QTP (Geermu and Lasa) and CC (Wuhan and

Guilin) can be found in S1–S5 Figs. It is seen that the M5Tree, MLP and GRNN models exhib-

ited more scattered estimates compared with the other models. The daily ET0 values predicted

by the SVM, KNEA and MARS models were more close to the corresponding FAO-56 PM

Fig 5. Scatter plots of predicted ET0 values using the eight machine learning models against their corresponding FAO56-PM values during testing at Urumqi and

Dunhuang in the arid desert of northwest China.

https://doi.org/10.1371/journal.pone.0217520.g005
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values and generally showed the same tendency, which further confirmed the superiority of

the SVM, KNEA and MARS for daily ET0 estimation across China.

Comparison of prediction accuracy of eight machine learning models

under two input combinations

As seen from Tables 3–9, the predicted ET0 values differed significantly under the two input

combinations of climatic variables (C1: Tmax, Tmin and Ra; C2: Tmax, Tmin, Pt and Ra) during

training and testing. Generally, machine learning models with the input combination of Tmax,

Fig 6. Scatter plots of predicted ET0 values using the eight machine learning models against their corresponding FAO56-PM values during testing at Guangzhou

and Haikou in the humid tropical south China.

https://doi.org/10.1371/journal.pone.0217520.g006
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Tmin, Pt and Ra (on average R2 = 0.879, RMSE = 0.613 mm day−1, NRMSE = 0.214 and

MAE = 0.426 mm day−1 during training; R2 = 0.862, RMSE = 0.663 mm day−1, NRMSE =

0.235 and MAE = 0.469 mm day−1 during testing) obtained better prediction accuracy com-

pared with those with the input combination of Tmax, Tmin and Ra (on average R2 = 0.844,

RMSE = 0.666 mm day−1, NRMSE = 0.232 and MAE = 0.467 mm day−1 during training; R2 =

0.829, RMSE = 0.718 mm day−1, NRMSE = 0.250 and MAE = 0.508 mm day−1 during testing)

in the whole China. These statistical results were generally similar to those obtained by various

machine learning models with only Tmax and Tmin data in previous studies [2, 13, 40]. How-

ever, the incorporation of Pt as input parameter to the machine learning models introduced an

average decrease in RMSE by 7.7% and 7.6% during the training and testing periods, respec-

tively. Specifically, an average decrease in RMSE by 4.8%, 6.0%, 7.4%, 6.5% and 6.5% were

obtained during the testing period by considering Pt in the machine learning models in NWC,

IM, QTP, NEC and NC, respectively. However, much higher decreases in RMSE were

obtained in CC (by 9.7%) and SC (by 12.4%) by machine learning models with the input com-

bination of Tmax, Tmin, Pt and Ra compared with those with the input combination of Tmax,

Tmin and Ra. These results indicated that the incorporation of precipitation information in

machine learning models can improve the prediction accuracy of daily ET0, particularly in the

subtropical and tropical humid regions (Tables 3–9). [59]have found that the prediction accu-

racy of empirical and machine learning models for estimating daily global solar radiation can

be much improved by considering precipitation as an input, because it was a manifestation of

cloud cover and could correct the temperature-based models by considering its effects on the

radiation reduction. This can also explain why the performance of machine learning models

for daily ET0 prediction from daily minimum/maximum temperature can be enhanced when

the information of precipitation was further included.

Comparison of model stability of eight machine learning models

As illustrated earlier, the GRNN, XGBoost and M5Tree models outperformed the correspond-

ing MLP, SVM, KNEA, ANFIS and MARS models for predicting daily ET0 in the whole China

during the training period in terms of R2, RMSE, NRMSE and MAE (Tables 3–9). However,

the SVM, KNEA and MARS models produced better daily ET0 estimates compared with the

other machine learning models during the testing period. The percentage increase in RMSE

during testing relative to RMSE during training by the eight machine learning models for esti-

mating daily ET0 in NWC (Urumqi and Dunhuang), IM (Yinchuan and Erenhot), NEC (Har-

bin and Shenyang), NC (Beijing and Zhengzhou), QTP (Geermu and Lasa), CC (Wuhan and

Guilin) and SC (Guangzhou and Haikou) under the two input combinations are also shown in

Tables 3–9. The model stability is also an essential factor to consider for predicting more accu-

rate and reliable daily ET0. These tables suggested that the SVM, MLP and MARS models were

the most stable models with the consistently small percentage increase in RMSE during testing

relative to that during training in all the climatic zones of China (on average 1.9%, 2.0% and

2.6%, respectively). The KNEA and ANFIS models also exhibited relatively smaller increase in

testing RMSE (on average 6.4% and 7.8%, respectively). However, the GRNN, M5Tree and

XGBoost models exhibited the much larger increases in testing RMSE (on average 20.1%,

14.5% and 12.0%, respectively). These increase indicated the instability of the GRNN, M5Tree

and XGBoost models as they introduced high decreases in model performances when includ-

ing new dataset. [40]showed that the kernel-based SVM and ELM models were more stable

compared with the tree-based RF, M5Tree and XGBoost models for the estimation of daily

ET0. [34]also found that the RF and bagging models showed greater increases in RMSE during

testing compared with the SVR and gradient models when predicting global solar radiation.
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These suggest that the kernel-based machine learning models (e.g., SVM, ELM and KNEA)

are generally more stable than the tree-based models (RF, M5Tree and XGBoost).

Comprehensive evaluation of eight machine learning models

The SVM, KNEA and MARS models outperformed the other machine learning models in

daily ET0 modeling in terms of prediction accuracy during the testing period. Considering the

model stability, the SVM, MLP and MARS exhibited very small percentage increase in RMSE

during testing (< 3.0%), while the KNEA and ANFIS models showed relatively small increase

in testing RMSE (< 8.0%). The SVM model exhibited the best combination of prediction accu-

racy and model stability among the eight machine learning models, while the KNEA and

MARS model also provided satisfactory combination of prediction accuracy and model stabil-

ity. Comprehensively considering the prediction accuracy and model stability, the SVM,

KNEA and MARS models are recommended for estimating daily ET0 using only temperature

and precipitation data across various climatic regions of China and maybe elsewhere in similar

climates.

Conclusions

The performance of eight machine learning models in four categories, e.g. neuron-based

(MLP, GRNN, ANFIS), kernel-based (SVM, KNEA), tree-based (M5Tree, XGBoost) and

curve-based (MARS) models, for the estimation of daily ET0 were compared based on only

temperature and precipitation data during 2001–2015 obtained from 14 representative stations

across various climatic zones of China. The results showed that the machine learning models

using only temperature attained satisfactory daily ET0 estimation. The prediction accuracy was

further improved across China when information of precipitation was considered, especially

in the (sub)tropical humid regions. This indicates that precipitation is a manifestation of rela-

tive humidity to some extent and can correct the temperature-based ET0 models. The kernel-

based SVM, KNEA and curve-based MARS models generally gave more accurate daily ET0

estimates than the other models for, with the best performance by KNEA in NWC and IM, by

SVM in QTP, CC and SC, as well as a similar best performance by them in NEC and NC. The

SVM, MLP, MARS and KNEA models showed relatively small percentage increase in RMSE

during testing over the training one. Comprehensively considering both prediction accuracy

and model stability, SVM is highly suggested, while KNEA and MARS are also alternative

models for predicting daily ET0 in various climatic regions of China. The satisfactory perfor-

mances of these proposed machine learning models with ambient temperatures and trans-

formed precipitation indicates that it is possible for near-future prediction of daily ET0 using

public weather forecasts, including daily maximum and minimum temperatures and whether

there is precipitation or not. Nevertheless, more study is needed to explore the performances

of the proposed machine learning models at varying temporal scales or in various climatic

regions.
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