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Abstract

The sea lamprey (Petromzons marinus) is a devastating invasive species that represents a

significant impediment to restoration of the Laurentian Great Lakes. There is substantial

interest in developing environmentally benign control strategies for sea lamprey, and many

other aquatic invasive species, that employ the manipulation of semiochemical information

(pheromones and chemical cues) to guide the movements of invaders into control opportu-

nities (e.g. traps, locations for safe pesticide application, etc.). A necessary precursor to the

use of semiochemicals in conservation activities is the identification of the chemical constitu-

ents that compose the odors. Here, we characterize the major nitrogenous substances from

the water-soluble fraction of a skin extract that contains the sea lamprey alarm cue, a power-

ful repellent that has proven effective in guiding the movements of migrating sea lamprey in

rivers. Nitrogenous compounds are suspected components of fish alarm cues as the olfac-

tory sensory neurons that mediate alarm responses transduce amino acids and related

compounds. A laboratory assay confirmed the behavioral activity contained in the alarm cue

resides in the water-soluble fraction of the skin extract. This water-soluble fraction consisted

primarily of creatine (70%), heterocyclic nitrogenous compounds (4.3%) and free amino

acids (18.4%), respectively. Among the free amino acids characterized in our study, essen-

tial amino acids constituted 13% of the water-soluble fraction. Free amino acids isolated

from the water-soluble fraction composed of arginine, phenylalanine, threonine, and aspara-

gine 3.9, 2.7, 2.6 and 2.4% of the water-soluble fraction, respectively. We discuss the impli-

cations of these findings for understanding the nature and use of the sea lamprey alarm cue

in conservation activities.

Introduction

Parasitic feeding by the invasive sea lamprey (Petromyzon marinus) remains the most signifi-

cant source of non-fishing mortality for many fishes of the Laurentian Great Lakes and repre-

sents one of the greatest impediments to restoration of the world’s largest freshwater

ecosystem. The United States and Canada currently expend more than $20 million (US) each
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year to suppress the invasive population by killing riverine larvae with lampricides before they

metamorphose into parasites, and by maintaining dams that prevent migrating adults from

entering hundreds of rivers with high-quality spawning habitat [1]. Though effective, there is

considerable societal interest in reducing pesticide applications to the environment and recon-

necting the Great Lakes to its tributaries via dam removal and fish passage [2]. Thus, the devel-

opment and testing of new environmentally benign tactics for reducing reproductive success

of the sea lamprey is a significant conservation goal [3].

Behavioral manipulation refers to pest management techniques that rely on exploiting an

animal’s innate responses to environmental information [4]. By manipulating the presentation

of sensory information, an animal is deceived into making a fitness reducing decision, such as

entering an unproductive habitat. Semiochemicals represent one such class of manipulative

information—molecules released by animals into the environment that are used to communi-

cate with another individual to complete important tasks (e.g. reproductive pheromones) or

that inadvertently broadcast public information about the environment (cues). The sea lam-

prey relies extensively on semiochemicals during its reproductive migration into rivers.

Overlapping generations of stream-resident larvae release a cue that labels areas of past repro-

ductive success and guides migrants from offshore into streams likely to support future gener-

ations [5–7]. Following stream selection, nesting sexually mature males release a pheromone

to attract ovulating females and complete the act of spawning [8,9]. Both odors are attractive

and reveal the presence of opportunities to maximize fitness by facilitating mate search [10]

and restricting reproduction to habitats suitable to support newly hatched offspring [5–7].

Sea lamprey also produce a natural repellent, putatively an alarm cue emitted from dam-

aged skin and other tissues [11–13]. By labeling the surrounding waters, alarm cues released

from recently attacked or killed individuals operate as public information and notify conspecif-

ics, and other taxa attuned to the cue, of the presence of predation risk [14–16]. Prey that detect

an alarm cue typically exhibit antipredator behaviors including flight, avoidance, reduced activ-

ity, or shelter seeking [17–18]. During the transition from offshore waters to streams, migrating

sea lampreys pass through an ecotone partly defined by a radically altered predator community.

In rivers, these nocturnal migrants often move in close proximity to river shorelines to ensure

entry into tributaries emitting larval odor [7,19]. Such movement tendencies may increase the

likelihood of contact with mammalian shoreline predators, important nighttime consumers of

diadromous fishes [20,21]. Migrating sea lamprey demonstrate a strong and consistent avoid-

ance response to an alarm cue extracted from conspecifics [11,13,22] and will avoid areas of a

natural stream activated with this substance [12,23,24]. The alarm cue has also proven effective

in guiding sea lampreys towards trapping devices placed on a shoreline [25].

These findings have sparked considerable interest in the isolation and identification of the

chemical compounds that compose the sea lamprey alarm cue for use as a repellent in conser-

vation activities. The chemical nature of alarm substances contained in fish tissue is unresolved

and has received sparse research activity [26,27], yet remains a high priority [28]. In the rela-

tively well-studied Ostariophysan fishes, evidence has accrued to suggest these alarm sub-

stances include a variety of water soluble nitrogenous compounds including amino acids and

oligopeptides [29,30], hypoxanthine-3-N-oxide and similar compounds containing the nitro-

gen-oxide functional group of purine-N-oxides [31–33], histamine [34], protein, possibly as a

carrier molecule [35], and glycosaminoglycan chondroitin [36]. Further, mixtures of odorants

are expected to compose each alarm cue, as full behavioral reactivity appears species specific,

with partial overlap observed among related species [37,38] including lampreys [39,40].

Examination of the olfactory sensory neurons (OSNs) in fishes also suggests the potential

for nitrogenous compounds to serve as constituents in fish alarm cue mixtures. The olfactory

organ of fishes is innervated by three primary OSN morphotypes that occupy distinct layers in
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the olfactory epithelium: ciliated cells, microvillous cells, and crypt cells [26]. Crypt cells are

sparsely distributed in superficial layer of the olfactory organ, and express V1R-type receptors

that rely on cAMP-activated signaling during odorant detection, indicating transduction of

amino acids and related nitrogenous compounds [41–44]. The crypt cell is the OSN that reacts

to fish alarm cue extracts [36,45] and is unique to fishes, including elasmobranchs [46]. The

sea lamprey olfactory system also contains three OSN morphotypes that are homologous to

those observed in bony fishes and elasmobranchs [47–49]. In particular, the ‘short’ lamprey

OSN is sparsely distributed, displays the characteristic egg-shape, and occupies the most super-

ficial layer of the olfactory epithelium, each consistent with the description of crypt cells in

more derived fishes [46,50]. These findings led Laframboise et al. [49] to suggest evolutionary

conservation of the crypt cell from the Agnatha to the Gnathostomata. Further, (Green et al.

[51]) report a chemotactic map of neural activity in response to odorants in three bulbar

regions of the sea lamprey olfactory bulb that receive axons from the sea lamprey main olfac-

tory epithelium and the accessory olfactory organ, the latter a feature unique to lampreys [52].

Each region was reactive to amino acids.

Based on this evidence we hypothesize the sea lamprey alarm cue contains water soluble

nitrogenous compounds that are emitted from damaged skin that induce anti-predator behav-

ior in migrating sea lamprey. In this study, we characterize the nitrogenous compounds con-

tained in a previously reported aqueous ethanolic Soxhlet extract from lamprey skin that

contains the repellent molecules [12,13,53]. First, we separated the extract into chloroform-solu-

ble and chloroform-insoluble fractions; the chloroform-soluble fraction exhibits no behavioral

reactivity and contains cholesterol esters, tri- and di-glycerides, cholesterol, free fatty acids and

minor amounts of environmental pollutants [53]. We report evidence that the alarm cue is con-

tained in the water-soluble (chloroform-insoluble) fraction and proceeded to fractionate, purify,

and chemically characterize the major nitrogenous compounds that compose this mixture.

Materials and methods

Collection and preparation of sub-adult migratory sea lamprey for

extraction and behavioral assays

Migrating sea lamprey were obtained from the annual spring trapping operations of the US

Fish and Wildlife Service and the Canadian Department of Fisheries and Oceans in tributaries

to Lake Huron (Cheboygan and Ocqueoc Rivers, Michigan, USA). After capture, government

staff transported the lampreys to the U.S. Geological Survey’s Hammond Bay Biological Sta-

tion (Millersburg, Michigan, USA; 45.4976906˚N, 84.0363127˚W) and placed them into 800 L

tanks receiving continuous water from Lake Huron water (5–18˚C depending on date). Lam-

preys were held until use in the behavioral assays, or for the collection of skin. Prior to removal

of the skin, each animal was euthanized via anesthetic overdose (Ethyl 3-aminobenzoate

methanesulfonate aka tricaine methanesulfonate aka MS-222, CAS No. 886-86-2) by immer-

sion in a bath at a concentration of 10 mg L-1 until respiration ceased for five minutes, followed

by decapitation. After death, the carcass was rinsed in deionized water and the skin removed

with a scalpel. Skins were stored at -20˚C until use in the extraction procedures. All procedures

for lamprey maintenance, euthanasia, and processing were approved by the Michigan State

University Institutional Animal Care and Use Committee (permit # AUF 01/14-007-00).

Extraction of the skin odorants

Frozen sea lamprey skins 2.14 Kg (220 skins) were extracted in a Soxhlet apparatus with 80%

ethanol and 20% RO water as solvent (~100 g of skins in each extraction with 600 mL of 80%
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ethanol for 6 hours). We did not use special precautions for Soxhlet extraction of sea lamprey

skin based on our earlier observation that heating did not impact the odorants. The combined

extract, evaporated under vacuum to remove ethanol, was lyophilized to yield aqueous ethano-

lic extract as a powder (41.9 g). Solvent partitioning of the aqueous ethanolic extract (41.7 g)

resulted in chloroform-soluble (21.4 g) and insoluble (water-soluble) (20.3 g) fractions. Skin

extract and fractions were stored at -80˚C until further use.

Confirmation of behavioral reactivity in the chloroform-insoluble fraction

To confirm the hypothesis that behavioral reactivity was confined to the chemical constituents

captured in the chloroform-insoluble fraction, we examined the response of migratory-phase

male sea lamprey to the extraction fractions using a standard laboratory space-use assay

[12,13]. Specifically, we examined whether sea lampreys were repelled by the full skin extract

(positive control) and the chloroform-insoluble fraction of the full skin extract, but were not

repelled by the extraction solvent (negative control) or the chloroform-soluble fraction, as pre-

dicted. To accomplish this we observed the space-use of ten replicate groups of ten male sea

lampreys (N = 10 for each stimulus odor) after exposure to the extraction fractions and the sol-

vent control in a 5.0 m X 1.84 m section of a linear raceway at the Hammond Bay Biological

Station (Millersburg, Michigan, USA; 45.4976906˚N, 84.0363127˚W). On a given night, five

groups of ten male sea lampreys were stocked into the holding section of each raceway at 15:00

to acclimate the animals to the water. Males were chosen because (a) male and female sexually

immature sea lamprey do not differ in their response to the extracted predator cue, and (b) the

response does not attenuate in males at the onset of maturation, but does in females [13]. The

first trial each of night began at ~22:00. A single trial lasted for 30 min and consisted of a 10

min pre-stimulus period (no odor) and a 20 min stimulus period when the odor was intro-

duced into one half of the raceway. Prior to introducing the odor into the raceway, we mixed a

stimulus odor into 400 ml of lake water collected from the raceway in a 500 mL Erlenmeyer

flask that was continuously stirred with a 2 cm magnetic stir bar during release. We introduced

the test odor/lake water mixture into one side of each raceway at the rate of necessary to

achieve a 1:106 dilution (by volume when mixed into one half of the discharge) with a labora-

tory-grade peristaltic pump (MasterFlex model 7533–20). To ensure no cross-contamination

of odors we used separate sets of pump tubing for each stimulus odor. We observed lamprey

movements in an adjacent room on video monitors and recorded their activity onto digital

media. To analyze lamprey distributions, we recorded the position of each subject every 30 sec

after the start of a trial by replaying the video and assigning each lamprey to the stimulus or

non-stimulus side of the experimental arena based on the position of its head. The data from

the final 10 min of the stimulus period was used to obtain the proportion of animals on the

stimulus side of the raceway for each trial. The predictions relative to the solvent control were

analyzed with two-tailed t-tests (α = 0.05, assuming equal variance) where the proportion of

animals on the stimulus side of the raceway was the dependent variable. Normality was con-

firmed with Shapiro-Wilks tests (all P> 0.12).

General procedures for chromatographic purification and spectroscopic

analyses

Solvents used for isolation and purification steps were ACS reagent grade—Sigma-Aldrich

Chemical Company (St. Louis, MO, USA). A CombiFlash MPLC purification system (Tele-

dyne ISCO, Lincoln, NE, USA), equipped with C18 RediSep (86 g, C18 reverse phase) column,

was used for the fractionation chloroform-insoluble fraction. Preparative HPLC (LC-20, Japan

analytical industry Co., Ltd, Tokyo, Japan) equipped with XTerra Prep MS C-8 column
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(10 μm, 19 x 250 mm, Waters Corporation, Milford, MA, USA) was used for the purification

of CombiFlash MPLC fractions. NMR spectra were recorded on 500 MHz (Varian Unity

±500, 1H NMR) and 125 MHz (Varian Unity ±500, 13C NMR) VRX instruments. Unless speci-

fied, D2O was used as the solvent for NMR experiments. HR-ESITOFMS spectra of pure iso-

lates were recorded on a Waters Xevo G2-S QTOF LC mass spectrometer (Waters

Corporation, Milford, MA, USA).

Optical rotation measurements

Optical rotations was determined on a PerkinElmer model 341 polarimeter at 20˚C and 589

nm according to published procedure [54]. The specific rotations were calculated according to

the equation [α]20
D = (100α)/(l × c) where l is the path length in decimeters and c is the con-

centration in g/100 mL.

Chromatographic purification and isolation of pure compounds in sea

lamprey skin ethanolic extract

An aliquot (20.1 g) of the chloroform-insoluble fraction was further fractionated by Combi-

Flash MPLC purification system by eluting with water:methanol step gradients (8:2, 1:1, 3:7

v/v) and finally with methanol (100%) gave fractions that were then combined based on similar

UV profile. The resulting fractions were A (14.4 g), B (1.88 g) and C (3.74 g), respectively (Fig

1, Figure A in S1 File). An aliquot of the fraction A (1.4 g), further fractionated by HPLC and

eluting with water:methanol 95:5 v/v, yielded three sub-fractions, A-1 (1.06 g), A-2 (172 mg)

and A-3 (168 mg), respectively (Fig 1, Figure D in S1 File). Fraction A-1 (102 mg), crystallized

from water:methanol twice, afforded creatine (94 mg, Fig 2, Figures A-D in S2 File) [55]. Simi-

larly, an aliquot of fraction A-2 (104 mg), purified by crystallization from water:acetone,

yielded another batch of creatine (56 mg) and arginine (47 mg, Fig 3, Figures E-H in S2 File)

[56–58]. Fractions A-3 was a complex mixture as indicated by HPLC profile and hence kept

aside.

An aliquot of fraction B (1.75 g), fractionated on CombiFlash MPLC purification system by

eluting with water:methanol gradient (9:1, 8:2, 7:3, 6:4 and 1:1, v/v), yielded sub-fractions B-1

(520 mg), B-2 (420 mg) and B-3 (680 mg), respectively (Fig 1, Figure B in S1 File). The HPLC

purification of fraction B-1 (400 mg) by elution with water:methanol (95:5 v/v) under isocratic

conditions yielded sub-fractions B-1(a) (32 mg), B-1(b) (90 mg), B-1(c) (148 mg), B-1(d) (33

mg), B-1(e) (78 mg) and B-1(f) (25 mg), respectively (Fig 1, Figure E in S1 File). Fraction B-1

(c) (65 mg), purified by crystallization from water:methanol, afforded another batch of crea-

tine (48 mg) [55]. Purification of fraction B-1(e) (75 mg) by HPLC and elution with water:

methanol (95:5 v/v) (4 mL/min) under isocratic conditions yielded valine (71 mg, Fig 3, Fig-

ures I-L in S2 File) [56–58]. Fractions B-1(a), B-1(b), B-1(d) and B-1(f), complex mixtures as

indicated by HPLC profile, were in minute quantities and hence kept aside. Similarly, fraction

B-2 (370 mg) was further fractionated by HPLC by eluting with water:methanol 95:5 v/v (4

mL/min) under isocratic condition afforded fractions B-2(a‘) (40 mg), B-2(a) (215 mg) and B-

2(b) (115 mg), respectively (Fig 1, Figure F in S1 File). Fraction B-2(a‘), a complex mixture as

indicated by HPLC profile, was in small quantity and hence kept aside. An aliquot of fraction

B-2(a) (190 mg), purified by HPLC by eluting with water:methanol 98:2 v/v, 2 mL/min under

isocratic conditions yielded leucine (120 mg, 32 min, Fig 3, Figures M-P in S2 File) [56–58]

and isoleucine (54 mg, 38 min, Fig 3, Figures Q-T in S2 File) [56–58]. Similarly, aliquot of frac-

tion B-2(b) (100 mg), purified by HPLC and eluting with water:methanol 98:2 v/v (2 mL/min)

under isocratic condition yielded isoleucine (35 mg) and 6 (tyrosine, 26 mg, 42 min, Fig 3, Fig-

ures U-X in S2 File) [56–58]. An aliquot of fraction B-3 (400 mg), fractionated by HPLC by

Nitrogenous compounds in sea lamprey skin

PLOS ONE | https://doi.org/10.1371/journal.pone.0217417 May 23, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0217417


eluting with water:methanol 95:5 v/v (3 mL/min) under isocratic conditions yielded three frac-

tions B-3(a‘) (59 mg), B-3(a) (255 mg) and B-3(b) (80 mg), respectively (Fig 1, Figure G in S1

File). Fraction B-3(a‘) was a complex mixture, as indicated by HPLC profile, and in very small

quantity. Due to inadequate quantity, we did not analyze it further. Fraction B-3(a) (140 mg),

purified by HPLC by eluting with water:methanol 98:2 v/v (3 mL/min) under isocratic condi-

tions, yielded hypoxanthine (122 mg, 65 min, Fig 2, Figures A-D in S3 File) [59]. Purification

of fraction B-3(c) (35 mg) under same conditions yielded inosine (22 mg, 82 min, Fig 2, Fig-

ures E-H in S3 File) [59].

Fraction C (2.1 g), fractionated on CombiFlash MPLC purification system by eluting with

water:methanol (7:3, 6:4, 1:1 v/v and 100% methanol) yielded four fractions C-1 (130 mg), C-2

(235 mg), C-3 (630 mg) and C-4 (1.07 g), respectively (Fig 1, Figures C and H-N in S1 File).

An aliquot of fraction C-1 (120 mg), purified by HPLC and eluting with water:methanol 85:15

v/v (3 mL/min) under isocratic conditions yielded adenine (38 mg, 55 min, Fig 2, Figures I-L

in S3 File) [60] and xanthine (78 mg, 66 min, Fig 2, Figures M-P in S3 File) [60]. Fraction C-2

(160 mg), purified by HPLC (water:methanol 95:5 v/v, 4 mL/min) under isocratic conditions

gave histidine (30 mg, 55 min, Fig 3, Figures Q-T in S3 File) [56–58] and glutamic acid (15

mg, 74 min, Fig 3, Figures U-X in S3 File) [56–58]. Purification of an aliquot of fraction C-3

(100 mg) by HPLC (water:methanol 95:5 v/v, 2.2 mL/min) under isocratic conditions afforded

phenylalanine (48 mg, 51 min, Fig 3, Figures A-D in S4 File) [56–58] and tryptophan (20 mg,

84 min, Fig 3, Figures E-H in S4 File) [56–58]. Fraction C-4 (300 mg), fractionated by HPLC

by eluting with water:methanol 80:20 v/v (3 mL/min) gave three fractions C-4(a) (159 mg), C-

4(b) (87 mg) and C-4(c) (48 mg), respectively (Fig 1, Figures L-N in S1 File). Purification of

C-4(a) (155 mg) by HPLC (water:methanol 90:10 v/v, 4 mL/min, isocratic) gave threonine (82

mg, 41 min, Fig 3, Figures I-L in S4 File) [56–58] and asparagine (77 mg, 47 min, Fig 3, Figures

M-P in S4 File) [56–58]. Similarly, purification of C-4(b) (85 mg) under identical conditions

yielded methionine (27 mg, 35 min, Fig 3, Figures Q-T in S4 File) [56–58] and cysteine (55

Fig 1. Fractionation and purification of components from the deterrent water-soluble fraction of sea lamprey

skin extract. �Details are in the experimental section.

https://doi.org/10.1371/journal.pone.0217417.g001
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mg, 42 min, Fig 3, Figures U-X in S4 File) [56–58]. Similarly, fraction C-4(c) (45 mg), purified

by HPLC (water:methanol 90:10 v/v, 3 mL/min, isocratic) yielded adenosine (32 mg, 46 min,

Fig 2, Figures A-D in S5 File) [56–58] and glycine (16 mg, 53 min, Fig 3, Figures E-H in S5

File) [56–58].

Results

The lampreys exhibited no preference response to the solvent control (proportion on the stim-

ulus side, mean ± 2 SE, 0.501 ± 0.07; Fig 4). As predicted, migratory-phase male sea lamprey

were repelled by the full skin extract (vs. solvent control, t1,18 = 6.06, P< 0.0001), and the chlo-

roform-insoluble fraction (vs. solvent control, t1,18 = 6.83, P< 0.0001). The lampreys were not

significantly repelled by the chloroform-soluble fraction (vs. solvent control, t1,18 = 1.58,

P = 0.13).

Therefore, fractionation and purification of adult sea lamprey deterrent water-soluble frac-

tion of skin extract, prepared by Soxhlet extraction of the skin with 80% aqueous ethanol for 6

hours [6], were carried out with medium pressure liquid chromatography (MPLC, Combi-

Flash) and preparative HPLC. The chemical identity of all pure isolates were determined by
1H- and 13C-NMR and HRESIMS experiments. The 1H- (500 MHz) and 13C- NMR (125

MHz) chemical shift values presented below for each pure isolate are expressed in ppm, based

on the residual chemical shift values for D2O at 3.79 ppm, and for DMSO-d6 at 2.50 and

Fig 2. Chemical structures of other nitrogenous compounds isolated from the deterrent water-soluble fraction of the sea lamprey skin extract: creatine,

hypoxanthine, inosine, adenine, xanthine, and adenosine.

https://doi.org/10.1371/journal.pone.0217417.g002
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39.9 ppm, respectively. NMR (1H and 13C) spectral data of the isolated compounds are sum-

marized in Tables 1 and 2 and HRESIMS and optical rotation data in Table 3. The spectral and

optical rotation data of the isolates were identical to the spectral and optical rotation data for

authentic samples of L-amino acids (Fig 3) and nitrogenous compounds (Fig 2) [55–61].

Discussion

Behavioral reactivity was confined to the chloroform-insoluble fraction of a Soxhlet skin

extract, suggesting constituents of the sea lamprey alarm cue are water-soluble nitrogenous

compounds, as confirmed by detailed NMR and MS experiments, consistent with the predic-

tions arising from the sensory physiology of fishes, including lampreys, and prior reported

work with individual compounds (e.g. hypoxanthine-3-N-oxide). The most abundant compo-

nent of the water-soluble fraction was creatine (70%). Other major compounds in the water-

soluble fraction were heterocyclic nitrogen compounds and free amino acids, 4.3 and 18.4% of

the water-soluble fraction, respectively (Table 4). We have not yet identified compounds from

minor fractions yielded from the purification of major compounds from the active water-

Fig 3. Chemical structures of free amino acids isolated from the deterrent water-soluble fraction of the sea lamprey skin extract: arginine, valine, leucine,

isoleucine, tyrosine, histidine, glutamic acid, phenylalanine, tryptophan, threonine, asparagine, methionine, cysteine, and glycine.

https://doi.org/10.1371/journal.pone.0217417.g003
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soluble fraction of the sea lamprey skin extract. This was only because of the very small quan-

tity of these fractions yielded from a large-scale extraction and purification steps. We anticipate

to complete the characterization of minor compounds in these fractions since it requires large-

scale extractions and availability of animals.

Fourteen amino acids were identified from the behaviorally-reactive fraction, each of which

have been previously identified from lamprey skin or cartilage excepting tryptophan which is

reported in lamprey plasma and fibrinogen [62–66]. Based on our results, adult migratory sea

lamprey skin contained about 30% more free amino acids (12.4 μmol/g of wet weight) when

compared to reported free amino acids in muscles (anterolateral trunk) (9.39 μmol/g of

wet weight) extracted at 4˚C in buffer. This is a four-fold increase in essential amino acids

(9.82 μmol/g of wet weight) in the skin with respect to the muscles (2.362 μmol/g of wet

weight) (Table 4) [64]. Among the essential amino acids, we observed a two-fold increase in

arginine, fourteen-fold increase in phenylalanine and seven-fold increase in threonine levels in

adult sea lamprey skin. Similarly, we also observed a thirteen- and three-fold decrease in non-

essential amino acids such as glutamate and glycine levels in adult sea lamprey skin, respec-

tively. Total distribution of free amino acids in plasma, liver and muscles during various

Fig 4. The mean proportion (± 2 se) of migratory-phase sea lampreys on the side of a laboratory raceway

receiving one of four stimulus odors: (a) a solvent control, (b) the full aqueous ethanolic extract from sea lamprey

skin, (c) the chloroform-soluble fraction of the aqueous ethanolic skin extract, and (d) the chloroform-insoluble

(water-soluble) fraction of the aqueous ethanolic skin extract (��� indicates P< 0.0001 in t-tests of the mean reaction

vs. the solvent control).

https://doi.org/10.1371/journal.pone.0217417.g004
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Table 1. 1H and 13C NMR spectral data of amino acids a,b.

no. Argininea Valinea Leucinea

δH (multi, J in Hz) δC δH (multi, J in Hz) δC δH (multi, J in Hz) δC

1 - 174.3 - 174.2 - 175.6

2 3.16 (t, 6.3) 54.2 3.57 (t, 4.9) 60.2 3.69 (t, 4.9) 53.2

3 1.74–1.76 (m) 27.4 2.21–2.26 (m) 28.9 1.66–1.69 (m) c 39.7

4 1.51–1.53 (m) 23.8 1.0 (t, 6.8) 17.8 20.7

5 3.08 (t, 6.9) 40.4 0.95 (t, 6.8) 16.5 0.91 (d, 5.9) c 24.0

6 - 156.6 21.9

Tyrosinea Histidinea Glutamic acida

δH (multi, J in Hz) δC δH (multi, J in Hz) δC δH (multi, J in Hz) δC

1 - 174.2 - 173.9 - 173.4

2 3.89 (m) 56.0 3.91 (dd, 7.8, 4.4) 54.7 3.76 (dd, 6.4 and 6.4) 53.7

3 3.17 (m)/3.02 (m) 35.5 3.03 (m)/3.14 (m) 28.1 2.48–2.51 (m) c 25.4

4 - 126.7 - 132.1 2.06–2.12 (m) c 29.9

5 6.86 (d, 8.6) 115.7 6.97 (d, 1) 116.6 - 176.9

6 7.12 (d, 8.6) 130.7 - -

7 - 154.9 7.66 (d, 1) 136.2

Threoninea Asparaginea Methioninea

δH (multi, J in Hz) δC δH (multi, J in Hz) δC δH (multi, J in Hz) δC

1 - 172.7 - 174.3 - 174.1

2 4.18–4.23(m) 60.3 3.98 (m) 51.1 3.81 (dd, 6.8 and 6.8) 53.7

3 3.54 (d, 4.9) 65.8 2.93 (m)/2.81 (m) 43.3 2.05–2.16 (m) c 29.5

4 1.28 (d, 6.4) 19.3 - 173.2 2.56–2.59 (m) c 28.7

5 - -

6 2.09 (s) 13.8

Isoleucinea Phenylalaninea Cysteineb

δH (multi, J in Hz) δC δH (multi, J in Hz) δC δH (multi, J in Hz) δC

1 - 174.1 - 173.9 - 170.1

2 3.61 (d, 3.9) 59.4 3.95 (dd, 7.8 and 5.3) 55.9 4.29 (dd, 5.8 and 4.4) 54.3

3 1.91–1.94 (m) 35.7 3.08 (m)/3.26 (m) 36.2 3.12 (m)/ 3.07(m) 23.8

4 1.40 (m)/1.21 (m) 25.4 - 134.9

5 0.88 (dd, 3.0 and 3.9) 10.9 7.28–7.33 (dd, 7.9 and 2.0) 129.2

6 0.95 (d, 7.3) 14.5 7.39–7.41 (dd, 8.3 and 1.0) 128.9

7 7.35–7.37 (dd, 7.7 and 1.5) 127.6

Tryptophana Glycinea

δH (multi, J in Hz) δC δH (multi, J in Hz) δC

1 - 174.4 - 172.3

2 3.99 (dd, 8.3 and 4.9) 54.9 3.51 (s) 41.4

3 3.44 (m)/ 3.26 (m) 26.3

1‘ 7.26 (s) 124.9

2‘ - 107.4

3‘ - 126.5

4‘ - 136.2

5‘ 7.49 (d, 8.3) 111.8

6‘ 7.68 (d, 8.4) 188.3

7‘ 7.15 (dd, 6.9 and 6.9) 199.3

(Continued)
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migratory phases of the sea lampreys (ammocoete, parasitic and upstream adult migrant) has

been previously reported [64,67]. Total free plasma amino acid and the essential amino acid

concentrations were not significantly different among ammocoete, parasitic and upstream

migrant sea lampreys [64].

Whether amino acids constitute odorants for lampreys is unresolved. In a single unpub-

lished study, Li [68,69], reports electro-olfactogram (EOG) recordings of adult sea lamprey in

response to 42 amino acids, concluding only L- and D-arginine elicit strong olfactory

Table 1. (Continued)

no. Argininea Valinea Leucinea

δH (multi, J in Hz) δC δH (multi, J in Hz) δC δH (multi, J in Hz) δC

8‘ 7.24 (dd, 8.3 and 8.3) 122.0

a Data were measured in D2O.
b Data were measured in DMSO.
c Overlapped signals.

https://doi.org/10.1371/journal.pone.0217417.t001

Table 2. 1H and 13C NMR spectral data of nitrogenous compounds a,b.

no. Adenosineb Inosineb Xanthineb

δH (multi, J in Hz) δC δH (multi, J in Hz) δC δH (multi, J in Hz) δC

1 - - - - - -

2 8.12 (s) 152.4 8.08 (s) 145.9 - 164.2

3 - - - - - -

4 - 149.1 - 148.2 - 160.2

5 - - - 124.4 - 116.8

6 - 156.2 - 156.6 - 161.9

7 - - - - - -

8 8.34 (s) 139.9 8.34 (s) 138.7 7.92 (s) 151.4

9 - - - - - -

1‘ 4.86 (d, 6.4) 87.9 5.83 (d, 5.8) 87.4

2‘ 4.58 (dd, 11.3 and 5.9) 73.4 4.44 (dd, 5.3 and 5.3) 74.1

3‘ 4.13 (dd, 7.8 and 4.9) 70.7 4.10 (dd, 4.9 and 3.5) 70.3

4‘ 3.94 (dd, 6.9 and 3.4) 85.9 3.92 (dd, 7.6 and 3.8) 85.6

5‘ 3.55 (m)/3.66 (m) 61.7 3.62 (m)/3.53 (m) 61.3

Adenineb Creatinea Hypoxanthineb

δH (multi, J in Hz) δC δH (multi, J in Hz) δC δH (multi, J in Hz) δC

1 - - - 174.5 - -

2 8.14 (s) 153.7 3.89 (s) 36.8 7.96 (s) 144.6c

3 - - - - - -

4 - 155.2 - 157.0 - 144.6c

5 - 120.1 2.99 (s) 53.7 - 140.3c

6 - 160.4 - 155.4

7 - - - -

8 8.12(s) 150.6 8.11 (s) 140.3c

9 - - - -

a Data were measured in D2O.
b Data were measured in DMSO.

https://doi.org/10.1371/journal.pone.0217417.t002
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responses. However, it is important to note that the EOG recordings were taken from the

main olfactory epithelium, which likely did not record responses from the accessory olfactory

organ, where the suspected alarm cue OSNs (the ‘short’ OSN homolog to the teleost crypt cell)

are principally distributed [51,52]. It is also notable that the L- and D- forms of aspartic acid,

histidine, lysine, tyrosine, tryptophan, as well as L-OH-proline and L-tyrosine, elicited signifi-

cant olfactory activity (compared to a water control), although at lower intensity than arginine.

This finding contrasts significantly with teleost fishes, where the D- form of amino acids typi-

cally elicit no olfactory response [70]. More recently, Libants et al. [71] report genetic evidence

for 28 trace amine-associated odorant receptor (TAAR) and four V1R odorant receptor genes

from sea lamprey, the latter implicated in olfactory detection of amino acids [41–44]. Finally,

EOG is a useful screening tool. However, given the exquisite sensitivity of the sea lamprey

olfactory apparatus, strong behavioral responses occur at concentrations below the ability of

an EOG to measure in the olfactory epithelium. For example, the sea lamprey male sex phero-

mone component 3-keto-petromyzonol sulfate (3kPZS) elicits significant EOG activity at con-

centrations above 10−12 M [72], whereas behavioral responses in the field may occur at two

orders of magnitude lower concentration [73].

To our knowledge, this is the first reporting of the nitrogenous heterocycles hypoxanthine,

inosine and xanthine from sea lamprey skin. The presence of hypoxanthine in appreciable

quantities in the skin is notable. The nitrogen oxide form of hypoxanthine has been implicated

Table 3. HRESIMS and optical rotation data of amino acids and nitrogenous compounds.

HRESIMS Optical rotation c

Observed (m/z) a Calculated (m/z) a

Arginine 175.1260 175.1195 +12.3˚

Valine 118.0878 118.0868 +5.1˚

Leucine 132.1035 132.1024 -12.1˚

Isoleucine 132.1035 132.1024 +13.1˚

Tyrosine 182.0828 182.0817 -9.8˚ d

Histidine 156.0784 156.0773 -37.9˚

Phenylalanine 166.0875 166.0868 -34.1˚

Tryptophan 205.0984 205.0977 -33.3˚

Threonine 120.0671 120.0660 -28.1˚

Asparagine 133.0625 133.0613 -5.3˚

Methionine 150.0598 150.0588 -10.4˚

Cysteine 122.0285 122.0275 +116.8˚

Glycine 98.5137 b 98.5122 b -

Glutamic acid 148.0619 148.0609 +11.6˚

Creatine 132.0780 132.0773 -

Hypoxanthine 137.0473 137.0463 -

Inosine 269.0888 269.0885 -50.1˚

Adenine 136.0636 136.0623 -

Xanthine 153.0426 153.0412 -

Adenosine 268.1053 268.1045 -56.4˚

a HRESIMS observed and calculated for [M + H]+.
b HRESIMS observed and calculated for [M + Na]+.
c Specific rotations were calculated according to the equation [α]20

D = (100α)/(l × c) where l is the path length in decimeters, c is the concentration in g/100 mL and data

were measured in H2O, c = 1.
d Data were measured in 1N HCl, c = 5.

https://doi.org/10.1371/journal.pone.0217417.t003
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as an alarm cue component in a number of fishes from the superorder Ostariophysi [74],

whereas similar molecules lacking the nitrogen oxide functional group, including hypoxan-

thine, often fail to elicit a behavioral response (e.g., white catfish Ictalurus catus, [30]). More

recently, Brown and colleagues [32,33] conclude the nitrogen oxide functional group is impor-

tant to elicit alarm responses in the Ostariophysi, and report examples from more ancestral lin-

eages (convict cichlids, Acrchocentrus nigrofasciatus, Cichlidae, Acanthopterygii and rainbow

trout, Oncorhynchus mykiss, Salmonidae, Protacanthopterygii) known to possess alarm cues

that do not respond to hypoxanthine-3-N-oxide. Given the Agnatha is ancestral to all gnathos-

tomes, and the lack of conservation of alarm cue chemistry at larger phylogenetic distances as

evidenced by a lack of response to heterospecific cues from distant vs. close relatives

[33,75,76]. The sea lamprey also exhibits declining behavioral response to alarm cues collected

from confamilial species of Petromyzontide, but fail to respond to cues from more ancestral

(Atlantic hagfish, Myxine glutinosa, Myxinidae, Agnatha) and derived (white sucker, Catasto-
mus commersonii, Catastomidae, Actinopterygii) taxa [40]. Further, the process of Soxhlet

extraction at high temperature (70–80˚C) for multiple hours does not degrade the reactivity of

the extract vs. that derived from grinding and freezing skin [13, Wagner et al., in review].

Thus, it is reasonable to anticipate the findings for fishes of the Teleostei may not be instructive

as to the chemical composition of lamprey alarm cues. As with other alarm cues, it is very likely

the cue is a mixture that encodes two informational aspects, risk and the identity of the

wounded species.

The abundance of creatine in the skin was also notable. Because sea lamprey cease parasitic

feeding prior to the onset of migration, energy is mobilized from the tissues to support the

expenditures associated with long-distance swimming and reproduction [77] principally in the

form of lipid metabolism [78]. However, creatine is a major component in arginine metabo-

lism. The mechanism by which the conversion of adenosine triphosphate (ATP) to adenosine

Table 4. Concentration of the nitrogenous compounds isolated from the adult migratory sea lamprey skin.

Concentration

μg/g of water-soluble fraction (or % of total water-soluble fraction) μmol/g of wet skin

Arginine 373 (3.92) 2.14

Valine 48 (0.51) 0.41

Leucine 100 (1.05) 0.76

Isoleucine 34 (0.36) 0.26

Tyrosine 16 (0.17) 0.09

Histidine 36 (0.38) 0.24

Phenylalanine 251 (2.64) 1.52

Tryptophan 104 (1.09) 0.51

Threonine 243 (2.56) 2.01

Asparagine 228 (2.40) 1.73

Methionine 79 (0.83) 0.61

Cysteine 163 (1.71) 1.34

Glycine 47 (0.49) 0.63

Glutamic acid 18 (0.19) 0.12

Creatine 6645 (70.0) 50.7

Hypoxanthine 166 (1.74) 1.22

Inosine 42 (0.44) 0.16

Adenine 34 (0.36) 0.25

Xanthine 70 (0.74) 0.46

Adenosine 94 (0.99) 0.36

https://doi.org/10.1371/journal.pone.0217417.t004
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diphosphate (ADP) results in the transfer of one of the phosphate groups to creatine to form

creatine phosphate [67]. Hence, accumulation of large amount of creatine, adenine and adeno-

sine in the skin may support the metabolism of internal energy stores during the high-energy

demand associated with the reproductive migration.

The sea lamprey alarm cue induces context-specific expression of predator avoidance

behaviors in nature when applied to natural streams that may be utilized to achieve novel con-

trol measures. For example, when the odor is confined to a portion of the channel, migrants

will swim on the opposite side [24]. However, if the river’s discharge is fully activated with the

odor, the response becomes responsive to circumstance. Luhring and co-authors [23] demon-

strated that individuals entering the river from a lake simply switch anti-predator tactics from

spatial avoidance to exposure minimization by increasing swimming speed, whereas those

already in the river delayed upstream movement (i.e. remained hidden before moving

upstream). Together, these findings suggest development of control tactics based on the

manipulation of movement paths, but not blockage, will prove viable. Approaches include

trapping at dams and in open river channels, guiding migrating sea lamprey into streams tar-

geted for future lampricide treatments, and the creation of selective fish passage devices that

utilize the repellent to block sea lamprey from entering a fishway [11,12,25,79]. However, utili-

zation of the alarm cue repellent, or any semiochemical discovered in sea lamprey, is subject to

regulation by the U.S. EPA and Health-Canada. Specifically, the use of an odorant or mixture

of odorants to manipulate the behavior of a pest species is classified as a biopesticide under the

Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA, USA). Thus, to meet the legal

requirements for use as a biopesticide, the chemical structure of the active ingredients must be

known and its application practices (concentration, duration) specified. As a practical matter,

discovery of the chemical structure(s) of the components of the alarm cue is necessary to pro-

duce it in sufficient quantities for use throughout the basin.

In conclusion, we have isolated and chemically characterized the major nitrogenous com-

pounds in the water-soluble fraction of a skin extract that contains the behavioral activity of an

alarm cue from sea lamprey. The constituents identified are molecules common in nature and

animal tissue. Further behavioral testing is underway to ascertain which of these induce avoid-

ance behavior in sea lamprey, and to ensure that minor constituents of the extract awaiting

characterization are not the principal alarm cue components. Among the isolates, creatine was

the most abundant component in the water-soluble fraction. Based on our findings migratory

sea lamprey skin contained 30% more free amino acids when compared to free amino acids

reported in its muscles. Report of nitrogenous heterocycles hypoxanthine, inosine and xan-

thine from the sea lamprey skin is also for the first time.
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