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Abstract

Diabetic retinopathy is a complication of diabetes that produces changes in the blood vessel

structure in the retina, which can cause severe vision problems and even blindness. In this

paper, we demonstrate that by identifying topological features in very high resolution retinal

images, we can construct a classifier that discriminates between healthy patients and those

with diabetic retinopathy using summary statistics of these features. Topological data analy-

sis identifies the features as connected components and holes in the images and describes

the extent to which they persist across the image. These features are encoded in persis-

tence diagrams, summaries of which can be used to discrimate between diabetic and

healthy patients. The method has the potential to be an effective automated screening tool,

with high sensitivity and specificity.

Introduction

The world population is aging, which carries a high risk of eye diseases that significantly affect

the quality of life. Thus, many efforts are nowadays focused on the development of reliable

data analysis tools able to improve early diagnosis and follow-up of eye diseases. Diabetic reti-

nopathy (DR) is a particularly relevant disease. In 2013, 382 million people had diabetes and

this number is expected to rise to 592 million by 2035 [1]. DR is a complication of diabetes and

the most frequent cause of new cases of blindness in developed countries among adults aged

20–74 years [2]. Timely identification is crucial for the success of the treatment. DR identifica-

tion is based on the inspection of the fundus color image, which in the early stage of the disease

has no visible symptoms, but as DR advances, the structure of the blood vessels changes and

microaneurysms, exudates and new blood vessels can be seen. Depending on the population

size among other factors, remote screening for the detection of the disease is not always cost-

effective [3], partially due to the cost of the eye physicians that remotely analyse the images [4].

In recent years a wide variety of automated methods for the detection of the disease have

been proposed in the literature [5–12] but their success varies significantly with the retinal

image modality, image quality and the number of images available. Here we use a small pub-

licly available high resolution fundus image database [13] to demonstrate that new techniques
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based on recent developments in topological data analysis (TDA) can be used to extract infor-

mative features from the images and lead to effective classification.

Topological data analysis

Topological data analysis considers the shape of data and its topological properties. At the

intersection of algebraic topology and computational geometry, TDA provides methods to

describe data using low dimensional topological invariants. One emergent branch of this field

is persistent homology, which considers how features of the data persist at different scales.

Homology is the association of algebraic objects, such as abelian groups, to other mathe-

matical objects, such as topological spaces. The homology groups of a space represent the n-

dimensional holes in that space. Persistent homology is the multiscale perspective of these

homology groups when applied to data. Connectedness is characterised by the 0-th homology

group H0, loops (1-dimensional holes), are given by H1 and voids (2-dimensional holes) by H2.

There are higher dimensional analogues of the homology groups but their interpretation is not

as intuitive. The ranks of these homology groups are also known as the Betti numbers (βn).

The maximum dimension of these features is limited by the dimension of the data. For n-

dimensional data, the maximum dimension of the simplicies is also n, which only allows for

(n − 1)-dimensional features to be observed. In our analysis of two-dimensional images we

only consider 0- and 1-dimensional features, that is components and holes.

A representation of the data is constructed from simplices (vertices, edges, triangles, tetra-

hedra etc.) according to the sub-level sets of some filtration function. During its construction

we observe changes in the homology and describe these changes in terms of their birth and

death. The lifetime of these features is presented as either a persistence diagram or barcode.

Illustration. We present a simple example to illustrate how persistent homology is applied

to an image. A 50 × 50 subset of one of the fundus images is presented as a 2D field in the left

part of Fig 1. Let z(x, y) denote the field value at location (x, y). In the example, the values of z
(x, y) range from -3.37 to 3.17 and represent the grayscale encoding of the image.

We consider a filtration constructed by increasing a level ℓ from below the smallest value in

the field to above the largest value. The sub-level set associated with any value of ℓ consists of

all locations (x, y) for which z(x, y)< ℓ. The central and right panels of Fig 1 show, in red, the

sub-level sets corresponding to ℓ = −1.5 and ℓ = −0.9 respectively. In the central panel there are

five groups of connected components but no holes, so the first two Betti numbers are β0 = 5

and β1 = 0. By level ℓ = −0.9 the components in the previous sub-level set have merged with

each other and with other locations to form one large component, but four new and smaller

components have been created. Hence in this plot β0 = 5. The main component now also con-

tains three holes (or islands) and β1 = 3.

Fig 1. Example 50 × 50 field (left) with level sets corresponding to ℓ = −1.5 (centre) and ℓ = −0.9 (right).

https://doi.org/10.1371/journal.pone.0217413.g001
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As level ℓ increases, components and holes are born and die. For fields in two dimensions, a

new component is born at a local minimum of the field z(x, y) and a hole dies at a local maxi-

mum. The standard labelling convention when features merge is to assume the feature with

the earliest birth time continues and the feature with the later birth time dies. A persistence

diagram is then a plot of birth time against death time for features of a particular type. The top

left panel of Fig 2 illustrates with a persistence diagram for components created during a filtra-

tion of the field in Fig 1. The first component to be born is by construction the last to die: this

is the point in the top-left of the plot. Points close to the diagonal represent features with a

short lifespan, whilst points furthest from the diagonal represent longlived features. It is

tempting to dismiss the short-lived features as uninformative noise in the data, but these points

Fig 2. Dimension 0 persistence diagram (top left), persistence barcode (top right), first three landscape functions (bottom left) and first three

convex peels (bottom right) for the data in Fig 1.

https://doi.org/10.1371/journal.pone.0217413.g002
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represent the local inhomegeneity. In applications such as this, these points can provide

important information. The high resolution of the data provides access to this level of fidelity.

A persistence barcode is also presented in the top right panel of Fig 2. The lifetime of a fea-

ture is encoded in the length of each bar, which extends from the birth to death time of a fea-

ture. There is a single bar that extends the full length of the barcode representing the first

component to be born, which is also the last to die.

A summary of the basic shape of a persistence diagram using convex peels has been pro-

posed [14]. Convex hulls of the point cloud are successively peeled away until only a specified

proportion remains. The bottom right panel of Fig 2 illustrates this, showing a convex hull

around 90% of the points, together with the two peeled convex hulls. This summary aims to

extract the overall shape of the points in the persistence diagram without undue influence of

either outliers, or the density of points along the diagonal.

An alternative function known as the landscape has also been proposed [15] and is illus-

trated in the bottom left panel of Fig 2. The points in a persistence diagram are first rotated

from birth death pairs (b, d) to (x, y) = ((d + b)/2, (d − b)/2). A piecewise linear tent function is

then created for each point and the kth landscape function at any point t on the horizontal axis

is the kth largest value of the tents. The landscape function is able to distinguish the two appar-

ent clusters in the diagram, but it is more sensitive to small variations in persistent points than

is the convex peel.

Another proposed functional summary of the persistence diagram is the accumulative per-

sistence function [16]. The persistence diagram is now rotated about the diagonal and rescaled

such that birth death pairs (b, d) are transformed to (x, y) = ((d + b)/2, d − b). The accumulative

persistence function is a one dimensional function calculated as the integral, or accumulative

sum, of this transformed diagram. A relatively smooth function indicates that there are

similar levels of features at all scales in the data, whilst a distinct jump in the function indicates

a disparity between the scales, for example a distinct and large feature is present relative to

low levels of background noise. An illustration of this function is not given however, as this

descriptor was not selected for the final DR classifier.

The bottleneck and Wasserstein distances are popular methods of distinguishing persis-

tence diagrams, defined respectively as a form of maximum and average distance between

points in an optimal bijective mapping between two diagrams. These metrics can be useful for

pairwise comparison, albeit at large computational cost when the diagrams are large. Due to

the large number of points in the persistence diagrams in this study, computing the inter

and intra group bottleneck or Wasserstein distributions is computationally infeasible. The

computation of a single bottleneck distance between components of two persistence diagrams

in this study was completed in 128 minutes on a high performance computer with 128 GB

memory allocation. Complete pairwise comparision of all diagrams in this study would require

2� ð
30

2
Þ ¼ 870 calculations. As such, we consider functional and interpretable statistics on

individual persistence diagrams rather than pairwise comparisons. Our aim is to use these as

classification and discrimination tools for the allocation of images to healthy or diabetic

groups.

Materials and methods

Retinal fundus images

Images were obtained from the High-Resolution Fundus (HRF) Image Database [13], which

was established in order to support studies on automatic vessel segmentation algorithms. The

database includes, inter alia, high resolution fundus images from 15 healthy patients and 15

patients with diabetic retinopathy. Low resolution versions of two of the images are given in
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Fig 3. We used low resolution images for presentation here simply to keep the file sizes man-

ageable: the original images are each around 2Mb in size with resolution 2336 × 2604. We used

all 30 full resolution images in the analyses to follow.

Pre-processing and persistent homology

The images were first cropped in order to minimise the surrounding border and converted to

greyscale. Each image was then marginally transformed to a normal distribution and standard-

ised before computing the persistent homology. This process allowed an alignment of the

images such that they could be compared within the same frame of reference. The transformed

images were identical in the marginal properties of mean, range and distribution of field

values.

Persistence diagrams for each image were computed using the lower star filtration method

within the Dionysus 2 software package http://www.mrzv.org/software/dionysus2/. This

method triangulates a grid of values according to the sub-level sets of the function values on

the grid. In the retinal fundus images this function is the greyscale encoding of the image,

which was computed using a linear combination of the red, green and blue components in the

image with the coefficients 0.299, 0.587 and 0.114, respectively. The lower star filtration

method is an appropriate approach for image or gridded data as it filters the image based on

the function value at each pixel. An alternative upper star filtration method refers to the super-

level sets of the function value at each pixel. These methods are symmetric with respect to the

function valued grid.

Summary statistics

We summarised persistence diagrams for both components and holes through vectors made

up of the following interpretable statistics.

1. The number of points.

2. The average lifetime (death time − birth time).

3. Area under the accumulative persistence function.

Fig 3. Fundus images from specimen healthy (left) and diabetic retinopathy (right) patients. These are low resultion versions of high resolution images

available from the website https://www5.cs.fau.de/research/data/fundus-images/ associated with [13].

https://doi.org/10.1371/journal.pone.0217413.g003
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4. For the six polygons determined by each of the first three landscape functions and for 99%,

95% and 90% convex peels:

a. the centroids, Cx and Cy;

b. the area A;

c. the perimeter P;

d. the filamentarity

F ¼
P2 � 4pA
P2 þ 4pA

:

This gave vectors of length 2 × (1 + 1 + 1 + 6 × 5) = 66.

Classification

A support vector machine (SVM) was used to classify the images according to the persistence

function summary statistics. A least absolute shrinkage and selection operator method

(LASSO) was used to perform variable selection for the SVM. LASSO is a method of regression

analysis that can be used to perform variable selection as it enforces a penalty term such that

certain coefficients are set to zero. This allowed optimal feature selection from the feature vec-

tor of length 66 such that the dimension of the SVM was as low as possible, whilst retaining

good power of discrimination between the two groups. To assess the performance of the SVM

we performed cross validation by splitting the data into a training set, on which the classifier

would be trained, and a test set on which the SVM makes a prediction. We calculated sensitiv-

ity and specificity as the rate of correct identification of diabetic and healthy subjects respec-

tively. The type of cross validation we performed is called leave-k-out cross validation. We

used randomly chosen test sets with the number of subjects equal to 1, 2, 3, 4 & 5 and repeat-

edly trained the SVM on the remaining data, testing the predictions across all permutations of

the random training and test sets.

All persistence diagram summary statistics that we have presented, as well as the SVM, can

be computed using publically available packages in R.

Results

Variables for two of the optimal models identified via the LASSO method are presented in

Table 1 and the subsequent sensitivity and specificity results are given in Table 2. The two

Table 1. Variables included in LASSO-informed SVM.

SVM 1 SVM 2

Number of Components x x

Components 90% Convex Peel Cx x x

Components 90% Convex Peel P x

Components 3rd Landscape A x

Components 3rd Landscape F x

Components Accumlative Persistence A x x

Holes 99% Convex Peel Cy x x

Holes 1st Landscape P x x

Holes 2nd Landscape Cy x

Holes 3rd Landscape Cy x

https://doi.org/10.1371/journal.pone.0217413.t001
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LASSO-informed models were selected based on the minimum error and where the error is

within one standard error of this minimum. Other SVM models were tested using alternative

combinations of the summary statistics, for example only using landscape or convex peel sta-

tistics. However they did not match the LASSO-informed models in terms of sensitivity and

specificity. For the two LASSO-informed models, perfect classification was achieved for leave-

one-out cross validation, but we note that this is a small dataset and there is a risk of over-fit-

ting. Therefore in order to provide confidence in the methods and results we performed fur-

ther cross validations, using test sets of sizes 2, 3, 4 & 5. Sensitivity and specificity were

reduced with the size of the training set but still a high level of accuracy was maintained.

Mean and standard deviation for the variables in the LASSO-informed models are pre-

sented in Table 3 for diabetic and healthy subjects. The most obvious differences between the

groups are in the numbers and area variables for components, with smaller relative differences

elsewhere. In most cases we have smaller values for the images of eyes from healthy people.

However, there is considerable variability within each group. For example, one of the healthy

images had 306782 components and one diabetic image had 169290 components. There is also

overlap between the two groups for the other persistence diagram statistics and hence there is

no single discriminatory statistic, instead the statistics collectively need to be used in the sup-

port vector machine.

An example of the difference in persistence diagram statistics between the two groups is

presented in Fig 4. A comparison of the 99% convex peels for the holes in the persistence dia-

grams for healthy and diabetic images is given. The convex peels for the two images in Fig 3

are highlighted in red. We can see a small, but systematic, shift in the centroid of the convex

peel between the two groups, which explains why it was selected as a contributing variable in

the SVM classifier.

Table 2. Sensitivity and specificity results for cross validation of LASSO informed models.

Test Set Size SVM 1 SVM 2

Sensitivity Specificity Sensitivity Specificity

1 1.000 1.000 1.000 1.000

2 1.000 0.996 1.000 1.000

3 0.998 0.987 0.998 0.998

4 0.995 0.983 0.995 0.995

5 0.993 0.980 0.991 0.993

https://doi.org/10.1371/journal.pone.0217413.t002

Table 3. Mean and standard deviation for variables included in LASSO-informed SVM.

Healthy (Mean ± SD) Diabetic (Mean ± SD)

Number of Components 207400 ± 50692 312000 ± 80721

Components 90% Convex Peel Cx 0.626 ± 0.073 0.696 ± 0.059

Components 90% Convex Peel P 8.569 ± 0.174 8.809 ± 0.241

Components 3rd Landscape A 0.694 ± 0.135 1.049 ± 0.246

Components 3rd Landscape F 0.687 ± 0.051 0.589 ± 0.077

Components Accumlative Persistence A 40030 ± 7252 76172 ± 29296

Holes 99% Convex Peel Cy 1.227 ± 0.074 1.397 ± 0.072

Holes 1st Landscape P 8.269 ± 0.243 8.468 ± 0.073

Holes 2nd Landscape Cy 0.241 ± 0.043 0.355 ± 0.107

Holes 3rd Landscape Cy 0.231 ± 0.046 0.336 ± 0.097

https://doi.org/10.1371/journal.pone.0217413.t003
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Discussion and conclusion

We propose an application of supervised SVM learning using summary statistics of retinal fun-

dus image persistence diagrams as an effective method of diabetic retinopathy detection. We

recommend, however, that these methods be explored further once larger datasets of high-res-

olution images become available.

A combination of summary statistics was required in order to provide good classification,

with no single persistence diagram summary statistic able to separate entirely the diabetic and

healthy images. The vector of summary statistics used in our SVM are decribed in Table 1. We

do not include the coefficients of this vector since our method of LOOCV re-trains the SVM

with each subject left out and the coefficients of this vector change at each re-training step.

Instead we present our results as demonstrative of the potential of TDA for detection of dia-

betic retinopathy rather than definitive.

The LASSO-informed SVM models, which achieved excellent sensitivity and specificity,

suggest that the centroid coordinates of the persistence diagrams are important in classifica-

tion. A change in the centroid x-coordinate means a difference in the average feature birth

time, and a change in the y-coordinate, given the x-coordinate, means a change in the lifetime

of features. There is, however, no real difference in the centroid of the original persistence dia-

gram point cloud. Instead, the differences in centroids emerge when we begin removing points

from the diagram, for example in the convex peel and landscape functions. The diabetic sub-

jects have higher x- and y-coordinates for both the convex peel and landscape functions, sug-

gesting that the diabetic subjects may have more extremal points that cause a shift in the

centroid as we peel away such points.

The number of components in the persistence diagram also appears to be an informative

summary statistic, with the diabetic subjects, on average, having a greater number of con-

nected components than healthy subjects. There is, however, variability within both diabetic

and healthy patients such that we cannot use the number of connected components as a single

discriminatory statistic. High numbers of (short-lived) components are associated with low

local correlation, suggesting the diabetic images are less homogeneous.

Soomro et al [12] presented an excellent survey of DR classifiers and databases, detailing

sensitivity, specificity and accuracy results for the respective classifiers and data sources. Our

results are at worst comparable and often better than those quoted. Of the main publicly avail-

able DR databases, DRIVE [17], STARE [18], ImageRet [19], ROC [20], EyePacs [21] and

Fig 4. Holes 99% convex peels for healthy (left) and diabetic (right) images. Highlighted in red are the 99% convex

peels for the example images in Fig 3.

https://doi.org/10.1371/journal.pone.0217413.g004
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MESSIDOR [22], there are no data of comparable resolution to the data used in this study.

The highest resolution of these data sources is less than half of the resolution of the HRF data

(2336 × 2604).

For example, the MESSIDOR data has a resolution of 1440 × 960, resulting in persistence

diagrams with approximately 70, 000 components. In comparison the HRF diabetic images

have an average of approximately 300, 000 components in their persistence diagrams, and

healthy 200, 000. Although this lower resolution makes pairwise comparisons using bottleneck

or Wasserstein distances more practical, we found that we were unable to discriminate

between healthy and diabetic with high sensitivity and specificity using either these statistics or

the SVM classifier developed on the HRF data.

Current DR classification methods can be summarised by three categories: full image,

abnormality and segmented retinal blood vessel based detection. Abnormality based detection

methods are based on the identification of microaneuryms, haemorrhages and exudates. It is

often stated, however, that retinal vascularity is highly indicative of disease development. As

such, there is a great deal of work on developing accurate segmentation methods to extract the

retinal vessel structures. This study has focussed on full image based DR classification but fur-

ther work would investigate the power of TDA to detect DR based on vessel structures, utilis-

ing larger open source vessel segmentation databases.

To summarize, we have demonstrated that topological data analysis has the potential to

become a good discriminator for DR in high resolution fundus images. Further testing using

larger numbers of images is of course necessary. At the moment, however, there are no public

libraries of very high resolution images other than those described by [13]. Once these become

available the combination of TDA and very high resolution images has the potential to be an

extremely effective and cost-efficient diagnostic screening tool. In the meantime, we hope to

explore how to exploit these methods for lower resolution images. Further work on segmented

vessel structures will aim to highlight any difference in DR detection between topological and

more traditional methods of data analysis.
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