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Abstract

Major non-legume crops can form beneficial associations with nitrogen-fixing bacteria like

Azospirillum brasilense. Our current understanding of the molecular aspects and signaling

that occur between important crops like rice and these nitrogen-fixing bacteria is limited. In

this study, we used an experimental system where the bacteria could colonize the plant

roots and promote plant growth in wild type rice and symbiotic mutants (dmi3 and pollux) in

rice. Our data suggest that plant growth promotion and root penetration is not dependent on

these genes. We then used this colonization model to identify regulation of gene expression

at two different time points during this interaction: at 1day post inoculation (dpi), we identified

1622 differentially expressed genes (DEGs) in rice roots, and at 14dpi, we identified 1995

DEGs. We performed a comprehensive data mining to classify the DEGs into the categories

of transcription factors (TFs), protein kinases (PKs), and transporters (TRs). Several of

these DEGs encode proteins that are involved in the flavonoid biosynthetic pathway,

defense, and hormone signaling pathways. We identified genes that are involved in nitrate

and sugar transport and are also implicated to play a role in other plant-microbe interactions.

Overall, findings from this study will serve as an excellent resource to characterize the host

genetic pathway controlling the interactions between non-legumes and beneficial bacteria

which can have long-term implications towards sustainably improving agriculture.

Introduction

Plants can form beneficial mutualistic associations with a diverse array of microbes including

soil bacteria rhizobia, arbuscular mycorrhizal fungi (AMF), plant-growth promoting bacteria

(PGPB), etc. [1–3]. Among these associations, the legume-rhizobia symbiosis is the most stud-

ied and efficient symbiosis. It occurs between plants from the legume family (pea, soybean,

beans, etc.) and rhizobia culminating in the development of root nodules inside which the
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rhizobia fix atmospheric nitrogen for the host plant in exchange for carbohydrates [2, 3].

Decades of genetic and biochemical studies have identified the plant and microbial signals

controlling the establishment of this symbiosis [2, 3]. Genetic studies in legumes also identified

several plant genes involved at different stages (from initiation to regulation) of this symbiosis

[2, 3]. Some of the genes required in the initial stages include a cation channel (DMI1/POLLUX
and CASTOR), a nuclear calcium and calmodulin-dependent kinase (DMI3/CCaMK), a sub-

strate of DMI3 (IPD3/CYCLOPS), and a receptor-like kinase (DMI2/SYMRK) among others

[2, 3]. Later studies showed that some of these genes are also required for the establishment of

symbiosis with arbuscular mycorrhizal fungi leading to the concept of the common symbiotic

pathway (CSP) [2–4]. Some genes from the CSP have also been shown to be required in acti-

norhizal symbiosis and non-symbiotic interactions [4]. The large body of elegant genetic stud-

ies in legumes has significantly improved our understanding of the host genetic pathways

controlling legume-rhizobia symbiosis. Unfortunately, the same depth of information does

not exist for other beneficial plant-microbe interactions such as the ones occurring between

non-legumes and plant-growth promoting bacteria.

Majority of non-legume crops benefit from interactions with plant-growth promoting bac-

teria. Several studies have shown that the biological nitrogen fixation (BNF) in non-legumes

comes from diazotrophic (nitrogen-fixing) bacteria in several genera of alpha- and beta-pro-

teobacteria including Azospirillum, Azorhizobium,Herbaspirillum, Burkholderia, etc. [1].

Unlike legume-rhizobia endosymbiosis, these bacteria induce no specialized root structures

and are different in their colonization characteristics. Azospirillum brasilense represents the

best-characterized genus of plant growth-promoting bacteria with a diverse host range includ-

ing important cereals. These promote plant growth by several mechanisms including nitrogen

fixation and phytohormone secretion [5]. A. brasilense has emerged as a great model for study-

ing nitrogen-fixing bacteria with its sequenced genome and feasibility to genetic manipulation

like transposon mutagenesis [5, 6]. However, unlike legume-rhizobia symbiosis, there are still

only limited data available on the molecular aspects and signaling in the interactions between

non-legumes like rice and diazotrophic bacteria [1, 7, 8].

In this study, we set up an experimental system in which the A. brasilense Sp245 strain

could colonize rice roots and promote growth under controlled, sterile conditions. We also

studied if A. brasilense could promote plant growth and penetrate the roots of symbiotic

mutants in rice. To identify the plant genes and pathways involved during rice-A. brasilense
interactions, we performed transcriptional profiling by RNA-seq. This study provides an excel-

lent resource to further our understanding of the molecular mechanisms occurring in rice

roots during its interaction with A. brasilense.

Results

Azospirillum brasilense promoted rice growth under controlled

experimental conditions

We investigated if A. brasilense could promote rice growth under controlled experimental con-

ditions. Our results show that the total plant mass was 1.26-fold higher in A. brasilense-inocu-

lated wild-type (Oryza sativa cv. Nipponbare) rice plants than the uninoculated ones (Fig 1A).

Root mass was 1.63-fold higher in the bacteria-inoculated plants than the controls (Fig 1B).

Next, we were interested in determining if the bacteria could colonize the plant roots under

the same conditions. We used plate count assays and recovered A. brasilense from surface ster-

ilized rice roots indicating that bacteria could penetrate the roots under these conditions. As

expected the number of colonies recovered from the surface sterilized roots was significantly

lower (0.41-fold) than the non-surface sterilized roots (Fig 1C).

RNA-seq analysis during rice-Azospirillum interactions
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A. brasilense promoted plant growth in rice symbiotic mutants

We investigated if A. brasilense could promote plant growth in symbiotic rice mutants (Os-
dmi3 and Os-pollux) under these controlled experimental conditions. Our results indicate that

the total plant mass increased in A. brasilense-inoculated Os-pollux (1.16-fold) and Os-dmi3
(1.12-fold) plants compared to the uninoculated plants (Fig 1D and 1G). The root mass in Os-
pollux (1.23-fold) and Os-dmi3 (1.27-fold) plants also increased upon A. brasilense inoculation

(Fig 1E and 1H). Next, we performed plate count assays and recovered A. brasilense from sur-

face sterilized roots of Os-pollux and Os-dmi3 indicating that bacteria could penetrate the

roots of these rice symbiotic mutants. As observed in wild-type roots, the number of bacterial

colonies recovered from the surface-sterilized pollux roots was 0.46-fold lower than the non-

surface sterilized pollux roots (Fig 1F). Similarly, the number of bacterial colonies recovered

from the surface-sterilized dmi3 roots was 0.41-fold lower than the non-surface sterilized dmi3
roots (Fig 1I).

Analysis of rice root transcriptome upon inoculation with A. brasilense
We used high-throughput RNA-sequencing to identify differentially expressed genes (DEGs)

in rice roots upon inoculation with A. brasilense. We analyzed the expression profile of wild-

type rice (Oryza sativa cv. Nipponbare) in the following experimental groups: (1) 1day post

inoculation (dpi): wild-type roots + mock treatment (water only) vs. wild-type roots + A.

Fig 1. Growth promotion and root colonization in wild-type rice and symbiotic mutants by A. brasilense. (A, D, G) show that total plant

mass (mg) increased in wild-type rice, pollux, and dmi3mutants upon inoculation with A. brasilense. Data represents the average of five

experimental replications (n = 10–15) +/- SE. Asterisk (�) denotes significance between the conditions by t-test (P< 0.001, P< 0.001, P< 0.06).

(B, E, H) show that root mass (mg) increased in wild-type rice, pollux, and dmi3mutants upon inoculation with A. brasilense. Data represents

the average of five experimental replications (n = 10–15) +/- SE. Asterisk (�) denotes significance between the conditions by t-test (P< 0.003,

P< 0.01, P< 0.007). (C, F, I) show comparison of total colony-forming units (cfu) of A. brasilense determined by serial dilution and plate

counts of bacteria between non-surface sterilized and surface sterilized roots of wild-type, pollux, and dmi3 rice seedlings inoculated with A.

brasilense. The data are average of five experiments. Each experiment had at least three plants. Asterisk (�) denotes significance between the

conditions by t-test (P< 0.001, P< 0.001, P< 0.001).

https://doi.org/10.1371/journal.pone.0217309.g001
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brasilense, and (2) 14dpi: wild-type roots + mock treatment (water only) vs. wild-type roots +

A. brasilense. Each treatment group had three biological replicates. Sequencing libraries were

prepared from these RNA samples. The completed libraries were quality checked and quanti-

fied before sequencing in a 2×150bp paired-end format using HiSeq 4000. An average of 36

million reads was obtained per sample with an average mapping rate of 85% to the rice genome

(MSU, version 7) (S1 Table). A good degree of correlation was observed between the biological

replicates of each sample (Fig 2A and 2B). To identify the differentially expressed genes

(DEGs) from the dataset, an FDR adjusted P-value of<0.05 was set and a fold change of>2

(|Log2FC|>1) was assigned. At 1dpi and 14dpi, we identified 1622 and 1995 DEGs in rice

roots, respectively (Fig 2C and 2D; S2 and S3 Tables). Among these, 300 genes were

Fig 2. Summary plots for the gene expression profiles and differential expression analysis. Panels A and B show scatter plots of the first two

principal components of the FPKM normalized gene expression profiles at 1dpi and 14dpi, respectively. Panels C and D respectively show

volcano plots at 1dpi and 14dpi where mean log2 fold change is plotted against the –log10 FDR adjusted P-values for all expressed genes.

Significant DE genes (FDR<0.05 and |FC|>2) were highlighted with red color.

https://doi.org/10.1371/journal.pone.0217309.g002
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differentially expressed at both time points. At 1dpi, 490 genes were upregulated in expression,

and at 14 dpi, 619 genes were upregulated in expression (S2 and S3 Tables).

We performed a gene ontology (GO) analysis to determine the biological significance of the

DEGs with respect to biological processes (BP), molecular functions (MF), and cellular locali-

zation (CC) of their proteins. We used singular enrichment analysis (SEA) with agriGO [9]

and identified 16 GO terms that were significantly enriched at 1dpi. These included 8 in bio-

logical processes (e.g., response to stimulus, response to biotic stimulus, metabolic process,

etc.), 5 in molecular functions (e.g., transcription factor activity, catalytic activity, etc.) and 3 in

the cellular component (e.g., cell wall, extracellular region, etc.) (Fig 3A). At 14dpi, we identi-

fied 43 GO terms that were significantly enriched. These included 13 in biological processes

(e.g., response to stimulus, gene expression, etc.), 1 in molecular function (structural molecule

activity), and 29 in cellular components (e.g., membrane, cytosol, etc.) (Fig 3B). In the 300

genes that were differentially expressed at both time points, we identified 12 significantly

enriched GO terms including 7 in biological processes (e.g., response to stimulus, response to

endogenous stimulus, etc.) and 5 in cellular components (e.g., extracellular region, cell wall,

etc.) (Fig 3C).

Comprehensive data mining of the transcriptome dataset

Several studies have shown that transcription factors (TFs), protein kinases (PKs), and trans-

porters (TRs) play critical roles in signal transduction pathways involved in important biologi-

cal processes including plant-microbe interactions [10–15]. Genes belonging to the flavonoid

synthetic pathway, hormone signaling and plant defense have also been shown to be involved

in plant-microbe interactions [16–23]. As such the next logical step was to perform a

Fig 3. Bar plots summarizing the gene ontology terms over-represented in DE genes between control and A. brasilense samples for (A)

1dpi (B) 14dpi (C) common in both 1dpi and 14dpi datasets. The magnitude of bars in the positive and negative directions respectively

represents the proportion of up-regulated and down-regulated genes associated with each GO term. The width of each bar is proportional to the

number of DE genes associated with the GO term. Blue dots represent –log10(FDR) for each significant GO term. A vertical dotted line at

–log10(0.05) = 1.3 indicates the significance threshold. Bar color indicates the three categories of GO term: Biological Processes (BP), Molecular

Functions (MF), and Cellular Components (CC).

https://doi.org/10.1371/journal.pone.0217309.g003
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comprehensive data mining and identify the genes in these different categories. We report

selected DEGs from these gene classes identified in our dataset in the next sections.

We identified 146 and 85 differentially expressed transcription factors at 1 and 14dpi,

respectively (S4 Table). Many of these belong to major plant TF families such as AP2/ERF

(APETALA 2/Ethylene response factor) family, MYB (myeloblastosis oncogene) family,

WRKY family, NAC (NAM, ATAF1/2, and CUC) domain, and the GRAS (GAI, RGA, and

SCR) family. At both time points, the major TFs that were upregulated in expression were

NAC domain-containing proteins, AP2/ERFs, and MYB family of TFs among others. For

instance, six TFs belonging to the AP2/ERF family were differentially expressed across both

time points (S4 Table).

We identified 110 protein kinases that were differentially expressed at 1dpi and 109 PKs

that were differentially expressed at 14dpi (S5 Table). Some of the major PKs well represented

in our dataset included the CAMK (calcium/calmodulin-dependent kinases), SHR5 receptor-

like kinases, and OsWAK receptor-like kinases among others. We also identified two peptido-

glycan-binding LysM domain-containing protein at each time point. Additionally, we identi-

fied 16 PKs that were differentially expressed at both time points (S5 Table).

We identified 106 differentially expressed transporters at 1dpi, and 124 differentially

expressed transporters at 14dpi (S6 Table). Major transporters identified were nitrate trans-

porters, ammonium transporters, sugar transporters, peptide transporters, ABC-2 type trans-

porters, and several nodulins (MtN3,Major facilitator superfamily, etc.). We also identified

three differentially expressed auxin efflux carriers: one at 1dpi and two at 14dpi. Nineteen

transporters were differentially expressed at both time points including two nitrate transport-

ers, a sugar transporter, and some nodulin genes (S6 Table).

In our dataset, we identified several genes belonging to the flavonoid biosynthetic pathway

that were differentially expressed. These included chalcone synthase genes, chalcone-flavo-

none isomerase genes, flavonol synthase genes, and naringenin synthesis genes (S2 and S3

Tables). Many hormone-related genes were differentially expressed in the dataset. These were

auxin efflux carriers, auxin-responsive genes, auxin response factors, 1-aminocyclopropane-

1carboxylate (ACC) oxidase genes, ethylene insensitive 2 (EIN2) gene, cytokinin-O-glucosyl-

transferases, and cytokinin dehydrogenase precursors among others (S2 and S3 Tables). Sev-

eral defense-related genes were also differentially regulated in expression. Some of these were

pathogenesis-related genes, chitinases, thionin genes, and cinnamoyl-CoA-reductases (S2 and

S3 Tables).

Gene expression validation

To validate the gene expression patterns identified in our RNA-Seq dataset, we performed

reverse transcription polymerase chain reaction (RT-PCR) for six genes (Fig 4). Primers

designed for RT-PCR were based on the Rice Genome Annotation Project database annota-

tions, and the primer sequences are listed in S7 Table. Overall, the RT-PCR results confirm the

expression pattern of these genes identified in the RNA-seq experiment (Fig 4).

Discussion

Non-legume crops such as rice, maize, and wheat can benefit from associations with plant-

growth promoting bacteria. These bacteria promote plant growth by several mechanisms

including nitrogen fixation and phytohormone secretion [5]. Although several studies have

looked into the colonization mechanisms by which different nitrogen-fixing bacteria penetrate

plant roots, not much is known about the molecular mechanisms controlling these associa-

tions. In this study, we established an experimental system in which Azospirillum brasilense

RNA-seq analysis during rice-Azospirillum interactions
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could colonize rice roots under sterile, controlled conditions and promote plant growth. Inter-

estingly, A. brasilense promoted growth in two rice symbiotic mutants (pollux and dmi3). The

POLLUX and DMI3 genes belong to a very well-characterized pathway in plant-microbe sym-

bioses known as the common symbiotic pathway (CSP) [4]. Genes belonging to the CSP are

required for the establishment of the two major plant-microbe endosymbioses: legume-rhizo-

bia symbiosis and arbuscular mycorrhizal symbiosis. Besides these symbioses, the actinorhizal

symbiosis also requires genes from the CSP [4]. To the best of our knowledge, not much is

known about this pathway’s role in interactions between plants and plant growth promoting

bacteria like A. brasilense. Here we show that A. brasilense can promote plant growth indepen-

dent of the CSP and can penetrate the roots of these symbiotic mutants. However, further

studies need to be conducted to understand the role of this pathway during interactions

between nitrogen-fixing bacteria and their host plants. Our results also suggest that the host

plant probably uses other genetic pathway(s) to accommodate the microbe.

In this study, we performed an RNA-sequencing experiment to identify the regulation of

gene expression occurring in rice roots during interactions with A. brasilense at two different

time points (1- and 14dpi). We identified hundreds of differentially expressed genes in rice

roots at both time points. We hypothesize that transcription factors, protein kinases, and trans-

porters are likely going to be involved in the host genetic pathway controlling the interaction

between rice and A. brasilense. We also hypothesized that hormone-related genes and defense

genes would be differentially regulated during this interaction. So, we performed a compre-

hensive data mining of the RNA-seq dataset and identified these classes of genes which would

be excellent targets to characterize the host genetic pathway controlling this important plant-

microbe association. Below we discuss some selected genes from our dataset based on their

role in other plant-microbe associations such as the legume-rhizobia symbiosis (LRS) and

arbuscular mycorrhizal (AM) symbiosis.

Flavonoid biosynthetic pathway

Flavonoids are essential signals required for the initiation and establishment of legume-rhizo-

bia symbiosis. They are also key regulators of other root endosymbioses such as AM and acti-

norhizal symbioses [16, 24]. Several studies have also reported that flavonoids may be involved

Fig 4. RT-PCR validation of differentially expressed genes identified by RNA-Seq. Expression pattern of six DEGs was validated by RT-PCR.

For the RT-PCR experiments, C1 and T1, C14 and T14 represent cDNA templates synthesized from control and treatment RNA samples at 1-

and 14dpi respectively. RT-PCR was performed in at least three biological replicates for all the samples. Cyclophilin was used as an internal

reference gene.

https://doi.org/10.1371/journal.pone.0217309.g004
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in other plant-microbe interactions [16]. For instance, some flavonoids were found to stimu-

late colonization of wheat by A. brasilense and Azorhizobium caulinodans [25]. In our study,

several genes involved in the flavonoid biosynthetic pathway were differentially expressed in

rice roots. At 1dpi, one chalcone synthase gene (LOC_Os10g08670) was upregulated in expres-

sion while another (LOC_Os07g34260) was downregulated in expression in rice roots. At

14dpi, we identified three chalcone synthase genes (LOC_Os07g34260, LOC_Os11g32650,

and LOC_Os07g31770) and two chalcone-flavonone isomerase genes (LOC_Os11g02440 and

LOC_Os12g02370) that were downregulated in expression. Also, at 1dpi we identified three

flavonol synthase genes (LOC_Os01g61610, LOC_Os03g03034, and LOC_Os02g52840) and

two naringenin synthesis genes (LOC_Os04g49194 and LOC_Os04g56700) that were differen-

tially expressed. Interestingly, none of these genes were differentially expressed at 14dpi sug-

gesting a different role of these genes and subsequently these flavonoids at the later time point.

It will be interesting to determine if the expression pattern of these plant genes is correlated

with communication with its microbial partner and eventual accommodation of the microbe.

Defense-related genes

During interactions with beneficial microbes, the host plant adjusts its defense mechanisms

accordingly to facilitate the interaction. Several articles on symbioses have reported suppres-

sion of defense-related gene expression in the host plant [17–19, 26]. In our dataset, we

observed several well-characterized plant defense-related genes to be downregulated in expres-

sion. In general, accumulation of chitinases has been associated with defense against pathogens

[27, 28]. Here we identified five chitinase genes (LOC_Os02g39330, LOC_Os03g30470,

LOC_Os04g41680, LOC_Os05g33140, and LOC_Os04g41620) at 1dpi and four chitinase

genes (LOC_Os09g32080, LOC_Os10g39680, LOC_Os03g04060, and LOC_Os05g33140)

at 14dpi that were downregulated in expression. Chitinases have been implicated with root

nodulation and even protect nodules against pathogens [29–33]. Another set of genes, the

pathogenesis-related (PR) genes, associated with plant defense was observed to be downregu-

lated in expression in rice roots. The PR genes (LOC_Os12g36830, LOC_Os12g36840,

LOC_Os12g36880, LOC_Os04g50700, and LOC_Os04g50700) were all downregulated in

expression at 14dpi. Interestingly, only one of these genes (LOC_Os12g36880) was downregu-

lated in expression at 1dpi. Several of these PR genes are strongly induced in rice upon inocula-

tion with the pathogen,Magnaporthe oryzae, and are considered to be excellent markers for

plant defense reactions [34]. Another study reported that the PR gene (LOC_ Os12g36840)

was suppressed in expression in rice during interactions with the plant-growth promoting bac-

teria,Herbaspirillum seropedicae [8]. We also observed several thionin genes to be downregu-

lated in expression at 1dpi (e.g., LOC_Os03g14300, LOC_Os06g31280, LOC_Os06g31800)

and 14dpi (e.g., LOC_Os06g32020, LOC_Os06g31280, LOC_Os06g31890, LOC_Os11g15250).

Interestingly, some thionin genes were upregulated in expression at both time points. A thio-

nin gene was also found to be differentially expressed in rice roots during interactions with

Herbaspirillum [8]. Several studies have shown that cinnamoyl-CoA-reductase, a key enzyme

in lignin biosynthesis, plays a role in defense-related processes in rice [35–37]. One study

showed that expression of a cinnamoyl-CoA-reductase (LOC_Os08g34280) was induced dur-

ing interactions with a pathogenic microbe but repressed during interactions with a mutualis-

tic microbe [36]. In our study, the expression of this gene was downregulated at 14dpi. Also,

we identified another cinnamoyl-CoA-reductase gene (LOC_Os02g56700) that was downre-

gulated in expression at both time points. Collectively these expression data suggest that dur-

ing rice-A. brasilense interactions, the plant is reprogramming its defense-related genes similar

to other interactions between plants and beneficial microbes.

RNA-seq analysis during rice-Azospirillum interactions
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Transporters

Nitrate transporters have been shown to transport not only nitrate but other substrates, includ-

ing peptides, amino acids, and plant hormones such as auxin and have been involved in pro-

cesses from nitrogen sensing to nitrogen use efficiency [13]. Studies in L. japonicus andM.

truncatula have shown that nitrate transporters play key roles in nitrate signaling, root growth,

and nodulation [12]. Since A. brasilense can stimulate plant growth via improved nitrogen

uptake [38], this class of transporters is likely to play essential roles in this plant-microbe

interaction. Plants have evolved two nitrate uptake systems to adapt to nitrate availability: a

low-affinity transporter system and a high-affinity transporter system [13, 39]. In our

study, we identified both high-affinity transporters and low-affinity nitrate transporters (e.g.,

peptide transporter family). The high-affinity nitrate transporters (LOC_Os02g38230,

LOC_Os01g50820) were upregulated in expression at both time points suggesting that these

are likely involved at all stages of this interaction. We identified several low-affinity nitrate

transporters like the peptide transporters (e.g., LOC_Os10g02080, LOC_Os03g04570,

LOC_Os01g65130, LOC_Os01g65140) to be differentially expressed in rice roots. A recent

study showed that a peptide transporter contributed to nitrogen allocation and increased grain

yield in rice [40]. Besides nitrate, another form of nitrogen available to plants is ammonium.

Ammonium transporters are important for high-affinity primary uptake and translocation of

ammonium in plants. These transporters have been shown to play crucial roles in beneficial

plant-microbe symbioses: legume-rhizobia symbiosis and AM symbiosis [41]. In this study,

we identified three differentially expressed ammonium transporters (LOC_Os02g40710,

LOC_Os02g40730, and LOC_Os04g43070) in rice roots. In plant-microbe symbioses, the host

plant benefits from improved nutrient uptake in exchange for carbohydrates to its symbiotic

partner. Studies in legume-rhizobia symbiosis have shown that sucrose transport is essential

for symbiotic nitrogen fixation because of the expensive nature of the process. Sucrose trans-

porters were shown to play an active role in the loading and unloading of sugar in the phloem,

transfer of sugar to the nodules and subsequently to bacteria within nodules [42]. Additionally,

these transporters were also induced during mycorrhization, which suggests that they may

also play an important role in sugar efflux to fungal symbionts [43, 44]. We identified several

sugar transporters that were differentially expressed in rice roots. One sugar transporter

(LOC_Os04g37970) was upregulated in expression at both time points suggesting a possible

role in this rice-A. brasilense interaction. Another major group of transporters identified in

our dataset includes the nodulin (MtN3,Major facilitator superfamily, etc.) genes. Interest-

ingly, nodulin genes were first characterized in the initial response during the development of

symbiotic root nodules and considered legume-specific. Recent studies have identified these

genes to be present in non-legumes and have been suggested to play key roles in hormone and

solute transport during other processes [45]. Future studies can investigate the role(s) of these

genes in other plant-microbe associations in non-legumes.

Receptor kinases

Plant receptor-like kinases (RLKs) play vital roles in diverse signaling pathways that are

involved in plant growth and development, plant defense responses, and plant-microbe symbio-

sis. Some are also involved in the perception of microbial signaling molecules which is vital to

both disease resistance and symbiosis. For instance, the Lysin motif receptor-like kinases

(LysM-RLKs) can control the establishment of AM symbiosis and legume-rhizobia symbiosis

by recognizing the fungal and bacterial signaling molecules [46, 47]. While most studies on

these genes have been performed on legumes, recent studies show that LysM-RLK proteins with

an active kinase domain (LYKs) regulate symbiosis in non-legume plants as well [46, 48, 49].
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However, not much is known about the role of these genes beyond legume-rhizobia symbiosis

and AM symbiosis. In this study, the rice ortholog of LjNFR5/MtNFP gene (LOC_Os03g13080)

was upregulated in expression at 1dpi. We also identified the LYK8 gene (LOC_Os02g09960) to

be upregulated in expression at 14dpi. Future studies should clarify the role of these genes in

rice-A. brasilense interactions. In our study, we identified several SHR5 RLKs that were differen-

tially expressed at both time points. This class of RLKs is present in a wide range of plant species.

One study showed that expression of SHR5 gene was down-regulated in sugarcane plants asso-

ciated exclusively with beneficial endophytic bacteria [50]. In our study, we identified both

upregulated and downregulated SHR5 genes at both time points. For instance, the SHR5 gene

(LOC_Os05g16430) was upregulated in expression at both time points whereas, the SHR5 gene

(LOC_Os08g10310) was downregulated in expression at both time points. AGC protein kinases

are another important family of proteins that seem to regulate the interaction with diverse

microbes including both pathogenic and symbiotic microbes [51–53]. In our dataset, we identi-

fied one AGC kinase (LOC_Os09g31210) that was up-regulated in expression at 1dpi but down-

regulated in expression at 14dpi. Another AGC kinase (LOC_Os12g01140) was upregulated in

expression in rice roots at 14dpi. The role of these genes in rice-A. brasilense interactions needs

additional investigation.

Transcription factors

Transcription factors are important regulators of various plant processes from growth and

development to beneficial plant-microbe interactions [10, 11]. Genetic studies have identified

several transcription factors that are involved in legume-rhizobia symbiosis and AM symbio-

sis. One example is the AP2/ERF class of TFs which is one of the largest families of plant tran-

scription factors [54]. Multiple studies inM. truncatula and L. japonicus have identified

different AP2/ERFs that are required at various stages of root nodulation [55–57]. In this

study, we identified several genes in this category that were differentially expressed in rice

roots. Some of these AP2/ERFs (e.g., LOC_Os4g57340, LOC_Os05g29810, LOC_Os04g52090,

and LOC_Os02g42585) were differentially expressed at both time points. Functional charac-

terization of these genes will provide more insights into their role during interactions between

rice and A. brasilense. Another important class of TFs that is exclusive to plants and have been

involved in diverse processes including the GRAS family of TFs. Genetic studies have shown

that these TFs are required during beneficial plant-microbe symbioses [11, 58, 59]. We

identified one GRAS TF (LOC_Os11g47920) that was upregulated in expression at 14dpi

and two genes (LOC_Os12g04200 and LOC_Os11g47890) that were downregulated in expres-

sion at 1dpi. NAC transcription factors are one of the largest families of plant TFs that have

been shown to play important roles in plant-biotic interactions [60]. We identified several

genes belonging to the NAC TF family to be differentially expressed at both time points.

Interestingly, several of these genes (e.g., LOC_Os10g42130, LOC_Os04g52810, and

LOC_Os10g33760) were upregulated at 1dpi suggesting a role at earlier stages. This group of

TFs is essential for hormone signaling and plant development including lateral root formation

and root development [61–63]. One study showed that a NAC TF was upregulated in expres-

sion in central symbiotic nodule tissues inM. truncatula [62]. Studies have shown that hor-

mone-related TFs are involved in plant-microbe interactions. In addition to the different

ethylene response factors, we identified auxin response factors (ARF) to be differentially

expressed in our dataset. These ARFs are likely to bind to target genes and regulate them tran-

scriptionally which will induce appropriate physiological responses in a tissue-specific manner.

In this study, ARF11 (LOC_Os04g56850) and ARF5 (LOC_Os02g04810) were downregulated

in expression in rice roots 1dpi with A. brasilense. One recent study inM. truncatula showed
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that changes in expression of auxin response factors occurred during the response to Sinorhi-
zobium meliloti infection suggesting a possible role of this family of TFs in nodulation [64].

Interestingly,MtARF5 andMtARF11 expression were reduced inMedicago roots, similar to

what we observed in this study. Future studies can focus on profiling the expression patterns

of the ARFs in different plant tissues during A. brasilense infection.

Hormone-related genes

Phytohormones play critical regulatory roles in plant growth and development and plant-

microbe interactions [2, 20–23]. Plant hormones have their intricate systems requiring pro-

tein kinases, transporters, and transcription factors, some of which we discussed in the earlier

sections. In this section, we focus on a few hormone-related genes that were identified in our

dataset. Auxin is probably the most-studied plant hormone because of its central role in sev-

eral plant developmental processes. It also plays a crucial role during beneficial plant-microbe

symbioses [65–67]. In our dataset, we identified several auxin-related genes including the

auxin efflux carriers and auxin-responsive genes among others. Auxin efflux carriers are

involved during root nodulation [68]. Here at 1dpi, we identified one auxin efflux carrier

gene (LOC_Os01g45550) that was downregulated in expression. At 14dpi, we identified two

auxin efflux carriers (LOC_Os01g58860, LOC_Os09g38210) which were also downregulated

in expression. Some auxin-responsive genes were downregulated in expression at 1dpi

(LOC_Os03g58350, LOC_09g35870) and 14dpi (LOC_05g48270, LOC_01g67030,

LOC_Os01g48850). Among early auxin response genes, the SAUR gene family is the largest

and has been implicated in the regulation of a wide range of plant physiological and develop-

mental processes [69]. At 1dpi, we identified the SAUR genes (e.g., LOC_Os01g56240,

LOC_Os09g37460, LOC_Os06g50040, LOC_Os02g24700) to be differentially expressed in

rice roots. Only one SAUR gene (LOC_Os06g50040) was induced in expression at 1dpi. The

others were all downregulated in expression. Similarly, at 14dpi all the SAUR genes (e.g.,

LOC_Os06g04590, LOC_Os08g35110, LOC_Os02g05060, LOC_Os06g50040) were downre-

gulated in expression. Another study reported that auxin-responsive genes were downregu-

lated in expression during rice-Herbaspirillum interactions [8]. Therefore, it is tempting to

speculate that the repression of plant-derived auxin pathways might be important for rice-A.

brasilense interactions. Ethylene is another important plant hormone that plays vital roles in

different aspects of plant biology including plant-microbe symbioses [2, 22]. The plant

enzyme 1-aminocyclopropane-1carboxylate (ACC) oxidase catalyzes essential steps in the

ethylene biosynthetic pathway. We identified several ACC oxidase genes that were differen-

tially expressed at both time points. At 1dpi, one ACC oxidase gene (LOC_Os09g27750)

was upregulated in expression, while other ACC oxidase genes (LOC_Os08g30080,

LOC_Os05g05670, LOC_Os09g27820, LOC_Os02g53180) were downregulated in

expression. Similarly, at 14dpi we identified one ACC oxidase gene (LOC_Os08g30100) to

be upregulated in expression while other ACC oxidase genes (LOC_Os05g05670,

LOC_03g64280, LOC_Os05g05680) were downregulated in expression. The general

expression pattern of these genes suggests that ethylene synthesis might be repressed during

rice-A. brasilense interactions. A positive regulator of the ethylene signaling pathway is the

Ethylene Insensitive 2 (EIN2) gene. Genetic studies have shown that theMedicago ortholog of

Arabidopsis EIN2 is a negative regulator of symbiotic and pathogenic microbial associations

[70]. At 14dpi, we identified an EIN2 gene (LOC_Os07g06130) that was differentially

expressed. One study reported that ein2 (skl) mutant inMedicago truncatula was hyper

colonized by nitrogen-fixing endophyte Klebsiella pneumoniae 342, suggesting that ethylene
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acts as an inhibitor of the endophytic colonization process [71]. Whether this rice EIN2 gene

is required for associations with A. brasilense will require more studies.

To summarize, in this study we established an experimental system in which A. brasilense
could colonize rice roots and promote plant growth. We observed similar effects in rice sym-

biotic mutants, pollux and dmi3, suggesting that these genes might not be required by the

host plant to accommodate A. brasilense. Future studies should clarify the precise role of the

common symbiotic pathway in these interactions. Using RNA-seq, we identified several

excellent candidate genes which might be required for the rice-A. brasilense association. Our

results suggest that the bacteria trigger a signaling pathway in the host plant roots that com-

prise a variety of protein kinases, transcription factors, and transporters culminating in

plant growth promotion. Our data suggest the host defense responses are suppressed, as

observed in other beneficial plant-microbe interactions(Fig 5; [17, 18, 26]). We also suggest

that flavonoids might be involved in the initiation of this interaction. This dataset will

serve as an excellent resource for improving our understanding of the interactions between

non-legumes and beneficial bacteria. Most genetic studies on the host plant have been lim-

ited to legume-rhizobia and AM symbioses, but with advances in next-generation sequenc-

ing and genome-editing tools, we can now characterize other significant associations

between non-legumes and beneficial bacteria. Identifying the genetic pathway(s) controlling

these associations can have important implications for improving nitrogen fixation in non-

legumes.

Fig 5. Overview of the putative molecular signaling pathway in plant roots during interactions with Azospirillum brasilense. The figure

outlines a putative molecular signaling pathway in rice roots during interactions with A. brasilense. LYKs = LysM-RLK proteins with an active

kinase domain, AP2/ERFs = APETALA 2/Ethylene response factors, NAC = NAM, ATAF1/2, and CUC, GRAS = GAI, RGA, and SCR,

PR = pathogenesis-related.

https://doi.org/10.1371/journal.pone.0217309.g005
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Materials and methods

Plant material and growth conditions

We used wild-type rice (Oryza sativa cv. Nipponbare) and Tos17 insertion lines in DMI3 (line

NF8513) and in POLLUX (line NC6423) for the different experiments in this study [72, 73].

Seeds were surface sterilized and germinated as described in our previous study [74]. Germi-

nated seedlings were transferred to 15-cm petri plates (#639102, Greiner bio-one, North Caro-

lina, USA) containing low-N2 Fahraeus medium and allowed to grow for approximately 5–7

days in Percival growth chamber (#CU-22L, Iowa, USA) with 150 to 200 μmol m-2s-1 light

intensity, and relative humidity of 65% before bacterial inoculation.

Bacterial inoculation and bacterial counts

The bacterial inoculation of the rice roots was performed as described by Hiltenbrand et al

[74]. Bacteria were grown on Tryptone Yeast-Extract (TY) media at 30˚C to an optical density

(600 nm) of 0.6 [75–77]. The cells were then resuspended in sterile water and used for inocula-

tion. The control seedlings were treated with sterile water and the bacteria-treated seedlings

were inoculated with 108 cells/ml of A. brasilense and allowed to grow in the plant growth

chamber as mentioned earlier. The root colonization was quantified as described by Hilten-

brand et al. (2016) with one minor modification. Here the seedlings were sampled six days

post-inoculation with A. brasilense. The last wash was performed as mentioned in Hiltenbrand

et al. (2016) to determine the efficiency of surface sterilization.

RNA extraction and RNA sequencing

We extracted total RNA from the plant roots 1 and 14 days post bacterial inoculation using

Qiagen RNeasy1 Plant Mini Kit (Cat #74904, California, USA) as described in Hiltenbrand

et al [74]. We included three biological replicates for each sample. RNA quantification, library

preparation, and sequencing were performed at the Research Technology Support Facility

(RTSF), Michigan State University, East Lansing, MI, USA. Following RNA integrity check

using a Bioanalyzer (Agilent Technologies), the sequencing libraries were prepared using the

Illumina TruSeq Stranded mRNA Library Preparation Kit. Completed libraries were QC’d

and quantified using a combination of Qubit dsDNA HS, Caliper LabChipGX HS DNA, and

Kapa Illumina Library Quantification qPCR assays. All libraries were pooled in equimolar

quantities and this pool was loaded on one lane of a HiSeq 4000 flow cell and sequenced in a

2×150bp paired-end format using HiSeq 4000 SBS reagents. Base calling was done by Illumina

Real Time Analysis (RTA) v2.7.6 and output of RTA were demultiplexed and converted to

FastQ format with Illumina Bcl2fastq v2.18.

RNA sequencing data analysis

Raw paired-end reads were examined for a possible low base score, Illumina adapter and PCR

contaminations using fastQC. Illumina TruSeq adapter sequences were detected in forward

reads and Illumina Single End PCR Primer sequences were detected in reverse reads. We used

Trimmomatic [78] to (1) remove Illumina TruSeq adapter and PCR primer sequences, (2)

remove leading and trailing bases with low quality, (3) scan the read with a 4-base wide sliding

window and cut when the average quality per base drops below 15, and (4) drop reads shorter

than 36 bases long. S1 Table shows the summary of reads surviving these quality filtering crite-

ria for day 1 and day 14 samples, respectively. Paired-end reads surviving the quality control

criteria were processed using the Tophat-Cufflinks pipeline [79] to obtain normalized gene

expression profiles. Paired-end reads were mapped to the rice genome (Oryza sativa) using
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Tophat (v2.0.12) [80], allowing two mismatches. The genome contigs (file all.chrs.con), gene

annotations (file all.gff3) for 55986 loci, and short descriptions (file all.locus_brief_info.7.man)

were downloaded from the Rice Genome Annotation Project [81]. Reads that align to anno-

tated loci were quantified and normalized (FPKM normalized values) using cufflinks (v2.2.1)

[82]. Differential expression (DE) analysis was performed using cuffdiff (part of the Cufflinks
suite) and significant DE genes were defined as those with false discovery rate (FDR) <0.05

and absolute fold-change (FC) >2.

Reverse-transcriptase PCR

The RNA-seq results were validated with select genes via reverse transcriptase PCR (RT-PCR)

as described in [83]. Prior to cDNA synthesis, RNA samples were treated with the Ambion1

DNA-free™ DNase Treatment and Removal kit (Cat #AM1906, California, USA). We synthe-

sized first strand cDNA from 300 ng of RNA using Thermo Scientific RevertAid RT Kit (Cat

#K1691, Delaware, USA) using Oligo(dT)18 primers per manufacturer’s instructions. For the

internal reference gene, we used Cyclophilin in our RT-PCR analysis [74, 84]. The table of

genes and their corresponding primer sequences are listed in S7 Table.
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