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Abstract

Convolutional neural networks (CNNs) can not only classify images but can also generate

key features, e.g., the Google neural network that learned to identify cats by simply watching

YouTube videos, for the classification. In this paper, crop models are distilled by CNN to

evaluate the ability of deep learning to identify the plant physiology knowledge behind such

crop models simply by learning. Due to difficulty in collecting big data on crop growth, a crop

model was used to generate datasets. The generated datasets were fed into CNN for distil-

lation of the crop model. The models trained by CNN were evaluated by the visualization of

saliency maps. In this study, three saliency maps were calculated using all datasets (case 1)

and using datasets with spikelet sterility due to either high temperature at anthesis (case 2)

or cool summer damage (case 3). The results of case 1 indicated that CNN determined the

developmental index of paddy rice, which was implemented in the crop model, simply by

learning. Moreover, CNN identified the important individual environmental factors affecting

the grain yield. Although CNN had no prior knowledge of spikelet sterility, cases 2 and 3 indi-

cated that CNN realized about paddy rice becoming sensitive to daily mean and maximum

temperatures during specific periods. Such deep learning approaches can be used to accel-

erate the understanding of crop models and make the models more portable. Moreover, the

results indicated that CNN can be used to develop new plant physiology theories simply by

learning.

Introduction

Recently, machine learning has experienced tremendous advancements. Deep learning has

provided solutions to many tasks that could not be solved by conventional machine learning.

One remarkable achievement of deep learning is AlphaGo [1] (developed by DeepMind), a

computer program that plays the game Go and can beat professional human Go players with-

out any handicaps.

Convolutional neural networks (CNNs), which are typically used in image processing tasks

and AlphaGo, represent a powerful deep learning method. The remarkable accuracy of CNNs

was demonstrated when they outperformed conventional image processing in ImageNet Large

Scale Visual Recognition Challenge 2012 (ILSVRC-2012) [2–5]. In addition to their accuracy,

an interesting feature of CNNs is that they do not require feature engineering. Instead, CNNs
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alone generate the key features used for classifying images from the input, and then classify the

images using these features. For instance, a Google CNN learned to detect cats after being

trained by watching YouTube videos.

Machine learning, including deep learning, can also be used for agricultural purposes. Most

researches utilizing machine learning in agriculture have focused on image processing tasks,

e.g., weed detection and identification [6, 7], disease detection [8–14], pest identification [15–

17], stress phenotyping [18], internode length estimation [19], vegetation area detection [20],

flower detection [21], leaf counting [22], and fruit detection [23–27]. However, machine learn-

ing can be utilized as an alternative approach for discovering embedded knowledge that may

be present in a dataset [28]. This type of approach includes maize yield prediction using deci-

sion tree models [29]; comparison of machine learning methods for the yield prediction of

peppers, beans, corns, potatoes, and tomatoes [30]; support vector machine (SVM)-based crop

models for paddy rice [31]; identifying important environmental features for the maize pro-

duction using random forests [32]; evaluation of relations between the meteorological factors

and the rice yield variability using conditional inference forests [28]; identification of impor-

tant variables for modeling Andean blackberry production using artificial neural networks

[33]; and predicting the photosynthetic capacity of leaves using partial least squares regression

[34].

As described above, machine learning has already been used to predict crop growth from

environmental information. However, there are several problems associated with such

research designs. First, data collection in agriculture is a challenging task. Machine learning,

especially deep learning, requires a huge amount of data to produce a model with high general-

izing capability [14]. For instance, in ILSVRC-2012, 1.2 million images were provided for

training. Given the various growing times of important crops, it may take a year to collect a

single dataset. For this reason, research that attempts to utilize machine learning for crop

growth prediction tends also lacks sufficient data. One way to solve this problem is to use crop

models [35–39] that can generate a huge number of datasets on crop growth via simulation.

Crop models and machine learning models differ greatly in how the models are con-

structed. Crop models perform an abstraction of the dynamic mechanisms of a plant’s physio-

logical stages by fitting them into a mathematical model [30, 40], whereas machine learning

produces models based on statistical theories and does not require any prior knowledge about

physical mechanisms [30]. To date, there has been no study discussing the relations between

machine learning models and crop models. If such a relation could be found, it would suggest

that meaningful plant physiology models can be generated by machine learning. It would also

mean that machine learning can develop new plant physiology theories by learning, which is

similar to the Google AI that learned to identify cats. In this context, a previous study [14]

showed that CNNs can use the visual cues employed by an expert rater to identify and quantify

the symptoms of plant diseases.

In this research, a crop model has been distilled by applying a CNN to big data from crop

growth generated by the crop model. The generated model is then analyzed by deep learning

to find relations between the crop model and the deep learning model. Finally, the ability of

deep learning to find the plant physiology knowledge behind the distilled crop model from the

given data is discussed.

Materials and methods

Crop model

Paddy rice is a key crop in Asian countries, and thus, many crop models for paddy rice have

been developed to date [35, 41–45]. SImulation Model for RIce-Weather relations (SIMRIW)
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[35] is a simplified process model for simulating the growth and yield of irrigated rice in rela-

tion to weather. In comparison with other crop models, SIMRIW requires less parameters to

be provided in advance; hence, it is applicable to a wide range of environments [35]. Further-

more, SIMRIW requires adjusted parameters for specific rice varieties, but these have already

been studied for the major rice varieties in Japan [46].

SIMRIW is a simplified process model for simulating the potential growth and yield of irri-

gated rice in relation to temperature, solar radiation, and CO2 concentration in the atmo-

sphere [35]. The model is based on the principle that the grain yield YG of a crop forms a

specific proportion of the total dry matter production Wt:

YG ¼ hWt; ð1Þ

where h is the harvest index.

In SIMRIW, Wt is determined by the amount of short-wave radiation absorbed by the can-

opy. This relation is described as follows:

DWt ¼ CsSs ð2Þ

where Cs is the conversion efficiency of absorbed short-wave radiation and Ss is the daily total

absorbed radiation.

The developmental processes of rice crops are strongly influenced by environment and

crop genotype [35]. In SIMRIW, these are described by the developmental index (DV I), which

is defined as 0.0 at crop emergence, 1.0 at heading, and 2.0 at maturity.

DV I of day t is calculated by accumulating the developmental rate (DV R) until the day

DV It ¼
Xt

i¼0

DV Ri ð3Þ

Day length and temperature are the major environmental factors determining DV R [35];

hence, DV R at 0.0� DV I� 1.0 is defined as

DV R ¼

1

Gvf1þ exp ½� AðTmean � ThÞ�g
DV I � DV I� ð4Þ

1 � exp ½BðL � LcÞ�

Gvf1þ exp ½� AðTmean � ThÞ�g
DV I > DV I�; L � Lc ð5Þ

0 DV I > DV I�; L > Lc ð6Þ

8
>>>>><

>>>>>:

where Tmean and L are daily mean temperature and day length, respectively. DV I� is the value

of DV I at which the crop becomes sensitive to photoperiod, Lc is the critical day length, Th is

the temperature at which DV R is half the maximum rate at the optimal temperature, and Gv is

the minimum number of days required for heading of a cultivar under optimal conditions. A

and B are empirical constants.

DV R from heading to maturity (1.0< DV I� 2.0) is defined as

DV R ¼ f1 � exp½� KrðTmean � TcrÞ�g=Gr; ð7Þ

where Gr is the minimum number of days for the grain-filling period under optimal condi-

tions. Kr and Tcr are empirical constants.

The amount of absorbed radiation (Ss) is a function of leaf area index (LAI). Daily dry mat-

ter production ΔWt is calculated by multiplying the Ss value by an appropriate value of the

radiation conversion efficiency Cs (Eq 2). Cs is constant for the fronthalf of the grain-filling
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stage, and decreases gradually toward zero for the back half:

Cs ¼ C0 �
1þ RmðP � 330Þ

ðP � 330Þ þ Kc
ð8Þ

C0 ¼

C 0:0 � DV I < 1:0 ð9Þ

Cð1þ BÞ

1þ B exp
DV I � 1

t

� � 1:0 � DV I � 2:0 ð10Þ

8
>>><

>>>:

in which P is CO2 concentration (ppm), C0 is the radiation conversion efficiency at 330 ppm

CO2, Rm is the asymptotic limit of relative response to CO2, and Kc, C, B, and t are empirical

constants.

In SIMRIW, the harvest index h is defined as

h ¼ hmð1 � gÞf1 � exp ½� KhðDV I � 1:22Þ�g; ð11Þ

where hm is the maximum harvest index of a cultivar under optimal conditions, Kh is an

empirical constant, and γ is the percentage of spikelet sterility.

The harvest index decreases when the fraction of sterile spikelets increases or when crop

growth stops before completing development due to cool summer temperatures or frost [35].

In SIMRIW, the effect of cool summer damage occurs in the period of the highest sensitivity of

the rice panicle by cool temperatures (0.75< DV I< 1.2) and can be described as follows:

gL ¼ g0 � KqQa
t ð12Þ

Qt ¼
P
ð22 � TmeanÞ; ð13Þ

where γL is the percentage of sterility due to cool summer damage. γ0, Kq, and a are empirical

constants.

Sterile spikelets are also increased by high temperature at anthesis. In SIMRIW, this is

described as follows:

1 � gH ¼ 1 � 1=f1þ exp ½� 0:853ðTH � 36:6Þ�g ð14Þ

where γH is the percentage of sterility due to high temperature at anthesis and TH is the average

daily maximum temperature (Tmax) at 0.96< DV I� 1.22. The actual spikelet sterility γ is cal-

culated as the maximum of γL and γH.

A schematic representation of the processes of growth, development, and yield formation

of rice implemented in SIMRIW is shown in S1 Fig. Refer to S1 Table for details of the

variables.

Meteorological data acquisition

Meteorological data were obtained from the Agro-Meteorological Grid Square Data (hereinaf-

ter referred to as Grid Data) provided by the National Agriculture and Food Research Organi-

zation [47]. Grid Data provides daily data on air temperature, humidity, precipitation, and

solar irradiance all over Japan with a 1-km resolution. The available data include past data

from 1980 until present as well as forecast data for 26 days ahead.

Meteorological data from 1980 to 2016 on daily mean temperature, daily maximum tem-

perature, and daily total global solar radiation were obtained from Grid Data. Day length was

calculated based on the day of the year and latitude. Since CO2 concentration was not available

Distillation of crop models to learn plant physiology theories using machine learning
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in Grid Data, it was set as a constant value (350 ppm). Since environmental conditions were

considerably similar within the 1-km interval, meteorological data were obtained for every 10

km. The meteorological data were divided by year and grid. Consequently, 132,460 datasets

were obtained.

Data generation using crop model

The meteorological data obtained from Grid Data were fed into SIMRIW to generate crop

growth data. The parameters for Koshihikari, the most common paddy rice variety in Japan,

were used for the SIMRIW simulation.

In most rice production areas in Japan, rice is planted in the beginning of May and har-

vested in the beginning of October of the same year. Therefore, the planting date was set as

May 01 of the same year as meteorological data of each dataset. As a result, the amount of

plant growth data obtained from SIMRIW was the same as the amount of meteorological data

(132,460 datasets).

Climatic conditions are extremely different in the north and south parts of Japan. There-

fore, in a few of the grids, In some of the grids, therefore, DV I increase was considerably slow

in certain years or certain regions due to overly hot or cool temperatures. Datasets that did not

reach 2.0 of DV I by October 05 of the same year as the planting date were excluded from fur-

ther analysis.

Distillation of crop model using CNN

The neural network design considered for this research is shown in S2 Fig. The first layer of

the network was a 3 × 3 pixel convolutional layer with a stride of 1 × 1 pixel (in the horizontal

and vertical directions) and padding of 2 × 2 pixel (in the horizontal and vertical directions).

This convolutional layer mapped the single channel in the input to 32 feature maps using a

3 × 3 pixel kernel function. The second layer was a 3 × 3 pixel convolutional layer with a stride

of 1 × 1 pixel and padding of 2 × 2 pixel, which mapped the 32 feature maps of the first layer to

64 feature maps. Rectified linear unit (ReLU) layers were adopted in all convolutional con-

nected layers. The third and final layers were fully connected to produce a single value of pre-

diction. Herein, the mean squared error (MSE) was used as a loss function. An Adam

optimizer [48] was used to minimize error.

Meteorological data were shaped to a 2D array and fed into the CNN to obtain the predic-

tion of the grain yield. The rows of the 2D array were related to days from the planting date,

and the columns were related to the meteorological factors L, Tmean, Tmax, Ss, and P. Since the

CNN architecture considered herein requires the same shape of inputs, zero padding in the

vertical direction was applied when DV I reached 2.0 within 184 days from the planting date.

Each meteorological factor was normalized before being fed into the CNN. The data were ran-

domly split into 75% for training and 25% for validation. As shown in S3 Fig, the validation

data were within the range of the training data, timewise and spatially. After the normalization,

random noise ranging between -0.001 and 0.001 was added to the training and validation data

(see S4 Fig and S2 Table for the results with different ranges of the random noise). The training

was stopped when validation loss did not improve for 10 consecutive epochs.

Since the objective of this study was not the evaluation of accuracy, the model that pro-

duced the lowest validation loss was used for further analysis.

Evaluation of the CNN model

There are several ways to evaluate and explain trained CNN models, e.g., layer visualizations

and attention maps. In this study, saliency maps [49], a method concerning attention maps,

Distillation of crop models to learn plant physiology theories using machine learning
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were used to visualize the salient meteorological factors and timings that most contributed to

grain yields.

Positive saliency, which increases the output (in this case, grain yield), was calculated based

on the final dense layer of the CNN. Inputs used as initial seeds for the calculation were ran-

domly selected from the training datasets (n = 500).

Three types of saliency were calculated in this study. First, saliency was calculated using all

datasets. Next, datasets with higher γH or γL were extracted and used for saliency calculation to

evaluate the differences in saliency when spikelet sterility occurred.

Implementation

All calculations were made using Python 3.6 on an Ubuntu 16.04 Linux system. All experi-

ments were executed on the Amazon Elastic Compute Cloud (EC2) with a single GPU of NVI-

DIA Tesla K80. SIMRIW is available as an R script [50]. In this study, the R script was ported

to Python and used for data generation. The CNN model was implemented in Keras 2.1.5 [51].

The calculation of saliency maps was made using the keras-vis package [52].

Source codes developed for this research are available online (https://github.com/ky0on/

simriw and https://github.com/ky0on/pysimriw). All the data collected and generated in this

study are also available online [53].

Results

Crop modeling

Fig 1 shows a heatmap of the grain yield simulated by SIMRIW. In northern areas of Japan,

DV I does not reach 2.0 because of cold temperatures; hence, the grain yield is considerably

low. Fig 2 shows a histogram of final DV I in all datasets. In total, 48% of datasets did not reach

2.0 of DV I.

Fig 1. Heatmap of the grain yield simulated by SIMRIW. In northern areas of Japan, DV I does not reach 2.0 because of cold

temperatures; hence, the grain yield is considerably low.

https://doi.org/10.1371/journal.pone.0217075.g001
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Table 1 presents a summary of the harvest index considering γH (hgH ) and γL (hgL). Datasets

for which DV I does not reach 2.0 were eliminated in Table 1. The minimum values of hgH and

hgL are 0.15 and 0.13, respectively. The 10th percentiles are 0.36 and 0.35, respectively. Datasets

below the 10th percentile were used for saliency calculation to evaluate the effect of spikelet

sterility due to high temperature at anthesis or cool summer damage.

Crop model distillation

CNN training stopped at epoch 55 and required 1 h for its completion. In the validation pro-

cess, 3.1 ms ± 37 μs were required to produce 10 predictions.

Loss during CNN training and validation are shown in S4 Fig. The loss is considerably

improved in the first 20 epochs and slightly improved after 20 epochs in the training process.

The loss in the validation process also improves as the epochs increase with fluctuations. Over-

all, the smallest validation loss is observed in the 45th epoch. The trained model of this epoch

was thus used for further evaluation.

Fig 3 shows the relation between the actual and predicted grain yields in the training and

validation processes. The predictions are considerably close to the actual values in both pro-

cesses. MSE between the actual and predicted values is 41.5 and 68.2 in the training and valida-

tion processes, respectively.

Model visualization

Fig 4 represents the relations between saliency of environmental elements and DV I, which

represents the growing stage of paddy rice. Figure panels at the top in Fig 4 show the saliencies

Fig 2. Histogram of final DV I of all datasets. In total, 48% of datasets do not reach 2.0 of DV I.

https://doi.org/10.1371/journal.pone.0217075.g002

Table 1. Summary of the harvest index considering γH and γL, where final DV I� 2.0.

Mean Std Min 10% 25% 50% 75% max

hgH 0.37 0.01 0.15 0.36 0.37 0.38 0.38 0.38

hgL 0.36 0.01 0.13 0.35 0.36 0.36 0.36 0.36

https://doi.org/10.1371/journal.pone.0217075.t001
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calculated using all datasets, while those at the middle and bottom are using datasets with

spikelet sterility due to high temperature at anthesis and cool summer damage, respectively.

The saliencies of environmental elements change along with DV I. Moreover, there are some

differences in the saliency of each environmental element when different datasets were

provided.

Fig 3. Actual and predicted grain yields in training and validation. MSE between the actual and predicted values is 52.9 and 81.7 in the training and

validation processes, respectively.

https://doi.org/10.1371/journal.pone.0217075.g003

Fig 4. Positive saliencies of different meteorological elements and DV I. Saliencies were calculated from 500 datasets that were

randomly selected from (top) all datasets, (middle) datasets where hgH < 0:36, and (bottom) datasets where hgL < 0:35.

https://doi.org/10.1371/journal.pone.0217075.g004
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Discussion

Herein, distillation of crop models was conducted to investigate the ability of deep learning to

find the plant physiology knowledge behind the distilled crop model from given data.

Although most research utilizing machine learning in agriculture lacks sufficient data, this

problem was overcome via simulations using crop models. Interestingly, the performance of

the model generated by the distillation was analyzed. In addition, the learnings obtained by the

model and determination of whether there were any cues related to plant physiological theo-

ries behind the distilled crop model were analyzed. CNN, a state-of-the-art method based on

deep learning, was used for distillation.

In this study, saliency was calculated using all datasets (case 1) and datasets that faced spike-

let sterility due to high temperature at anthesis (case 2) or cool summer damage (case 3). In

case 1, the positive saliency of Ss increases rapidly at 0.2� DV I� 1.0. Subsequently, the

saliency of Ss decreases again. In fact, in SIMRIW, it is defined that Ss is a function of leaf area

index; the leaf area index increases until DV I reaches 1.0, after which it starts to decrease. In

contrast, the positive saliency of Tmean decreases considerably, which means that negative

saliency increases and has some influence on the grain yield at 0.4� DV I� 0.7. At this range

of DV I, Koshihikari rice growth is affected by Tmean as well as L. Although the saliency of L
does not increase within the range, that of Ss, an environmental element similar to L, does

increase. These results indicate that CNN find a developmental index similar to DV I. More-

over, CNN find the important individual meteorological factors affecting the grain yield with

the developmental index. Based on these results, CNN is shown to be capable of finding the

plant physiology knowledge behind SIMRIW simply by learning climate and plant growth

(grain yield) data.

In case 2, the positive saliency of Tmax decreases to almost 0 at 0.9� DV I� 1.2. In fact,

the percentage of spikelet sterility due to high temperature at anthesis is determined by an

accumulated daily maximum temperature in the range 0.96� DV I� 1.2 in SIMRIW. In

case 3, the positive saliency of Tmean is found to have slightly increased in the range 0.7� DV
I� 1.2. In SIMRIW, cool temperature stress concerning spikelet sterility was measured

based on the daily mean temperature in the range 0.75 � DV I� 1.2. These results indicate

that although CNN has no prior knowledge of spikelet sterility, it realizes that paddy rice

becomes sensitive to Tmean or Tmax during certain periods. Similar to the results of case 1,

CNN successfully find the plant physiology theories behind the crop model simply by

learning.

The results demonstrate that machine learning can find plant physiology theories simply by

learning climate and plant growth data generated by a crop model without any explicit model-

ing of the underlying theories. This approach may be helpful for understanding the basic theo-

ries behind crop models. For instance, Fig 4 makes it easy to understand the importance of

each environmental factor input to SIMRIW in the range of DV I. Moreover, the results indi-

cate that machine learning has the potential to discover new theories, even for crops whose

plant physiological theory is not revealed yet, simply by learning.

Explaining some saliencies is a challenging task. For instance, the saliency of P suddenly

increases at 0.9� DV I� 1.2 only when datasets with higher γH were provided. Such a theory

was not implemented in SIMRIW. However, SIMRIW has multiple empirical parameters that

are difficult to understand and such saliencies may be related to these parameters.

In addition, machine learning can accelerate crop growth simulation. The CNN and SIM-

RIW models required 3.1 ms ± 37 μs and 782 ms ± 2.12 ms, respectively, to produce prediction

from 10 datasets. Since the trained model is saved in the Keras format, it can be easily used

from Python and JavaScript by employing TensorFlow.js [54] to convert crop models into web

Distillation of crop models to learn plant physiology theories using machine learning
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applications. Moreover, the proposed approach can be applied to any crop model (even if it is

complex) to make the model easier to use and more portable.

Due to ongoing climate change, the agricultural skills and knowledge accumulated over the

centuries may not be beneficial in the near future. Thus, data and artificial intelligence meth-

ods are needed to improve farming methods. Although machine learning requires big data,

which cannot be easily obtained in agriculture due to growing times, this limitation can be

overcome using crop models to generate big data on crop growth. In the future, real big data

are required to assess the ability of machine learning to discover new plant physiology theories.

To this end, it is essential to determine how to effectively collect data on cultivation environ-

ments, crop growth, and cultivation management farmers conducted using IoT technologies,

which are rapidly developing.
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