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Abstract

Previous studies on athletes’ cognitive functions have reported superior performance on

tasks measuring attention and sensorimotor abilities. However, how types of sports training

shapes cognitive profile remains to be further explored. In this study, we recruited elite ath-

letes specialized in badminton (N = 35, female = 12) and volleyball (N = 29, female = 13), as

well as healthy adult controls (N = 27, female = 17) who had not receive any regular sports

training. All participants completed cognitive assessments on spatial attention, sensory

memory, cognitive flexibility, motor inhibition, and the attention networks. The results

showed that athletes generally showed superior performance on selective cognitive

domains compared to healthy controls. Specifically, compared to the healthy control, volley-

ball players showed superior on iconic memory, inhibitory control of action, and attentional

alerting, whereas badminton players showed advantages on iconic memory and basic pro-

cessing speed. Overall, volleyball players outperformed badminton players on those tasks

require stimulus-driven visual attention and motor inhibition, likely due to different training

modalities and characteristics of specialty that involves even more complex cognitive pro-

cesses. To conclude, our findings suggest cognitive plasticity may drive by sports training in

team/individual sports expertise, manifesting cognitive profile in sport expertise with distinct

training modalities.

Introduction

Recent years have seen accumulating evidence that physical activity and cardiovascular fitness

are positively associated with cognitive functions [1–3]. Structural and functional brain

changes have also been linked to this “fitness effects” of physical exercise [4,5]. Although sev-

eral studies have shown the benefits of physical training lasting from a few tens of minutes to

months on cognitive functions, little is known about how very long-term physical training

shapes cognitive profiles, such as athletes who have devoted tremendous time and efforts in

their specialty since very young in age.
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A recent study have highlighted the missing link in the field of sport expertise and its brain

function [6], that is, whether sports expertise with decades of physical training would lead to

superior performance on general or specific cognitive skill. A meta-review concluded that elite

athletes had better performance on visual attention and basic sensorimotor processing speed,

especially those who are specialized in interceptive sports [7]. In their review study, Voss et al.

distinguishes three sports types: static, interceptive, and strategic sport. The static sports

involve highly consistent and self-paced situations (e.g. running and swimming); the intercep-

tive sports require coordination of varied parts of body or a held implement to catch or reach a

pass by object in the dynamic environment (e.g. tennis, fencing, and boxing); the strategic

sports require concurrent processing of substantial amount of information such as teammates,

opponents, field position and ball, and often involve highly varied situations (e.g. volleyball,

basketball, soccer, hockey, field-hockey, and water-polo). Many studies have since emerged to

investigate the relationship between sports expertise and different aspect of cognitive func-

tions. For example, tennis players (i.e., interceptive sports) showed better performance on

motor inhibition [8] and sensorimotor speed [9], while soccer players have superior perfor-

mance on visual attention [10] and executive functions [11–13] than controls. The results

seem to converge on the view that athletes have better performance on the task measuring

executive functions[11,14] and varied attention abilities [15–17]. Nonetheless, sports-related

superior cognitive performance is not only observed when dealing with stressful situation [18]

but also predictive of actual game performance [19,20].

Although quite a few studies have demonstrated that athletes appear superior to lay person

at certain aspect of cognitive abilities, the findings across various cognitive tasks assessing ath-

letes with different types of sports expertise are still mixed [8,16,21,22]. For example, while a

recent study demonstrated that team sports athletes performed better in a basic cognitive test

of sustained attention and processing speed than recreational athletes [16], opposite conclu-

sions have also been made in a study comparing basketball, volleyball and water-polo players

on a battery of cognitive tests, which found that not all types of experts outperformed novices

on certain type of tasks of the battery [23]. Moreover, Chang and colleagues [21] examined the

differences between types of sports expertise (i.e., endurance athletes versus Wushu martial art

athletes) and non-athlete controls on general cognition. Despite both athletes group did show

higher levels of cardiovascular and motor fitness than the control group, no significant differ-

ence was found between the three groups for the battery of general cognitive tasks.

The current study aims to explore how cognitive profiles differ among types of sports exper-

tise. We hypothesize that sports expertise experience from different training modalities would

manifest itself in distinct cognitive skills [7]. We contrasted two types of athletes that have

been shown to excel in cognitive functions in general, namely those who specialized in inter-

ceptive sports (i.e., badminton player) and strategic sports (i.e., volleyball player). Strategic

sport players have to coordinate their skills with multiple players on-the-fly, leading to the

most loading of information processing demand from their coach, teammates, and opponents.

The loading can involve executing tactics, updating the location of teammates/opponents, and

following the rules during the game. The interceptive sports players have to interact with their

opponents with an instrument and need to move at extremely high speed, such as reaching to

catch a ball or running towards a target to make a tackle. This implies precise control of

intended action [8], proper reaction to target [24], and locomotion in optimal combinations of

space and time [18,25–27]. Based on the characteristics of strategic sports [28] and interceptive

sports [24], we hypothesized that strategic-sports players should exhibit better performance on

task measuring attention and executive functions, whereas interceptive-sports players should

show better performance on motor inhibition and basic processing speed.

Cognitive profiles in sports expertise
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Materials and methods

Participants

There were 91 participants, including 35 elite badminton players (mean age 22.7±3.4 years,

female = 12), 25 volleyball players (mean age 23.6±2.8 years, female = 13), and 27 healthy non-

athletes control (mean age 22.8±3.2 years, female = 17). The Badminton players were all pro-

fessional athletes who had represented Taiwan in international competitions. Sixteen of them

ranked among the top 100 in the Badminton World Federation Ranking. Young volleyball

players were recruited from the Men’s National Volleyball Team. All of the volleyball players

were professional athletes of Top Volleyball League in Taiwan, and the team ranked 4th in

Group 3 of the 2016 FIVB Volleyball World League. They belonged to the highest level of

intercollegiate athletes based on the classification of Chinese Taipei University Sports Federa-

tion in Taiwan, and they have represented Taiwan in international competitions. The non-ath-

lete control group was recruited from Chung Yuan Christian University who had not been

engaged in regular physical training of any sport.

All participants were right-handed, had normal color vision, and normal or corrected-to-

normal visual acuity. They reported no history of neurological or psychiatric disorders. Before

participating in the study, all participants gave written informed consent in accordance with

the Declaration of Helsinki and were approved by the Research Ethics Committee of the

National Taiwan University (NTU), Taiwan.

Demographic questionnaire

Before taking cognitive tests, all participants reported their demographic and training infor-

mation on a questionnaire (see S1 File). The questionnaire items include age, education, and

gender, commencement age (of their sports specialty), type, total duration, number of daily

and weekly practice hours, and duration of each training session. Participants were asked to

answer the question based on their experience within six months recently. Measures related to

the mean level of sports activity and training background were then compared among groups

with one-way ANOVA (see Table 1).

General procedure

The participants were tested in a laboratory space. The entire experimental session took

approximately 90 minutes to complete. Behavioral tests were administered in the following

order for all participants: 1) Stop Signal Task; 2) Task-Switching task; 3) Partial report test; 4)

Table 1. Demographic information of each group.

Sports Type Badminton

(F/M)

Volleyball

(F/M)

Control

(F/M)

P

Gender 1.34(12/23) 1.45(13/16) 1.63(17/10) .79

Age 22.74(±3.4) 23.55(±2.8) 22.81(±3.2) 0.565

Education 15.71(±2) 15.66(±1.6) 16.37(±0.8) 0.193

Highest Level of Competition 3.4(±1.6) 4.9(±1.6) N/A < .001

Starting Age 10.06 (±1.4) 10.83(±1.7) .059

Years of Training 11.31(±3.1) 11.57(±3.1) .748

Practice Sessions Per Week 5.8(±0.58) 5.14(±0.83) < .001

Hours Per Session 5.6(±0.8) 4.2 (±1.5) < .001

Note. F = female; M = male. ± Standard deviation.

https://doi.org/10.1371/journal.pone.0217056.t001
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change detection task; 5) the attention network task (ANT). These tasks fell into five cognitive

categories: (a) inhibition control (1), (b) attentional Shifting, (c) visual spatial attention, (d)

visual sensory memory (4), and (e) attentional processing (5). To mitigate potential impact of

fatigue, there was a one-minute break between consecutive tests.

Apparatus

All experiments were conducted on a PC-compatible laptop with a 14” display. Participants

made responses on the keyboard. The task was displayed with custom software written in C-

language (i.e., STOP-IT) [29], PsychoPy [30], or PEBL [31].

Cognitive batteries

Inhibition control: Stop signal task (SST). The SST in the current study adopted the sti-

muli and the procedure described in Verbruggen, Logan, and Stevens (2008). In this paradigm

(See S1 Fig), participants were instructed to make speeded choice response to the shape of the

cue (circle or squared), but to withhold response when a second stimulus (the stop signal) was

presented. The interval between go and stop signals (Stop-Signal Delay; SSD) was adaptively

adjusted to find the SSD at which participants successfully withheld responses for 50% of the

stop trials on average. The first index of SST is the probability of responding on stop-signal tri-

als, p(respond|signal), in other words, (successful stopping rate) SSR [32]. The second index of

inhibitory control is an estimate of the covert latency of the stop process, stop-signal reaction

time (SSRT). The third index is go reaction time (RT) on no-signal trials. RT is typically longer

in blocks in which stop signals can occur than in blocks in which no signals occur. This RT dif-

ference has been interpreted as a measure of proactive control: people increase response

thresholds and generally suppress motor output in situations in which stop signals can occur,

compared with situations in which they can always respond [33–35]. Two core values in SST

are SSD, which represents the interval between the appearance of the target stimulus and the

stop-signal, and SSRT that represents the latency of the stop process, i.e. the time it takes one

to complete the inhibitory process after the appearance of the stop-signal.

Attentional shifting: Task-Switching task (TSWT). The TSWT assesses the participant’s

ability to switch attention and response rapidly between the two sets of rules associated with

identical stimulus configuration [36–38]. Details of the task paradigm are demonstrated in the

S2 Fig. In brief, participants were required to determine whether an Arabic number presented

at the center of the computer screen was odd or even, or it was high or low (i.e., like larger or

smaller than five). The color of the background display indicated which task participants had

to perform on every trial. Participants first completed two single task blocks when they only

performed numerical comparison or oddity judgment, respectively, followed by two switching

blocks in which oddity and number comparison occurred either every five trials or in

completely random order. There were two dependent measures: the global cost indicates the

difference in response time (RT) between repetition trials in the mixed task blocks and the

same trial type in the single task blocks; the local cost indicates the RT difference in perfor-

mance between the switch and repetition trials (in mixed-tasks blocks). More efficient ability

in switching between two different tasks is expected to result in smaller costs. Moreover, in

these two single task blocks (i.e. simple reaction time task), we also measured their basic pro-

cessing speed since participants were asked to press when the background color present.

Visual-spatial attention: Change detection task (CDT). The change detection task mea-

sures visual spatial attention and visual working memory [39]. We used a version of change

detection flicker paradigm was from PEBL test battery that adopted fields of multiple circles

[31,40].The procedure is demonstrated in the S3 Fig. In this task, participants searched for the

Cognitive profiles in sports expertise
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difference between two alternating visual scenes consisting of disks with random color and

position scattered on the display. The two visual scenes differed only with respect to a disk.

The alternation was at a rate of 1.38 Hz and lasted for 30 seconds or until participants made a

response. Participants were instructed to search for changes in color (e.g., circle changing

color), location (e.g., changing the circle position), or additions/deletions (e.g., circle presence

and absence). Once finding the change, participants pressed the “space” key on the keyboard

instantly and then clicked with the mouse on the area of the field of circles where the change

had occurred. The indices of performance in this task are the accuracy and the mean RT for

correct trials.

Visual sensory memory: Iconic memory task (ICMT). ICMT measures the capacity of

sensory memory, and we adopted a variation of Sperling’s partial report task [41,42] which is

implemented in the PEBL Test Battery [31]. The participant determined the identity of a target

indicated by an arrow probe that was presented immediately after the target vanished. In each

trial, eight uppercase letters were randomly selected from the letters ‘‘D,” ‘‘F,” ‘‘J,” and ‘‘K” and

briefly presented on the display, forming a circle (radius = 3.5o) on a gray background (see S4

Fig). In addition, there were seven different target-to-probe stimulus onset asynchronies

(SOA): 0, 116, 137, 179, 326, 621, or 1,210 ms. In all conditions, the cue remained on the screen

until response. Performance sensitivity (d’) was calculated based on the hit rate (H) and false-

alarm (F) rate by the formula d’ = Z(H) − Z(F) (note: Z refers to z score of the normal distribu-

tion). The sensitivity index, d’, indicates the degree to which a participant was able to discrimi-

nate a true signal from noise. Mean efficiency values indicated that no speed-accuracy trade-

offs occurred. Furthermore, the group differences were also investigated by calculating sensi-

tivity (d-prime) to probes correctly identified as present in the array. The d-prime scores for

each target-cue onset asynchrony and sport group are reported in S1 Table. They were derived

by subtracting the normalized (z-score) proportion of “false alarms” from the normalized pro-

portion of “correct hits” for each trial type. The advantage of this comparison is that it takes

into account any response biases and instead tests participants’ sensitivity to the presence of a

particular stimulus, relative to chance. We then compared d-prime values across each SOA

were submitted to one-way ANOVA with the between-subject factor of group.

Attentional processing: Attention networks task (ANT). ANT combined the flanker

task and Posner’s spatial cueing paradigm to assess the efficiency of the alerting, orienting, and

conflict resolution of attentional process within a single task [43]. Performance was measured

by subtracting mean RTs between conditions with different combinations of cue or target

types. As illustrated in S5 Fig, there were three cue conditions (no cue, center cue, spatial cue)

and two target conditions (congruent and incongruent). The stimuli consisted of a row of five

arrowheads pointing leftward or rightward on the gray background. The target was the central

arrowhead, and the symmetrically flanking arrowheads were pointing either in the same direc-

tion as (congruent condition) or the opposite direction (incongruent condition) from the tar-

get. Participants were instructed to discriminate the direction of the central target arrow. The

no-cue condition severed as the baseline, whereas the central cue served as an “alert” where

the participant can be prepared for the appearance but not the location of the target. The spa-

tial cue could have directed the participants’ spatial attention toward the target location and

thus speeded up response.

Data analysis

We compared the cognitive performance of badminton players, volleyball players, and non-

athletes by analyzing the mean accuracies and RTs for the five type of neuropsychological test-

ing. Effect sizes for each ANOVA were estimated using partial eta squared (ηp
2). Post hoc

Cognitive profiles in sports expertise
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comparisons were conducted employing the Fisher’s least significant difference (LSD) correc-

tion for multiple testing. Mean RT and accuracy data were subjected to between-subject analy-

sis of variance (ANOVA) using IBM SPSS Statistics (Version 24. IBM Corp.). The control and

athletes were matched for age and years of education. For each task, the behavioral measures

that best represent the cognitive constructs relevant to the present investigation were selected

for the ANOVAs. Table 2 reported results of all measures.

Results and discussion

Demographic questionnaire

Table 1 listed mean and SD of the demographic information by groups. For the two athlete

groups, the results showed significant difference in the highest level of competition participa-

tion (F(1,62) = 12.51, p = .001, Z2
p = .168; volleyball players [4.9] higher than badminton [3.4]),

average practice times per week (F(1,62) = 13.88, p = .000, Z2
p = .183; badminton [5.8] more

than volleyball [5.14]), and hours spent per training session (F(1,62) = 18.96, p = .000, Z2
p =

.234; badminton [5.6 hours] more than volleyball [4.2 hrs]), whereas other demographic vari-

ables showed no significant difference (starting age of training, F(1,62) = 3.69, p = .059, Z2
p =

.056; years of training, F(1,62) = .104, p = .748, Z2
p = .002). For variables that are applicable to

all of the three groups, none reached significance, including age (F(2,90) = 0.575, p = 0.565,

Z2
p = .013), years of education (F(2,90) = 1.67, p = .193, Z2

p = .037), gender ratio (χ2(2) = 5.074,

p = .079). This difference represents the characteristics of sports type, indicating training

modalities would differ depends on the type of sports.

SST

No significant differences was found for stop signal reaction time (SSRT) (F(2,90) = 1.572,

p = 0.213, Z2
p = 0.035). However, the estimated successful stopping rate (SSR) was significantly

Table 2. Results of cognitive battery by group.

Badminton Volleyball Control

Stop Signal SSR� 43.4(±6.2) 50.0(±11.5)B,C 45.9(±10.1)

SSRT 300(±53) 289(±58) 274(±59)

NSRT 736(±196) 683(±210) 643(±199)

NSACC 97.2(±3.61) 97.1(±5.71) 96.4(±5.27)

Task Switching Single RT(s)� 0.51(±.08) 0.56(±.07) 0.55(±.09)

Global Cost�� .016(±0.024)C .012(±0.023)C .011(±0.1)

Local Cost�� -.033(±0.49)C -.025(±0.046)C .054(±0.09)

Change Detection Accuracy .92(±.11) .92(±.15) .90(±.11)

RT(s) 25.4(±10) 25.9(±14) 24.0(±8)

Iconic Memory Accuracy�� .54(±0.77)C .59(±0.99)C .49(±.10)

RT 1.50(±0.30) 2.16(±2.7) 1.31(±0.4)

Attention network task Alert�� .002(±.04) .028(±.03)B,C -0.005 (±0.034)

Orient .038(±.03) .018 (±.04) 0.032(±0.02)

Conflict .110(±.04) .12(±.03) 0.12(±0.06)

Note. B, V, C, indicate the denoted value is significantly different from that of the badminton, volleyball, or control group in the same row. Asterisks indicate significant

F-values (� p< .05; ��p< .001) SSR = successful stopping rate; RT = reaction time; SSRT = stop signal reaction time; NSRT = no-signal reaction time;

NSACC = accuracy of no-stop signal trials.

https://doi.org/10.1371/journal.pone.0217056.t002
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different among groups (F(2,90) = 3.981, p = 0.022, Z2
p = 0.083). Post hoc comparison showed

higher SSR in the volleyball players (50%) than the badminton players (43.4%, p = 0.006) but

not the control (45.9%, p = 0.110).

TSWT

Averaged reaction times on the global (F(2,90) = 29.51, p = 0.0001, Z2
p = 0.401) and local cost

(F(2,90) = 14.87, p = 0.0001, Z2
p = 0.253) showed significant between group differences. Post

hoc comparisons revealed that both types of athletes have greater ability to switch between two

different tasks than control groups (p = .039). Moreover, we also observed significant group

difference on single block of task-switching paradigm (F(2,90) = 4.177, p = 0.019, Z2
p = 0.09).

Post hoc comparison showed badminton players have better performance than volleyball play-

ers (p = 0.009) and controls (p = 0.036).

CDT

No significant group difference was found in the RT of change detection (F(2,90) = 0.051,

p = 0.95, Z2
p = 0.005).

ICMT

No group difference was found in RT of the ICMT (F(2,90) = 2.265, p = 0.110, Z2
p = 0.0049).

The ANOVA on accuracy showed significant differences among groups (F(2,90) = 7.52,

p = 0.001, Z2
p = 0.146). Post hoc comparisons showed that volleyball players (p< 0.001) and

badminton players (p = 0.049) have higher iconic memory recall rates than control group.

D-primes were also estimated for trials correctly identified (See S3 Fig for each target-cue

onset asynchrony and sports group), and were subjected to a two-way mixed design ANOVA

(Group × SOA; Fig 1). Overall, the athlete groups had significantly better performance than

the control group (p< 0.05) at the SOAs of 137ms, 326ms, 621 ms and 1210 ms. In addition,

volleyball players also showed slower decay rate than badminton players (p = 0.039) on iconic

memory. Badminton players appeared to have better visual persistence which can be seen

from results at 0 ms condition with higher accuracy. The results of other groups appear less

stable. Performance at different SOAs were highly variable and inconsistent with those

reported in previous literature, which could be attributed to the total number of trials and time

limit to test all the cognitive task.

Regarding the performance across different SOAs, the decay function demonstrated that

athletes generally have higher iconic memory capacity compared to control, indicating better

ability to retain impressions of sensory information at a glance. In contrast, control group

showed lower iconic memory capacity, and individual performances across different SOAs

varied a lot more than athlete groups (mean variance across SOAs in badminton = ±0.32, vol-

leyball = ±0.31, and control = ± 0.7).

ANT

Alerting score of attentional network task (F(3,63) = 7.09, p = 0.001, Z2
p = 0.141) showed signif-

icant main effect of between group differences. Specifically, volleyball players showed better

performance on alerting states of attention network score (.028) than badminton players (.002;

p = .005) and controls group (-.005; p = .001). Comparison between badminton player and

control group found a certain trend toward significance (p = .053). Orienting and conflicting
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networks of attention did not show any significant results between groups (F(2,90) = 2.339,

p = 0.102, Z2
p = 0.051 and F(2,90) = 0.516, p = 0.599, Z2

p = 0.012, respectively).

Discussion

The aim of the present study was to examine how different sports expertise may be associated

with measures of different aspects of cognitive functions. Specifically, we aim to explore the

relationship between strategic sports (volleyball players) and interceptive sports (badminton

players) on cognition in general. As expected, athletes outperformed ordinary people in many

Fig 1. Mean d-prime of each group across all SOAs. � indicate a significant difference between groups p<0.05; �� = p<0.001. Error bars

represent ±1 standard deviation. SOA = stimulus onset asynchrony.

https://doi.org/10.1371/journal.pone.0217056.g001
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aspects: we found that both athlete groups did have superior performance on visual sensory

memory (partial report paradigm) and attentional shifting (task switching paradigm). Specifi-

cally, both volleyball and badminton players showed longer decay rate of sensory recall and

lower transfer cost between two different tasks. Further, volleyball player not only have better

performance than control group on such cognitive abilities but also outperformed badminton

players on ability to better usage of temporal information to prepare for upcoming stimuli in

alerting states of attention and to inhibit proponent motor response. These evidence suggest-

ing volleyball players have boarder cognitive skills that require stimuli-driven visual attention

and inhibitory control of action. Moreover, badminton players showed faster reaction time

from the performance of simple reaction time in badminton players’ trials in the single task

block of task switching, indicating that training in interceptive sports may be related to supe-

rior performance on basic sensorimotor speed. Overall, volleyball player (i.e. strategic sport)

demonstrates superior performance on stimuli-driven visual temporal attention processing

and motor inhibition, while intercept sport show faster sensorimotor speed.

The current results are consistent with previous studies suggesting that athletes have better

performance on processing speed (see S6 Fig) [9,14,16,44]. For example, two studies have

reported that superior performance on sensorimotor speed was observed in tennis players and

soccer players [9,16].Recently, a study conducted a series of perceptual speed tests on profes-

sional baseball players and found not only higher processing speed in athletes, but also applied

the perceptual-cognitive measures to predict their actual field performance [45]. These results

indicate interceptive sport may have a superior motor speed that is subject to training modali-

ties. However, lacking a direct comparison between different types of sports under the same

experimental setting may undermine the explanation. Hence, the current study adds to this

line of findings with a direct comparison between interceptive sports (i.e., badminton) and

strategic sports (i.e., volleyball), showing faster sensorimotor speed in interceptive sports are

possibly subject to different training modalities. Nonetheless, the findings may explain with

cautious since motor abilities are genetically inherited that are prerequisites for performing

various sports skills. Future studies may want to consider individual genetic variations whether

genetic makeups and the extensive amount of training contribute to athletic superiority of

motor speed.

However, unlike previous studies showing faster change detection reaction time in the ath-

letes than the non-athletes control [38], we did not replicate this group difference in the change

detection paradigm (CDT). As change detection might generally require memory-guided spa-

tial attention, it may be less related to sports experience. Unlike other sports, volleyball and

badminton player are quite similar in terms of courts size and both need two sides of court

divided by net. During the match, both are only one serve attempt allowed and exchange of

consecutive hits. As such, both sports rely on more visually guided spatial attention and may

have shorter spatial attention span since similar court size and less dynamic playing environ-

ment than other team sports. Another possible reason is that the current stimuli configuration

of the change detection task resemble real-world scenario to a greater extent than previous

studies. Future studies may find it worthwhile to manipulate different types of stimuli (e.g.,

shape or object) embedded in the sport-related scenes and examine how sensitivity to changes

in these more naturalistic scenes differs across groups of elite athletes.

Also at odds with previous reports [8], badminton players here showed lower rate of suc-

cessful stop in the stop signal paradigm than both the volleyball players and the non-athlete

control. Badminton players may not involve as much action inhibition during the match as we

expected. Compared to team sports, badminton sports are considered as one of the fastest

sports, which require speedy reflexes but not so much the ability to withhold their intention to

react.
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Our results also demonstrate that volleyball players outperforms badminton players on task

switching, in which the former had smaller costs both between different task and within task

repetitions, indicating that volleyball players may have a greater cognitive flexibility to shift

between two different tasks. Optimal performance in competitive sport involves the efficient

operations of a variety of cognitive functions, especially so for competitive team sports. Elite

team sports athletes have to put together processing of a substantial amount of information

about performing tactically, deceptions in action, time-limited decision making, and interact

directly with teammates and opponents under complex behavior and dynamic environments.

All of these aspects may conjointly explain why team sport experts generally outperform bad-

minton players.

Moreover, some may concerned whether gender difference existed in these sports expertise

and manifested in these cognitive functions. Previous study already showed that sport exper-

tise would minimize gender differences [15], if they occurred, would only be observed in the

control group, not in the athlete group. The reason behind this hypothesis is that systematic

sport training and practice appear to reduce gender differences in spatial ability. In this sense,

it might be the case that gender differences within a sport on tasks involving perceptual-motor

speed are minimized if male and female athletes are given equal opportunities for similar expe-

riences, learning, and training [46]. This idea would explain why the gender differences, when

they occurred, were only present in the control group in our study, not in the athlete group. In

this study, as hypothesized from previous studies, we sought to test if gender difference exists

among those cognitive measures. We found no difference across all group on all cognitive

measures except for SSRT (P = 0.026). We further test if this effect exist when we compare this

index in each group separately, result showed no significant difference was seen in this mea-

sure (p = 0.213).

Though the current study observed several lines of evidence regarding effects of sports spe-

cialty on cognition, some limitations need to be considered. For example, although we have

recruited quite a few numbers of athletes to participate, the sample size is still limited. Because

the nature of their training and outstanding sports expertise, professional athletes in this study

are quite difficult to access and recruit, and hence the sample size is unavoidably small. Fur-

thermore, the cycle of training differ between types of spots expertise may also add to the con-

founding in results. For instance, some participants were preparing for major competition in

months, whereas others just finished their competition in days. This may increase the variance

of performance among types of sports and individual differences. Moreover, Voss et al. (2010)

suggested that future sport-cognition studies should match appropriately gender variable and

use a diverse range of sports types and levels of expertise. They argue that sports types would

be a potential moderator variable that exerts characteristically different sets of mental demands

and distinct experience-dependent plastic changes in athletes. Future studies would benefit

from recruiting professionals in sports science to overcome some setbacks mention above.

In addition, there has been accumulating evidence supporting that level of physical activity

and cardiovascular fitness have a positive effect on cognition across the life span [2–4]. It has

been suggested that increasing physical activity and fitness levels may facilitate academic per-

formance in children [47,48] and enhance daily cognitive functioning in the preservation and

alleviate age-related cognitive decline in the healthy elderly [1]. Nonetheless, although substan-

tial evidence has reported a beneficial effect on various aspect of cognitive function after physi-

cal exercise, yet the cognitive mechanism of long-term physical training in highly skilled

individual on the functional brain are still unclear. On possible mechanism is that fitness level

are key to improve cognition and brain health (e.g., [49–52]). One more limitation of the cur-

rent study is that we did not monitoring their physical fitness level in these professional ath-

letes and controls. Future study should consider the use of objective ways, such as monitoring
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their heart rate or recording physiology index, to estimate the athlete’s fitness. An additional

potential confound would also suggested for future studies is anthropometric variables, which

would able to further the knowledge on the influence of weight, height, and body mass index.

Conclusions

To conclude, the results presented here demonstrated expertise effects which substantiate the

view that laboratory tests of cognition may indeed enlighten capture the sport-cognition rela-

tionship, even though only supported by only a limited number of measures and tasks have

been tested in the present study. The results suggest that the effects of sport expertise on visual

sensory memory, attention shifting, basic processing, and alerting of attention network are

reflected essentially in measures of response time and accuracy, in attention shift, alerting

attention and simple reaction time tasks, which is in accordance with the specific cognitive

demands of interceptive sports and also consistent with previous findings (e.g., Voss et al.,

2010). Our results also partially echoed previous studies on the superiority of volleyball players

on the selective task of cognitive battery.

Nevertheless, there is still much to be learned about cognitive-perceptual expertise in sports.

Overall, volleyball player has better performance on visual sensory memory, attention shift,

stopping the behavior, and better usage of temporal information at alerting state of attention.

Longitudinal studies tracking athletes along various levels would be highly informative for

understanding how cognitive abilities differ as a function of a priori broad cognitive abilities,

experience (years of training), and types of training. Ultimately, the study of cognitive-percep-

tual expertise in sport has great potential to assist trainers in the cultivating future elite athletes

and to provide insights into how brain function differs following different sports experience.
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S1 Fig. Schematic illustration of the stop signal paradigm.

(TIF)

S2 Fig. Schematic illustration of the task switching paradigm.

(TIF)

S3 Fig. Schematic illustration of the change detection paradigm.

(TIF)

S4 Fig. Schematic illustration of the partial report paradigm.

(TIF)

S5 Fig. Schematic illustration of the attention network task.
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S6 Fig. Average reaction time of single task blocks (simple choice reaction time task).
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