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Abstract

Water point mapping databases, generated through surveys of water sources such as wells

and boreholes, are now available in many low and middle income countries, but often suffer

from incomplete coverage. To address the partial coverage in such databases and gain

insights into spatial patterns of water resource use, this study investigated the use of a maxi-

mum entropy (MaxEnt) approach to predict the geospatial distribution of drinking-water

sources, using two types of unimproved sources in Kenya as illustration. Geographic loca-

tions of unprotected dug wells and surface water sources derived from the Water Point Data

Exchange (WPDx) database were used as inputs to the MaxEnt model alongside geological/

hydrogeological and socio-economic covariates. Predictive performance of the MaxEnt mod-

els was high (all > 0.9) based on Area Under the Receiver Operator Curve (AUC), and the

predicted spatial distribution of water point was broadly consistent with household use of

these unimproved drinking-water sources reported in household survey and census data. In

developing countries where geospatial datasets concerning drinking-water sources often

have necessarily limited resolution or incomplete spatial coverage, the modelled surface can

provide an initial indication of the geography of unimproved drinking-water sources to target

unserved populations and assess water source vulnerability to contamination and hazards.

1. Introduction

Access to water is a basic human necessity and plays a key role in well-being and sustainable

development [1]. Following the recognition of the human right to drinking-water [2], the

United Nations’ Sustainable Development Goals (SDGs) included a target that aims to achieve

universal and equitable access to safe and affordable drinking-water by 2030 (Goal 6 Target

6.1) [3]. Realisation of the ambitious SDG target requires robust progress monitoring to

underpin development planning for service improvements and to identify disadvantaged

groups, so that those with the greatest needs can be prioritised accordingly. Geographic
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location is often an important factor that influences access to basic housing infrastructures

including water supply [4]. International guidance on monitoring of inequalities in drinking-

water services therefore recommends data are disaggregated by geographic location and rural-

ity to reveal and address sub-national disparities [5]. As such, this expanded need for detailed

locational information where water is accessed for household use is likely to place greater

demands on existing data sources.

Currently, there are few data sets describing the spatial distribution of access to drinking-

water sources. Conventional monitoring of drinking-water services at international and

national levels relies heavily on household surveys and censuses [6]. Even though several previ-

ous studies have created spatially disaggregated map layers using such data [7,8], these data

sets necessarily have limited spatial resolution because of data protection needs (i.e. scrambling

of household survey GPS cluster coordinates, aggregation of census data, etc.) and often focus

on water sources for drinking only. Other relevant geospatial data sources include water point

mapping databases, which contain geo-referenced water source locations alongside associated

attributes. Water point data are not affected by data protection concerns, so have greater spa-

tial precision than household surveys and censuses. Often, such databases capture water points

used for many purposes, not solely for drinking by households. However, very often they are

project-specific, focus on particular geographic areas and water source types, and are collected

and stored by multiple agencies. Because of geographic gaps in project coverage and agency

responsibilities, there thus remain few nationwide, complete and consistent water point data-

sets [9]. To gain a more complete picture of domestic water use from water point mapping,

one therefore has to ‘gap-fill’ the data first.

One potential way to address concerning water points is to estimate their overall geographi-

cal distribution by predicting the probability of water point presence or relative site suitability

across the landscape of interest. This problem is analogous to mapping habitat suitability from

incomplete species occurrences in ecological studies. Various spatial predictive modelling

techniques have been developed to address this issue, including a variety of algorithms based

on bioclimatic envelopes [10,11], Gower distance [12], Mahalanobis distance [13,14], statistical

regression [15–17], and machine learning [18–22]. These methods have been used to examine

impacts of climate changes [23–26], invasive species [27–30], conservation assessment [31–

33], and species richness [34]. In addition, they have also been used to track disease vectors

[35–40], assess landslide susceptibility [41–43], map soil phosphorus [44], and wildfire risk

[45–47]. Furthermore, spatial predictive modelling techniques have been combined with water

point data for groundwater potential delineation for groundwater resource assessment [48–

55] in recent years. However, to our knowledge, spatial predictive modelling has not yet been

used for predicting the spatial distribution of infrastructure or services such as domestic water

supplies by incorporating socio-economic as well as biophysical covariates.

Based on the type of observational data used, spatial predictive models can be classified as

presence-only, presence-absence, and presence-background (or presence-pseudo-absence)

methods. Since water point data only record observed locations of water access points, whilst

the absence of a water source at a given location cannot be inferred from such records, they

may be considered as presence data. In this study, we therefore employ a machine learning

approach developed for spatial ecology [22], namely maximum entropy (MaxEnt) modelling,

since it only requires ‘presence’ data from water point mapping enables use of categorical vari-

ables as predictors, has good predictive performance [56], user-friendly software [57,58], and

is suitable for integration into a reproducible workflow [59,60]. As a novel spatial predictive

modelling method, MaxEnt is more realistic than simple measures such as distance models

[12,14], but more straightforward to implement than more complex methods, such as likeli-

hood analysis [61] and hierarchical species distribution models [62]. However, despite its
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advantages, because MaxEnt relies on presence-only data, it lacks information on the propor-

tion of occupied sites (i.e. prevalence) and the logistic transformation of raw outputs used by

MaxEnt only represents a relative ranking rather than a true probability [63]. In this study, we

adopted a MaxEnt model merely as an illustrative example of how a wider suite of techniques

can make predictions of the potential geographical distribution of unimproved domestic water

sources from physical and socio-economic characteristics. We used unimproved water point

data to examine the feasibility of introducing this method into the water sector, assuming that

the locations of observed water points reflect suitable conditions for siting such water sources.

Kenya was selected as a case study, given household use of unimproved domestic water sources

there [64] and availability of suitable data. The main objectives of this study are to (1) examine

the potential applicability of MaxEnt modelling for predicting the geographical occupancy (or

relative site suitability) of access to domestic water supplies using water point data; and (2)

analyse the importance of predictive covariates that potentially explain the spatial distribution

of drinking-water sources.

2. Methods

2.1 Study area

Kenya is a lower-middle income country [65] in Sub-Saharan Africa (SSA), which did not

achieve the MDG drinking-water target by 2015. However, substantial progress in access to

improved drinking-water sources was demonstrated during the MDG period [66]. According

to the most recent Demographic and Health Survey (DHS) [67], among Kenya’s estimated

population of 43 million in 2014, 31.6% were using unimproved drinking-water sources,

including 7.3% using unprotected dug wells, 4.4% unprotected springs, 1.5% tanker trucks or

carts with drum, and 18.4% surface water. The majority (85.7%) of the urban population had

access to improved drinking-water sources, whilst nearly half (41.5%) of the rural population

were using unimproved drinking-water sources.

2.2 Target water sources and locations

For illustration purposes, we focused specifically on two types of unimproved water sources,

namely points representing unprotected dug wells (nu = 523) and surface water (i.e. where

households directly draw untreated water from rivers, streams, ponds, and lakes, ns = 212) at a

spatial resolution of 1 km (see Fig 1). This was selected considering both the availability and

quality of relevant predictive covariates as well as water point data. We acquired water point

data from the WPDx (http://www.waterpointdata.org/) database on 10th April 2018. This

included user-uploaded water point inventories from diverse data sources, and therefore

increases the variety of sample data. We restricted our analysis to household domestic sources,

excluding institutional sources and water points potentially used for non-domestic purposes

such as irrigation and watering livestock. For surface water, we further excluded water points

where an ambiguous water source type (e.g. spring, dam, pan etc.) or a water lifting or extrac-

tion mechanism was recorded, as this may indicate a higher service level than direct consump-

tion of surface water, as defined in the water ladder used in international monitoring [68]. To

increase temporal consistency with covariate map layers, water points reportedly installed

after 2009 were excluded in our analysis, assuming that sources lacking installation dates were

installed before 2009. There was insufficient information recorded to exclude non-functional

sources, so water sources with reported functionality and service continuity issues were

retained for analysis. Water points located outside the study area or within large inland water

bodies were also excluded.
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Fig 1. Unprotected dug wells and surface water points included for the MaxEnt modelling in this study. (A) Map showing the distribution of included

unprotected dug wells and surface water points; (B) numbers of water points excluded during data pre-processing based on the exclusion criteria.

https://doi.org/10.1371/journal.pone.0216923.g001

Table 1. Conceptual framework of potential factors influencing the distribution of unprotected dug wells and surface water.

Type of factor Perspective Unprotected dug well Surface water

Environmental

factors

Original source of

water

Potential presence of available groundwater according to

hydrogeological and geological conditions (e.g. groundwater

productivity; depth to groundwater; etc.)

Presence of available surface water (e.g. rivers, streams,

lakes, ponds, etc.)

Technological

factors

Technological

preferences and

avoidance

Feasibility of manual digging; ease of access for construction;

avoidance of contamination hazards

N/A

Socio-economic

factors

Demand for water Presence of people without alternative water sources, or with

alternative water sources that are not reliable (e.g. of poor

quality, poor accessibility, with supply interruptions, etc.)

Presence of people without alternative water sources, or

with alternative water sources that are not reliable (e.g. of

poor quality, poor accessibility, with supply interruptions,

etc.)

Socio-economic

factors

Consumer

accessibility

Ease of access for water collection (e.g. shorter walking-

distance or water fetching times; no restriction due to land

ownership; etc.)

Ease of access for water collection (e.g. less walking-

distance; less time to spend; no restriction due to land

ownership; etc.)

Socio-economic

factors

Local preferences Affordable water source; good perceived water quality;

avoidance of places of perceived local importance

Affordable water source; good perceived water quality;

potential avoidance of interference with places of high

local importance

https://doi.org/10.1371/journal.pone.0216923.t001
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2.3 Predictive covariates

We identified predictive covariates that may affect the distribution of unprotected dug wells

and surface water based upon our conceptual framework (Table 1): surface water or ground-

water availability, feasibility of shallow well construction, and compatibility of water source

type with local socio-economic conditions. For all predictive covariates, we selected data

sources from as close to the year 2009 as possible. When a covariate layer lacked temporal

meta-data, we assumed that the state of that covariate did not change significantly over time.

For environmental and technological factors, we selected covariates characterising the

hydrogeological and geological environment which relate to groundwater and surface water

availability and in turn affect feasibility of shallow well construction [48–52,54,55,69–72],

including depth to groundwater, groundwater productivity, groundwater storage, drainage

density, elevation, slope, topographic wetness index (TWI), proximity to inland water, land

use, lithology, and soil texture. For unprotected dug wells, we created groundwater productiv-

ity and storage covariate layers using the Surficial Geology of Africa data developed by U.S.

Geological Survey (USGS), Central Energy Resources Team as geological base map (nominally

at 1:5,000,000), subsequently rasterising this layer at 1km spatial resolution. Detailed aquifer

types, groundwater productivity and storage maps were defined for this layer with reference to

5 km resolution quantitative digital groundwater maps of Africa [73]. Polygons smaller than

the 5 km grid resolution were characterised by visual comparison with the hydrogeological

information published on the British Geological Survey (BGS) channel (http://earthwise.bgs.

ac.uk).

For socio-economic factors, the main covariates employed in this study include Euclidean

distance to 1km grid cells containing buildings, town centres, villages and roads in a consider-

ation of accessibility and proximity to human settlements. For surface water, we also created a

gridded layer of cost distance (i.e. walking time) to inland water based on slope and land use to

reflect ease of access for water collection, as this is an important criteria for households when

selecting water sources [74,75]. In addition, since healthcare facilities are often considered a

strong predictor of population presence [76], we assumed that they may in turn correlate with

constructed water sources and therefore included Euclidean distance to healthcare facilities in

modelling unprotected dug wells. Furthermore, we searched for map layers reflecting planning

restrictions on well development [77], using Euclidean distance to areas protected for conser-

vation as one such covariate. Furthermore, given the many accounts of disparities in unim-

proved source use between urban and rural areas and between rich and poor [67,74,75], we

also included poverty defined by a Multidimensional Poverty Index (MPI) [78] and urban/

rural settlement areas in both models.

All covariate layers were prepared at a spatial resolution of 30 arc-seconds (approximately

1km at the equator) showing terrestrial areas only, excluding large water bodies and all covari-

ate map layers used the same extent and resolution as this layer. In addition, we calculated the

Pearson’s correlation [79] between continuous covariates; Polychoric correlation [80] between

ordinal categorical covariates; and Polyserial correlation [80] between continuous and ordinal

categorical covariates for each model. This analysis was to identify and remove strongly corre-

lated covariate pairs (correlation coefficient > 0.7 or < -0.7) to reduce collinearity, as recom-

mended in a previous study [57], retaining the variable in each pair most obviously related to

water point distribution. All data pre-processing was carried out using ArcGIS 10; whilst all

correlation analyses were carried out using R 3.4.0, where Polychoric and Polyserial correla-

tions were computed with the polycor package [81]. Details of the predictive covariates used

and corresponding data sources can be found in S1 File.
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2.4 Model implementation

Fig 2 depicts the processing flow for the MaxEnt modelling adopted in this study. Each model

was built using a random sample of 70% of the included water points. The remaining 30% of

water point presences were used to test model performance based on Monte Carlo cross-vali-

dation [82]. We applied two different strategies to control for spatial variation in water point

mapping effort and resultant sampling bias, namely use of a bias file and a restricted back-

ground correction [83]. For the first method, we generated 10,000 background points by ran-

domly selecting points within the entire study area, weighted by a bias file. A kernel density

surface derived from locations of all obtained water points was used as the bias file, assuming

that survey effect was concentrated around these known water points. For the second method,

we restricted the selection of 10,000 background points to 100 km buffer areas around water

point locations. For both unprotected dug wells and surface water, we repeated the sampling

of training and test points, model fitting, model evaluation and prediction 50 times for each

bias correction strategy, and then computed aggregated predictions and model performance

metrics from all 50 model runs.

Model fitting and analysis were carried out using Maxent v3.3.3k [22]. We kept all non-cor-

related covariates identified by our framework in this illustrative study, since one of our aims

is to examine the potential environmental and socio-economic drivers of domestic water

access distribution. In addition, we selected all available functional transformations of the pre-

dictive covariates (i.e. ‘linear’, ‘quadratic’, ‘product’, ‘threshold’, ‘hinge’, and ‘discrete’) [57] to

capture the potential non-linear relationships between the covariates and target water points,

to allow for complex relationships between socio-ecological factors and locations of water

points. To optimise MaxEnt model complexity, we selected the best model corresponding to

Fig 2. Flow chart of the MaxEnt modelling methodology.

https://doi.org/10.1371/journal.pone.0216923.g002
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the regularisation multiplier with the largest AUC instead of using information criteria (AIC,

AICc, BIC), due to the known issues with threshold and hinge features [84]. For the purposes

of simple illustration and reduction of computational cost, we restricted our test of regularisa-

tion multipliers to integers from 1 to 10 based on the results of 50 replicated runs of each

model, and selected the best model accordingly. We kept all other settings at their default

value, and used logistic output for easier interpretation. However, as this logistic output arbi-

trarily assumes an occurrence prevalence of 0.5 [57], we interpreted this as the relative ranking

of each cell across the landscape rather than true occurrence probabilities. The changes in reg-

ularised gains (percent contribution), changes in training AUC based on permuted data (per-

mutation importance), and Jackknife test were used to evaluate the contribution of the

covariates to the MaxEnt predictions.

2.5 Performance evaluation

Evaluation of model performance was carried out using Area Under the Receiver Operator

Curve (AUC) [85] from the 30% testing sample for the 50 replicated runs. The AUC value is in

the range of 0.5 to 1.0, where 1.0 reflects perfect discriminatory power, whilst 0.5 indicates that

the prediction failed to capture any patterns and was no better than a random distribution. As

the AUC value approaches 1.0, it indicates potentially useful discrimination by the model

[58,86].

As an additional means of model evaluation, we calculated the density (persons per hectare)

of population using unprotected dug wells or surface water as their main drinking-water

source at the most disaggregated levels available via open data sources. For surface water,

county level (post-2013 administrative level 1) data from the 2009 Kenya Population and

Housing Census was acquired from the Kenya Open Data portal (http://opendata.go.ke/). For

unprotected dug wells, publicly available census data did not distinguish water wells from

boreholes and springs, so we acquired 2008–09 DHS data at regional level (pre-2013 adminis-

trative level 1) [87]. We used Spearman’s Rho to examine the correlation across sub-national

areas between water consumer density and (a) the density of ‘raw’ input water points; (b) the

model output, namely the average predicted relative occupancy/suitability in populated areas.

The populated areas were defined based on the Global Human Settlement (GHS) grid [88].

2.6 Ethics statement

This study involved use of aggregated nationally representative household survey data and

population and housing census data from openly accessible data sources; it did not entail any

work with records concerning individual human subjects nor collect any data. The research

proposal (ID 18551) was submitted to the University of Southampton’s Ethics and Research

Governance Online (ERGO) system on 10th December 2015 and was reviewed and approved

by the ethics committee on 15th January 2016.

3. Results

3.1 Model output and performance evaluation

In this illustrative study, 1 is found to be the optimal regularisation multiplier among the tested

integers for both types of water point and bias correction methods. Our models display high

predictive power according to the AUC values (all above 0.9), which suggests that the predic-

tions successfully captured relationships between water points and relevant covariates. For

unprotected dug wells (Fig 3A), a substantial area of western and central Kenya was predicted

to have higher unprotected dug well occupancy, with isolated spots of relatively high

Mapping domestic water access in developing countries

PLOS ONE | https://doi.org/10.1371/journal.pone.0216923 May 17, 2019 7 / 19

http://opendata.go.ke/
https://doi.org/10.1371/journal.pone.0216923


occupancy in towns and urban centres in the north and northeast parts of the country, as well

as the coastal regions in the south. For surface water (Fig 4A), the areas predicted to have high

likely occupancy were also concentrated in western and central Kenya, but sparsely distributed

in eastern Kenya. In arid regions lacking mapped water points, such as the insecurity-affected

counties bordering Somalia, both models showed limited variation in predicted relative occu-

pancy values relative to western and central parts of Kenya, which had more input water

points. The final predictions for unprotected dug wells show patterns consistent with water

consumer density (persons per hectare) derived from 2008–09 DHS (Fig 3B; rs = 0.714), whilst

those for surface water were consistent with 2009 census data (Fig 4B; rs = 0.722). These corre-

lations with water consumers reported in demographic data were greater than those calculated

using the ‘raw’ input water points (rs = -0.073 for unprotected dug wells and rs = 0.188 for sur-

face water). This suggests some success in gap-filling the initial, incomplete spatial coverage of

water point mapping, as detailed in the inset maps in Figs 3 and 4 for example. S1 File provides

further details about each prediction and associated uncertainty maps by source type and bias

correction method.

Fig 3. Predicted unprotected dug well occupancy across Kenya with inset maps highlighting Mandera, Samburu, and Kilifi counties. (A) Unprotected well

occupancy predicted by MaxEnt at 1 km resolution; (B) DHS-based consumer density map of unprotected dug wells at the regional level; inset maps show

MaxEnt prediction versus the initial water point coverage in Mandera (C, D), Samburu (E, F), and Kilifi (G, H) counties.

https://doi.org/10.1371/journal.pone.0216923.g003
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3.2 Covariate contribution analysis

The relative contribution of the covariates varied, depending on bias correction method. For

the unprotected dug wells model based on the restricted background correction, percent con-

tribution analysis indicated that urban-rural divide and groundwater storage provided the

most useful information, with elevation closely following (Fig 5, data in blue bars). However,

elevation had the greatest contribution to the unprotected dug wells model when the bias file

correction was applied, whilst urban-rural divide only had a moderate contribution. Ground-

water storage and Euclidean distance to towns and urban centres were respectively the second

and third most important covariates in the model (Fig 5, data in green bars). For surface water

(Fig 6), percent contribution analysis indicated annual rainfall was the most influential covari-

ate in the model based on restricted background correction, whilst elevation had the greatest

contribution to the model with bias file correction.

Different covariate contribution analysis methods also yielded different results (see S1

Table). In general, however, for unprotected dug wells, elevation, poverty, and urban-rural

divide were found to have the most useful information, whilst other covariates such as ground-

water storage, drainage density, Euclidean distance to buildings and Euclidean distance to

Fig 4. Predicted surface water occupancy across Kenya with inset maps highlighting Mandera, Samburu, and Kilifi counties. (A) Surface water occupancy

predicted by MaxEnt at 1 km resolution; (B) census-based consumer density map of surface water at the county level; inset maps show MaxEnt prediction

versus the initial water point coverage in Mandera (C, D), Samburu (E, F), and Kilifi (G, H) counties.

https://doi.org/10.1371/journal.pone.0216923.g004
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towns and urban centres were also very important to the models. For surface water, elevation,

annual precipitation and drainage density were found to be the most important covariates,

whilst Euclidean distance to buildings and cost distance to inland water also appeared rela-

tively important. A full list of the response curves of predictive covariates can be found in S1

Fig.

4. Discussion

For the first time, our study has applied a spatial ecology technique, namely maximum entropy

modelling, to map point locations of access to domestic water supplies. The output gridded

map layer of relative likely occupancy adjusts the raw input water point mapping data to

account for incomplete coverage, which forms the principle advantage of the technique.

Incompleteness is a known issue with some water point mapping data sets: for example, Yu

et al. [9] found that Tanzanian and Cambodian databases contained insufficient water points

to account for the number of households reporting use of such water sources in census data,

which therefore undermined their utility in national level monitoring of water access. The fre-

quency of missing values in water point attribute fields (including water source type) is often

high [89], further exacerbating incompleteness when enumerating water points of a particular

type. By examining the relationship between covariates and the presence of water points, this

spatial predictive modelling technique adjusts for such coverage gaps.

Fig 5. Covariate contribution to the MaxEnt model of unprotected dug wells for two bias correction methods. ED. denotes Euclidean distance; GW. denotes

groundwater; the x-axis is the percent contribution of the predictive covariate based on changes in regularised gain.

https://doi.org/10.1371/journal.pone.0216923.g005
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Spatial predictive modelling techniques have been widely employed in different fields for

depicting spatial distributions with incomplete locational observations. Although previous

studies suggest algorithms based on bioclimatic envelopes [10,11], Gower distance [12] and

Mahalanobis distance [13,14] may be unsuitable for categorical covariates, have poor predic-

tive performance, and thus be unsuitable for this application, this illustrative assessment with a

MaxEnt model indicates the potential for using other novel spatial predictive models in isola-

tion or in ensemble to map access to domestic water supplies. Some novel methods such as

random forests require presence-absence data, but these can still be used with water point data

by treating cells unoccupied by water points as pseudo-absence data. Regardless of which

method is used, however, the outputs need to be interpreted with caution because no absence

data are available.

In this study, MaxEnt’s logistic output was used instead of the raw output for easier inter-

pretation, since the logistic output values typically correspond better with predicted relative

site occupancy/suitability in comparison with the raw output. However, due to the arbitrarily

assumed occurrence prevalence (0.5) in the calculation of the logistic output [57,90], the pre-

dicted likely occupancy values only indicate ranked relative site suitability, as they are theoreti-

cally the order-preserved transformations of the probability of water point occurrence. In

addition, due to the use of background data rather than true absence data, a predicted likely

occupancy value should not be considered as the true probability of occurrence.

Fig 6. Covariate contribution to the MaxEnt model of surface water for two bias correction methods. CD. denotes cost distance. ED. denotes Euclidean distance;

the x-axis is the percent contribution of the predictive covariate based on changes in regularised gain.

https://doi.org/10.1371/journal.pone.0216923.g006
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The gridded output surfaces could be used in several ways. In the same way that ecologists

have successfully used such model outputs to target follow-up surveys to find unmapped spe-

cies occurrences [91], so the output map layers could potentially be used to target follow-up

surveys of areas likely to contain unmapped water points. The output layer could also be com-

pared to similar, gridded layers depicting household use of different water source types [8],

which have been generated in several countries by applying geostatistical methods to house-

hold survey data. The WHO/UNICEF core question on drinking-water used in household sur-

veys asks ‘what is the main source of drinking-water for members of your household?’ [92]

and therefore captures only the main water source for drinking purpose. In contrast, water

point mapping captures secondary, seasonal, and domestic water sources for purposes other

than drinking. Gridded outputs derived from water points versus household surveys would

thus potential capture different dimensions of domestic water resource use. Furthermore,

because of the need to protect data concerning human subject, household survey GPS loca-

tions are randomly displaced [93], which restricts the resolution of derived gridded representa-

tions of household source use to 5km by 5km grid cells. In contrast, this data protection issue

does not affect the spatial precision of water points, since they do not relate to human subjects.

The MaxEnt output could also be combined with map layers depicting aquifer vulnerability

[94] to contamination or geogenic contaminants [95], so as to identify areas where water users

are exposed to such hazards, since relevant map layers often come in the gridded format.

Our case study predicted high relative occupancy of unprotected wells in Kenya’s densely

populated urban areas. This is consistent both with the high population densities and high

unprotected well use reported in the Langas slum in Eldoret [96] and in Kisumu’s slums [97].

Since many rivers and streams in semi-arid and arid Kenyan counties are seasonal rather than

perennial, predicted direct domestic consumption of surface waters in these counties may also

be seasonal.

A secondary potential benefit of the technique is the understanding gained of the associa-

tion between covariate map layers and the spatial distribution of water points. Given ever-

increasing demand on water resources [98], such insights into landscape-level characteristics

associated with water resource exploitation could prove valuable. In this Kenyan case study, a

high percentage contribution to surface water and unprotected well occurrence was attributed

to elevation. A similarly strong correlation with elevation has been found for population den-

sity [99,100], so this apparent association between elevation and water points may reflect

human settlement patterns. Globally, according to census data, unimproved source use, partic-

ularly direct consumption of surface waters, is known to be higher among rural populations

and the poor [64]. This is reflected in the high covariate contributions for map layers depicting

poverty in both sets of models and a high covariate contribution for rurality in the models

based on restricted background correction. Unsurprisingly, rainfall and surface drainage den-

sity also had great covariate contributions to the surface water model.

In general, the response curves are consistent with our understanding of the hydrogeologi-

cal and socio-economic determinants of unimproved water access distribution. However,

some model covariates exhibit complex, random or somewhat implausible response curves.

Some covariates included in the model for unprotected dug well and surface water collection

(see S1 Fig) exhibit such response curves, likely due to potential sampling biases. However,

such covariates had only small contributions to the final model, reducing concern over their

impact on predictions. Given that we wished to illustrate application of a simplified model to

water point mapping here, we did not attempt to reduce model complexity to resolve such

issues, though further optimisation would be possible. The spatial ecology literature identifies

several known limitations of MaxEnt modelling. The output is highly dependent on the spatial

distribution of the input occurrences and choice of covariates. In our case study, the human
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settlements layer that we used as a covariate does not differentiate slums from other urban

areas, which affects predicted relative occurrence of unprotected wells in such areas. Our Ken-

yan case study used very coarse spatial resolution hydrogeological data, which may have

reduced the apparent association between unprotected well occurrences and hydrogeology. In

addition, some covariate layers (e.g. annual rainfall, inland water, etc.) dated from different

periods to the water point survey dates. Such differences in temporal coverage could have

reduced the strength of association between these layers and water point occurrences. Simi-

larly, in our case study implementation, the input water points are heavily concentrated in

only a few Kenyan counties. A particular concern where the input occurrence data are concen-

trated in a small area is out-of-sample prediction whereby the modelled output makes predic-

tions for areas that experience combinations of environmental and socio-economic conditions

not found in the training data [63]. In our case study implementation, for example, the train-

ing data include very few water points with elevations below 500 metres. More generally, the

quality of the input water point data will affect the output gridded probability layer. An exam-

ple of one such issue would be the misclassification of water source types arising from diffi-

culty in differentiating protected versus unprotected wells or boreholes versus protected wells.

Aside from these issues affecting model calibration, there are further drawbacks of this

approach to analysing water points. One difficulty is in evaluating the output relative occur-

rence grids, which we attempted via census and survey data in the Kenyan case study imple-

mentation. However, the coarse spatial resolution of household survey data in particular

somewhat limits the usefulness of this evaluation. Apart from the WPDx there are other water

point databases for Kenya [101,102], but differences between databases in the water source

typologies used inhibit their usefulness for model validation. Thus, unprotected wells can be

unambiguously identified in WPDx records, but not in the other data set. Points where surface

water is used for domestic purposes could be corroborated via remotely sensed images of such

surface water bodies, though not all surface water bodies will be used by households. In future,

evaluation of model outputs by an expert panel may therefore be more effective than data-

driven model validation. As with all data products generated through complex analysis proto-

cols, a further difficulty is in communicating the nature of the product and the underlying data

processing to a wider audience.

Although our case study implementation of the methodology in Kenya may be subject to

these limitations, there are freely available, easy-to-use interfaces to both MaxEnt and other

related environmental niche modelling techniques [103]. It would therefore be possible for

other research groups with access to more appropriate covariate map layers or more represen-

tative, higher quality input water point data sets to refine the methodology and address any

limitations in input data or covariate choices in our case study implementation. However,

appropriate model development and parameterisation require a strong understanding of the

technique’s underlying principles [57]. Subject to sufficient expertise in the software’s use, the

approach could thus be customised to local conditions and data availability and, given the exis-

tence of a global water point data exchange platform [104], is potentially also scaleable. In our

case study, we used a single ‘presence-background’ technique (MaxEnt) for illustration, but

many ecologists use an ensemble approach, whereby multiple environmental niche modelling

techniques are used in combination [105,106]. An ensemble approach to water point analysis

would thus be a logical future methodological refinement. Although we have applied the

method to just two types of water point here, in principle it could be applied to other types

such as boreholes, kiosks, or rainwater harvesting systems. Mobile forms of water provision,

such as water sold from tanker truckers or vendors using carts, are however inherently difficult

to capture via water point mapping. In ecology, environmental niche modelling has proved

more successful for endemic or specialist species occupying narrow environmental niches,
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rather than more generalist species found in many environments [106,107]. This implies that

the technique may perform better for water source types found only in a narrow range of

socio-economic and environmental conditions, as opposed to source types that are installed

under wide-ranging conditions.

5. Conclusion

This illustrative study takes a technique widely used in spatial ecology to analyse incomplete

occurrence data and applies it to two types of water point in Kenya. The technique has poten-

tial to correct water point databases for incomplete survey coverage and provide insights into

environmental and socio-economic characteristics associated with water points as landscape

features. However, the spatial ecology literature also highlights some important limitations of

the approach. These include the potential pitfalls of making predictions for environmental

conditions not represented in training data and poorer model performance when predicting

occurrences of generalist species (or here water points) found in a wide range of environments.

Although we only applied the maximum entropy model in Kenya, the methodology could

potentially be adapted to other predictive modelling algorithms, settings, types of water points

and local data availability. It is also potentially scaleable given the existence of a global water

point mapping data exchange, but its further uptake requires expert knowledge and strong

understanding of the underlying principles of ecological niche understanding.
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