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Abstract

Recent high throughput omics technology has been used to assemble large biomedical

omics datasets. Clustering of single omics data has proven invaluable in biomedical

research. For the task of patient sub-classification, all the available omics data should be uti-

lized combinedly rather than treating them individually. Clustering of multi-omics datasets

has the potential to reveal deep insights. Here, we propose a late integration based multiob-

jective multi-view clustering algorithm which uses a special perturbation operator. Initially, a

large number of diverse clustering solutions (called base partitionings) are generated for

each omic dataset using four clustering algorithms, viz., k means, complete linkage, spectral

and fast search clustering. These base partitionings of multi-omic datasets are suitably

combined using a special perturbation operator. The perturbation operator uses an ensem-

ble technique to generate new solutions from the base partitionings. The optimal combina-

tion of multiple partitioning solutions across different views is determined after optimizing

the objective functions, namely conn-XB, for checking the quality of partitionings for different

views, and agreement index, for checking agreement between the views. The search capa-

bility of a multiobjective simulated annealing approach, namely AMOSA is used for this pur-

pose. Lastly, the non-dominated solutions of the different views are combined based on

similarity to generate a single set of non-dominated solutions. The proposed algorithm is

evaluated on 13 multi-view cancer datasets. An elaborated comparative study with several

baseline methods and five state-of-the-art models is performed to show the effectiveness of

the algorithm.

Introduction

In the field of biology and medicine, classification has wide range of applications [1]. With the

advancement in microarray technology, generation of thousands of gene sequence data points

for cancer-tissue datasets has become possible. It is possible to accurately differentiate between

different categories of cancers by analyzing the gene expression values of cancer tissues over

different conditions or time points. Classification of patients into subgroups can improve the
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diagnostic and treatment. Available methods for patient stratification are dependent on gene

sequence data and patients are grouped based on the expression profiles [2, 3]. In addition to

gene sequence data other data types, like miRNA (microRNA) expression, DNA methylation,

can be explored to improve the accuracy of patient classification models [4]. Each of these data

is termed ‘omic’ (genomics, transcriptomics, methylomics, respectively). The objective here is

to identify groups with similar molecular characteristics.

Integrative clustering of several omics data for the same set of samples can disclose more

precise structures that are not exposed by examining a single omic data. By exploiting the

information present in multiple omics, clustering techniques can obtain better performance

compared to a single omic. Some of the advantages of clustering based on multiple omics are

given as follows: (i) multi-omics clustering reduces the effect of noise in the data, (ii) each

omic can reveal structures that are not present in other omics, (iii) different omics can unfold

different cellular aspects.

A major difficulty of cluster analysis is the selection of best clustering algorithm for a given

data set [5].Many omic datasets possess heterogeneous structures whereas most of the existing

clustering algorithms search for homogeneous structures from a dataset. The problem of algo-

rithm selection for clustering datasets having heterogeneous structures can be addressed by

combined use of cluster ensemble and multi-objective clustering techniques [6].

Recently, Li et al. [7] proposed a novel method of combining multi-objective optimization

(MOO) with integrated decision making (IDM) to address the problem of combined heat

and power economic emission dispatch. Authors used a two-stage approach. In the first stage,

θ−dominance based evolutionary algorithm is used to generate Pareto-optimal front of the

model. In the second stage, using fuzzy c-means clustering, the obtained Pareto-optimal solu-

tions are clustered to identify the best compromise solutions using grey relation projection.

In this paper, the clustering problem is formulated as an optimization problem where dif-

ferent cluster quality measures are used as the objective functions. We have introduced a

multi-objective based multi-view cluster ensemble algorithm (enAMOSA, in short), which

simultaneously uses the concepts from both cluster ensemble and multi-objective based multi-

view clustering algorithms. The key idea is to minimize problems associated with cluster analy-

sis, as well as to overcome the limitations of multi-objective based multi-view clustering and

cluster ensemble methods when they are used separately. Here ensemble is not used as a late-

integration technique, but it is used as a perturbation operator for generating new solutions

based on the selected parent solutions. Throughout this paper, omic is termed as view and

multi-omic as multi-view in the context of algorithms. An overview of the proposed method is

given below:

• enAMOSA conducts multi-view based multi-objective clustering by first identifying different

partitions from the same data set using different views. To capture the goodness of an indi-

vidual clustering generated using a single view, an internal cluster validity index, conn-XB

index [8], is used. The values of the conn-XB index for different partitions obtained using

varying views are simultaneously optimized along with agreement index [9]. Agreement

index measures the agreement among multiple partitions obtained using different views in a

new way. A special perturbation operator is used which replaces the traditional mutation

operator. This operator uses an ensemble method along with the initial population for gener-

ating new diverse solutions. Finally, the partitions obtained on multiple views are combined

to generate a single solution.

• A large number of experiments are conducted to illustrate the efficacy of different compo-

nents of the proposed enAMOSA algorithm. We have developed several baseline methods by

generating all possible combinations of the base partitions used in the experiment. These
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baselines are explained in detail in the later sections of the paper. To further demonstrate

the effectiveness of the proposed perturbation operator, we have also compared results of

enAMOSA with another version of multi-view AMOSA where normal perturbation operator

is used (the perturbation operator used in [9]) and ensemble technique is used separately for

combining the final Pareto optimal solutions generated by different clustering algorithms.

• The developed algorithm is tested on 13 genomic datasets. Results are compared with those

obtained by baseline algorithms and existing state-of-the art models.

The overall steps of the proposed algorithm are shown in Fig 1.

Some of the contributions of our proposed methodology are as follows:

• To the best of our knowledge, this work is the first multi-objective based multi-view

approach for capturing heterogeneous structures from multi-omics data in the field of

patient classification.

• A new perturbation operator is designed by combining the concepts of both multi-objective

multi-view clustering and cluster ensemble. It improves the robustness of the proposed algo-

rithm to deal with data having different types of clusters.

• The algorithm is capable of capturing heterogeneous structures within a view and also

amongst different views.

• In our proposed algorithm, different views can be clustered using different clustering algo-

rithms. Further, the views can have a different number of clusters. To the best of our knowl-

edge, previous multi-view multi-objective algorithms, like MvAMOSA [9], allow different

Fig 1. Overview of the proposed algorithm enAMOSA.

https://doi.org/10.1371/journal.pone.0216904.g001
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views to be clustered by the same clustering algorithm and also restrict all the views to have

the same number of clusters.

Background

In the literature, several semi-supervised or supervised classification methods [10–12] are

developed for cancer diagnosis. These classification techniques classify tumor samples in can-

cer dataset as malignant or benign or any other sub types [13]. But it is not always possible to

obtain labeled tissue samples. For example, real life gene expression datasets in Ref. [14] or

microRNA datasets in Ref. [15] are some unlabeled datasets. Hence, application of supervised

classification techniques in cancer classification problem is difficult due to unavailability of

labeled data. Thus clustering techniques become popular in solving different problems from

bioinformatics domain. Multiple molecular profiling data can be collected for the same indi-

vidual. Exploiting these data separately and then combining them can significantly improve

the clinically relevant patient subclassifications [16].

This section discusses existing works on multi-view clustering, cluster ensemble techniques,

drawbacks of the state-of-the art models and motivation of the work.

Existing works on multi-omics/view clustering methods

The increase of multi-modal datasets in real-world applications has raised the interest in

multi-view learning [17].

Based on the algorithmic approach multi-view clustering methods can be broadly classified

into three categories; (i) Early integration, (ii) Late integration, and (iii) Intermediate

integration.

Early integration approach is the simplest amongst all. In this approach, at first, all the dif-

ferent views are concatenated to form a single large dataset with features from multiple views.

The resulted dataset is clustered using any single-view clustering method. However, this

approach has some major drawbacks. Firstly, it causes a significant increase in the data dimen-

sion which is a challenge for clustering algorithms. Secondly, it ignores different distributions

present in different views of the dataset. LRACluster [18] and Structured sparsity [19] are

some of the methods which use early integration approach. LRACluster [18], uses a latent

representation of the samples to determine the distribution of numeric, count and binary fea-

tures. It optimizes a convex objective and provides a globally optimal solution. Structured

sparsity [19] method concatenates the views and applies a weighted linear transformation for

clustering. The features that do not contribute to the cluster structure are assigned with low

weights.

In late integration approach, each view of the dataset is clustered separately using a single-

view algorithm. Here, each view can be clustered using different clustering algorithms. Finally,

the clusters from different views are integrated to form combined global clusters. COCA [20]

and PINS [21] are examples of methods using this approach. PINS [21] uses a connectivity

matrix to integrate clusters of different views. This algorithm first adds some Gaussian noise to

the data, the cluster number is chosen in a way that clustering is robust to the perturbation.

Serra et al. [16], proposed a multi-view approach, MVDA, for identifying different clinically

relevant patient-subclasses by combining the information present in multiple high-throughput

molecular profiling data sets generated by omics technologies.

Intermediate integration approach involves the following; (i) methods where views are inte-

grated using similarity/distance, (ii) methods that use joint dimension reduction for different

views and (iii) methods using statistical modelling of the views.

A multiobjective multi-view cluster ensemble technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0216904 May 23, 2019 4 / 30

https://doi.org/10.1371/journal.pone.0216904


Chikhi [22], proposed a generalized spectral clustering algorithm, Multi-View Normalized

Cuts (MVNC). It is a two-step approach. Initially, the spectral clustering is applied on the data-

set followed by a local search to refine the initial clustering. Similarity Network Fusion (SNF)

[23] is another similarity-based method which constructs a similarity network for each view

separately. Using an iterative process these networks are fused together. Regularized Multiple

Kernel Learning with Locality Preserving Projections (rMKL-LPP) [24], performs dimension-

ality reduction on different views such that similarities amongst the samples are preserved in

low dimensions. Subsequently, K-means is applied to this low dimensional representation.

Zhang et al. in [25], proposed CMVNMF (Constrained Multi-View clustering based on NMF).

It is an extension of the NMF model where different views can contain different samples, but

certain samples from different views are constrained to be in the same cluster. iCluster [26] uti-

lized a joint latent-variable model to detect the grouping structure from multi-omics data.

iCluster+ [27], an extension of iCluster, includes different models but maintains the idea of

iCluster that data originates from a low dimension. The latest extension is iClusterBayes [28].

This method uses Bayesian regularization and is much faster compared to its previous variants.

In [29], authors proposed an parameter-free clustering models, Adaptively Weighted Procrus-

tes technique, for multiview clustering. Authors in [30], proposed a self weighted multiview

clustering technique (SwMC).

Existing works on cluster ensemble

Cluster ensemble is a technique of deriving a better clustering solution from a set of candidate

clustering solutions [5, 31]. A cluster ensemble algorithm can be presented as a two step

approach: (i) a diverse set of base partitions are generated; and (ii) these partitions are com-

bined to form a single consensus partition. Depending on the type of base partitions, cluster

ensemble is of two types, viz., homogeneous and heterogeneous. When base partitions are

obtained from same clustering algorithm, it is called homogeneous and in contrast if base par-

titions are obtained from different clustering algorithms, it is called heterogeneous. Based on

the type of consensus function used, the existing approaches of cluster ensemble are mainly

categorized under co-association, graph/hyper-graph partitioning, mutual information or re-

labeling [6].

In [32], authors formalized the cluster ensemble problem as a combinatorial optimization

problem in terms of shared mutual information. They have proposed three algorithms: MCLA

(meta- clustering algorithm), cluster-based similarity partitioning algorithm (CSPA) and

hyper-graph partitioning algorithm (HGPA). Depending on the mutual information shared, a

consensus function can be applied to select the best partition amongst those produced by these

three algorithms.

Based on the base partitions, the CSPA algorithm constructs a similarity matrix. Values in

the matrix denote the fraction of partitions where two objects belong to the same cluster. Fur-

ther, a similarity-based clustering algorithm is applied on this matrix to generate the consensus

partitioning.

In HGPA algorithm, a hypergraph is constructed by representing base partition clusters as

hyper-edges of the graph. This hypergraph is partitioned by cutting with a minimal number of

hyper-edges.

In MCLA algorithm, a meta-graph is constructed, where each base partition cluster forms

the vertex. Similarity between the vertices represents the edge weights of this graph. Vertices

belonging to the same partition do not have edges. On partitioning the meta-graph, the clus-

ters belonging to the same group are considered correspondents. The objects are assigned to

the meta-clusters they are strongly associated with, generating the consensus partition.

A multiobjective multi-view cluster ensemble technique
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In the HBGF (Hybrid bipartite graph formulation) HBGF [33], a bipartite graph is con-

structed from the set of base partitions. Objects and clusters are simultaneously modeled as

vertices of the graph. In the end, a graph partitioning algorithm is applied on the generated

bipartite graph. The resulting division of the objects is the consensus partitioning.

Drawbacks of the existing literature

In the field of patient sub-classification, multi-view data from multiple omics technologies can

be obtained for same individual. The clinically relevant patients sub-classification can be sig-

nificantly improved by combining these data, rather than exploiting them separately. However,

by and large, multi-view clustering approaches have not penetrated bioinformatics yet [34].

The existing multi-view based classification techniques for patient sub-classification suffer

from the following drawbacks:

1. Existing multi-view clustering problems are mostly solved as single objective optimization

problems. A single quality measure for partitioning is optimized implicitly or explicitly

using various paradigms of unsupervised single-view learning. Initially different views of

the dataset are partitioned and later the agreement between the partitions obtained on dif-

ferent views is optimized. But instead of treating these two objectives (goodness of parti-

tions obtained using individual views and agreement among-st partitions) separately, it is

better to optimize them simultaneously for capturing better partitioning structures among

the views.

2. The existing multi-view based approaches applied for patient sub-classification problem are

very simple in structure and cannot effectively identify more than one relevant structures of

the datasets.

3. Multi-objective clustering algorithms can identify different alternative partitionings of a

dataset after a single execution. But as the number of alternatives increases, the analysis

becomes harder.

4. In the patient-stratification problem, cluster ensemble is mostly used during view integra-

tion. But, the literature lacks the use of any multi-view multi-objective algorithm com-

binedly with an ensemble technique rather than separately, to capture fine-structures

present among different views.

5. Most of the existing multi-view algorithms are designed to capture homogeneous structures

among multiple views.

6. Existing multi-view multi-objective algorithms allow the same clustering algorithm for par-

titioning the data over multiple views of the sample and also restrict the views to have the

same number of clusters.

Motivation

The general aim of any multi-view clustering is to improve the cluster quality in each view and

to increase the agreement between multiple partitionings obtained using individual views. By

nature it is a multi-objective optimization problem with two types of objectives, cluster quality

over different views and agreement between multiple views, to be optimized simultaneously.

Further, multi-omics datasets exhibit complex structures, difficult for single-objective based

clustering algorithms to capture. Although the multi-objective approach offers a set of alterna-

tive structures of the dataset, as the number of alternatives increases, the analysis becomes

A multiobjective multi-view cluster ensemble technique
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harder. All these motivated us to develop a new multi-objective based multi-view algorithm

with a unique ensemble based perturbation operator that is capable of capturing the fine-

tuned structures in multi-omic datasets.

Problem formulation

The multi-view cluster ensemble problem is formulated as a multiobjective optimization

problem.

• Given:

• A multi-view dataset containing V views and n number of samples S ¼ f�x1; �x2; . . . ; �xng,

• dm is the number of features in the mth view, and Dm is the n × dm matrix representing the

mth view.

• Dm
ij is the jth feature of the ith sample in the mth view.

• Concatenation of the V views produces matrix D of size n × d, where d ¼
PV

m¼1
dm is the

total number of features.

• A set of base clustering algorithms, CA1, CA2, . . ., CAp.

• A set of objective functions

CV1;CV2; . . . ;CVm;AI;

where each CVi is a cluster validity index measured on the partitioning obtained after con-

sidering only view m for the given data set, and AI is used for measuring the agreement

between the partitions obtained for different views.

• Find:

• A consensus partitioning (U) generated by ensembling the outputs of clustering algo-

rithms, CA1, CA2, . . ., CAp, satisfying all views

• The set of samples, S, is divided into K clusters, {U1, U2, . . ., UK}

• Ui ¼ f�xi
1
; �xi

2
; . . . ; �xi

ni
g; ni: number of samples in cluster i; �xi

j: jth sample of cluster i.

• [K
i¼1

Ui ¼ S and Ui \ Uj = ; for all i 6¼ j.

• which simultaneously optimizes the objective functions. The simultaneous optimization of

these objectives produces a Pareto optimal front.

Materials and methods

enAMOSA: Ensemble based multi-view archived multi-objective simulated

annealing

This section discusses about the proposed multiobjective based multi-view cluster ensemble

approach, namely enAMOSA.

To overcome the difficulties of traditional clustering algorithms, enAMOSA combines char-

acteristics of cluster ensemble and multi-view based multi objective clustering methods.

enAMOSA comprises of three main steps: (1) generation of diverse set of base partitions for

each view, (2) determination of an ensembled partitioning considering the multiple base

A multiobjective multi-view cluster ensemble technique
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partitions and (3) finally generating a consensus partitioning satisfying different views. The

proposed algorithm differs from traditional ensemble approach in two ways. Firstly, instead of

producing a single consensus partitioning, it produces a set of consensus partitionings. In fact,

the set of solutions can contain partitionings that are combinations of other partitionings, or

partitionings of high quality that already appeared in the set of individual partitionings. Sec-

ondly, it is an iterative process. For each iteration, it combines pairs of partitionings for each

view and then the views are integrated to generate a new solution for evaluation. The steps

involved in enAMOSA are shown in Algorithm 1.

The calculation of dominance among the solutions is the same as in AMOSA [35]. In the

Algorithm 1, temperature (temp) plays a significant role in calculating the probability of accep-

tance of a solution.

Algorithm 1: Algorithm for enAMOSA
Initialize: iter, SL, HL, Tmin, Tmax, no_views, α, temp = Tmax

1 begin
2 Initialize pool with solutions from k-means, complete linkage,

fast search clustering and spectral clustering.
3 for i = 1 to pool_size do
4 for j = 1 to no_views do
5 ComputeFitnessconnXB(pool[i], j /� Compute conn-XB for each

view �/
6 end
7 ComputeFitnessAI(pool[i])
8 end
9 Compute dominance of the solutions in pool.
10 Initialize Archive with the non-dominated solutions of pool
11 current = random(Archive)
12 while temp � Tmin do
13 for gen = 1 to iter do
14 new_pt = perturb current
15 for j = 1 to no_views do
16 ComputeFitnessAI(new_pt[j], j)
17 end
18 ComputeFitnessAI(new_pt)
19 Compute dominance of current and new_pt
20 Update Archive and current
21 end
22 temp = α × temp
23 end
24 Pareto_front = CombineViews(Archive)
25 end

Generation of base partitions. To generate the initial solutions (called base partitions),

four different clustering techniques (called base clustering algorithms), hierarchical (complete

linkage) [36], K-means, fast search [37] and Spectral clustering, are applied on each view of the

given dataset. These four algorithms used belong to different categories of the clustering algo-

rithm, like, K-means represents the centroid models, hierarchical represents the connectivity

model and, spectral and fast search represent the density based model of clustering. The more

diverse the base algorithms, higher the chances of capturing differently shaped clusters of the

data set. It is essential to have different types of partitionings in the initial archive so that

enAMOSA can receive as much information as possible to find an optimal number of possible

existing structures.

The choice of clustering algorithms for generating base partitions are not merely restricted

to these four clustering algorithms only, but other clustering algorithms can also be used.

A multiobjective multi-view cluster ensemble technique
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The number of clusters (K) which will be given as an input to the base clustering algorithm

(^) is determined randomly. The number of clusters is varied over the range Kmin to Kmax.

Here, the value of Kmin = 2 and Kmax ¼
ffiffiffi
n
p

, where n denotes the number of samples. A value K

is selected randomly between the range Kmin and Kmax with uniform probability. ^ is applied

to the data set with the number of clusters = K varying the views.

But fast search [37] is a density-based clustering and parameters are determined automati-

cally from the corresponding views. This algorithm does not consider the number of clusters

as input. It automatically determines the number of clusters from any given dataset.

At the end of this step, we have a set of base partitions for each view.

Archive initialization. For each view, we compute the dominance of the base partitions

obtained in previous step. A set of non-dominated solutions are generated from each view.

The archive is initialized with these non-dominated solutions.

The initial population of the archive in enAMOSA is not generated randomly, as is done for

most of the AMOSA based clustering techniques. Instead, it is composed of a set of base parti-

tions, π1, generated by running a diverse set of conceptually different algorithms.

String representation. In order to represent the initial partitioning solutions generated

by different clustering algorithms, membership matrix based representation scheme is used.

For example, if K-means is executed on V different views with the corresponding set of

attributes with the number of clusters = K, then for each case, a membership matrix, Mem of

size K × n is obtained as follows:

Memij ¼

(
1 if �xj 2 Ui

0 otherwise

Here, �xj denotes the jth data point and Ui denotes cluster i. Memij denotes the membership

value of the jth data point for the ith cluster.

Suppose the data set is having total V views and the clustering algorithm ^ is selected to be

executed on the data set. Then for a given view, a membership matrix of size K × n is gener-

ated. Total V such membership matrices of size K × n are encoded in the string. Thus length of

the string is V × K × n. Fig 2 shows an example of the proposed string representation. All the

strings of the archive are initialized in the above way.

Perturbation operator. The special perturbation operator uses ensemble method along

with initial population for generating new solutions.

This operator finds the consensus partitioning between a pair of selected parents, for each

individual view. Any existing cluster ensemble method can be used in enAMOSA as the pertur-

bation operator. The idea is to generate new good-quality solutions which are combinations of

previous two solutions. First, two parents are randomly selected from the archive to be com-

bined. The combination is done for individual views. Ensemble based operator is applied on

the membership matrices present in two selected solutions for a given view. Let p1
1

and p2
1
, be

the membership matrices of two selected solutions, respectively, with K1
1

and K2
1

number of

clusters (p2
1

means second selected parent from view 1 and similarly for others). Let the

ensembled solutions be represented by pF
1

and pF
2
. The number of clusters KF

1
for partition pF

1
is

chosen randomly in the interval ½K1
1
;K2

1
�. Second, the parents are combined using ensemble

method. The consensus partition generated has KF
1

clusters. Illustration of the operator is

given in Fig 3. The operator is briefly described in Algorithm 2.

Here, CSPA (cluster-based similarity partitioning algorithm) technique [32] is used as

underlying ensemble method. The operator worked as follows:
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• Let the selected clustering solutions be: π1 and π2 with K1 and K2 number of clusters, respec-

tively. Let the corresponding partitionings be U1
1
;U1

2
;U1

3
; . . . ;U1

K1 and U2
1
;U2

2
;U2

3
; . . . ;U1

K2

corresponding to the solutions, π1 and π2, respectively.

• For each partitioning solution, an adjoint matrix, Ak
n�n, k = 1, 2 is generated as follows:

Ak
ij ¼

(
1 if points i and j belong to the same cluster

0 otherwise
ð1Þ

Fig 3. enAMOSA perturbation operator.

https://doi.org/10.1371/journal.pone.0216904.g003

Fig 2. Membership matrices represented in a solution. In the example, there are two views, two clusters, and a data set of ten points.

https://doi.org/10.1371/journal.pone.0216904.g002
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• A new similarity matrix, Simn × n is computed as follows:

Simij ¼ sum2
k¼1

Ak
ij ð2Þ

This similarity matrix is used for clustering the data set using any standard similarity-based

clustering algorithm like hierarchical clustering technique. In general an induced similarity

graph (vertex = object, edge weight = similarity) approach using METIS [38] can be used

along with the newly generated similarity matrix.

The above ensemble based operator is applied for individual views separately.

Algorithm 2: Algorithm for new perturbation operator.
procedure: perturb(Element)

1 begin
2 Element2 = random(Archive) /�Select a random solution from Archive

except Element�/
3 for i = 1 to no_views do
4 K1 = no_of_clusters(Element[i])
5 K2 = no_of_clusters(Element2[i])
6 KF = randi(K1, K2) /�Generate integers in range K1 and K2�/
7 new_pt[i] = CSPA(Element[i], Element2[i], kF)
8 end
9 return new_pt
10 end

Objective functions. The optimization framework uses two objective functions: (i) Agree-

ment Index [9] for measuring the agreement between partitions obtained from different views,

and (ii) Connectivity based XB-Index or conn-XB Index [8].

Agreement index. Agreement Index [9] is used for measuring the agreement between

partitions obtained from different views.

AIv1;v2 ¼
na þ 1

nd þ 1
; na ¼

Xn

i¼1

Xn

j¼1

IAv1
ij ;A

v2
ij

nd ¼ n2 � na

IAv1
ij ;A

v2
ij
¼

(
1 if Av1

ij ¼ Av2
ij

0 otherwise

Here Av1 and Av2 are adjoint matrices of the views v1 and v2 respectively. The final Agree-
ment index for the total partitioning is calculated as follows:

AItotal ¼

XV

l¼1

XV

m¼1;l6¼m

2� AIvl ;vm

V � ðV � 1Þ

Here, n total samples in the dataset and V is the number of views.

connected-XB or conn-XB Index. In [8], authors have developed connectivity based

XB-Index. The definition of this index follows the formulation of popular XB-Index [39].

conn � XB ¼
PK

i¼1
ð
P

�x 2Ui
dshortð�x; �ziÞÞ

nðmini;k¼1...K;i6¼kdshortð�zk ; �ziÞÞ
ð3Þ

dshortð�x; �ziÞ is the shortest distance between two points, �x and �zi, along the relative neighbor-

hood graph [8]. It measures the connectivity between two points. If two points are connected /
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a path exists between these two points along the relative neighborhood graph (RNG) then dshort

value will be low. Here Ui denotes the cluster i, �zi is the medoid of cluster i, n is the size of the

whole data set and �zj denotes the cluster j. The objective is to lower the value of conn-XB index

in order to obtain good partitioning.

A solution encodes total V number of membership matrices/partitionings. For each such

membership matrix/partitioning, the value of conn-XB is calculated to measure the goodness

of this partitioning. Let the values be conn−XB1, conn−XB2, . . ., conn−XBV. Then the objective

functions corresponding to a single solution are

fconn � XB1; conn � XB2; . . . ; conn � XBV ;
1

AI
g

enAMOSA simultaneously optimizes these (V + 1) number of objective functions.

Algorithm 3: Algorithm for combining views
procedure: CombineViews(Archive)
1 begin
2 for i = 1 to archive size do
3 Initialize each element of temp_sum with 0 /�Size of temp_sum is

sample × sample �/
4 for j = 1 to no_views do
5 adj = GenerateAdjMatrix(Archive[i][j]) /�Generate adjacency

matrix for each view�/
6 temp_sum = temp_sum + adj
7 end
8 Initialize each element of new_adj with 0 /�Size of new_adj is

sample × sample �/
9 for k = 1 to sample do
10 for l = 1 to sample do
11 if temp sum½k�½l� > no views

2
then

12 new_adj[k][l] = 1
13 end
14 end
15 end
16 Generate clusters from new_adj matrix.
17 end
18 end

Consensus function for view combination. At the end of the execution of enAMOSA, we

get a set of non-dominated solutions on the final archive. The psedu code is given in Algor-

iyhm 1. Each of these solutions encodes total V number of membership matrices. A new late

integration method is proposed to combine the membership matrices present in a single solu-

tion. A consensus partitioning is obtained satisfying all the available views. So, in order to get a

consensus partitioning, initially the common points of different clusters present in different

partitionings obtained using different views are identified. This is achieved by majority voting

scheme. If a pair of points cluster together in majority of the views then in the final partitioning

they will also be grouped together. Likewise all the pairs of data points are evaluated. If some

points are not assigned to any group (this situation may occur if even number of views are

used and a tie occurs) then in the final partitioning, these points are assigned to the group of

their nearest neighbors. The process is illustrated below:

• Let the adjoint marices of the partitionings present in a string corresponding to different

views be denoted by Ak where k = 1. . .V, V = totalnumberofviews. Then a new adjoint matrix,
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Asum is computed as follows:

Asum
ij ¼

XV

k¼1

Aij ð4Þ

• Now a new matrix Anew is generated as follows:

Anew
ij ¼

(
1 if Asum

ij > V
2

� �

0 Otherwise

• The matrix Anew is used to generate the final partitioning. Following a link based approach,

connected components of the matrix Anew are identified. Points are considered as vertices

and the points, (i, j), whose Anew
ij ¼ 1 are connected by an edge. The connected components

of this graph are treated as initial clusters. Let total number of clusters be K.

• For rest of the points which are not part of any of the clusters extracted in the previous step,

cluster assignment is done as follows. Any point �xi will be assigned to kth cluster where:

k ¼ argmin
K

k¼1

min
nk

j¼1
dshortð�xi; �x

k
j Þ ð5Þ

Here K denotes total number of clusters/connected components identified from the previous

step. nk denotes the number of points in the kth connected component/cluster, �xk
j denotes

jth point of the kth cluster and dshortð�xi; �xk
j Þ denotes the shortest distance [8] between �xi and

�xk
j .

• Finally a partitioning will be obtained where all the points are part of some clusters. This par-

titioning is reported as the final consensus partitioning for that particular solution.

• For each solution present in the archive, a single consensus partitioning is obtained. If

archive−size = N, then N such consensus partitionings will be generated.

Theoretical analysis

Complexity analysis. In this section, the time complexity of enAMOSA is discussed. The

basic steps and their complexities are as follows:

1. Initialization of Archive: O(SL)

2. Domination status between two solutions: O(M), where M = number of objectives

3. Domination status between a single solution and archive elements: O(M × SL)

4. Complexity of perturbation (here we used CSPA): O(n2 × r × TotalIter), where n = no. of

samples, r = no. of clusters

5. Single linkage clustering: O(SL2 × log(SL))

6. Clustering is done:

• during initialization if NDom> SL, where NDom = number of non-dominated solutions.
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• after each |SL−HL| number of iterations

• if Archive−size>HL in the end

Clustering is executed for TotalIter
ðSL� HLÞ þ 2 times.

Clustering complexity ¼ Oð
TotalIter
ðSL � HLÞ

� SL2 � log ðSLÞÞ

Final time complexity of enAMOSA is

TotalIter � ðSLþM þM � SLþ n2 � r þ
1

ðSL � HLÞ
� SL2 � log ðSLÞÞ

Let HL = N, where N = size of Archive and SL = γ ×HL, γ� 2

TotalIter � ðg� N þM þM � g� N þ n2 � r þ
g2

ðg � 1Þ
� N � log ðg� NÞÞ

The final time complexity of enAMOSA is:

OðTotalIter � ðn2 � r þ N � ðM þ log ðNÞÞÞÞ ð6Þ

Convergence analysis. In the proposed algorithm enAMOSA, we have simultaneously

optimized two objectives, conn-XB Index [8] and Agreement index [9].

conn-XB Index [8] follows the formulation of popular XB-Index [39]. It measures the ratio

between the cluster compactness and cluster separation. Xie-Beni validation index behaves

convex when the samples are around the optimal values for the centroids [40]. Similarly, conn-

XB Index [8] behaves convex under same condition.

Agreement index [9] measures the agreement between partitions obtained using different

views. It is given by the following equation:

AI ¼
na þ 1

nd þ 1
ð7Þ

where, na = number of pairs of samples occurring together in both the views.

nd = number of pairs of samples not occurring together in different views.

If there are n number of samples then,

nd ¼ n2 � na ð8Þ

Now, replacing Eq 8 in Eq 7, we have

AI ¼
na þ 1

n2 þ 1 � na
ð9Þ

The value of na is 0� na� n2, 0 when all pairs disagree and n2 when all pairs agree.

8x 2 na;
1

n2 þ 1
� AIðxÞ � n2 þ 1 ð10Þ

Hence, AI is a monotonically increasing function in the range of na.

enAMOSA follows the formulation of AMOSA [35]. The acceptance probability is crucial

for the behavior of the simulated annealing. enAMOSA adopts a dynamic acceptance which is
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dependent on the domination status [35]. It is given by:

Pacc ¼
1

1þ exp
� DEq;s;t

T
ð11Þ

where, ΔEq,s, t represents the change in energy state of state q and state s at given temperature

T. The convergence proof of simulated annealing based multi-objective optimization is elabo-

rately explained in [41].

All the above mentioned factors ensure the convergence of the proposed algorithm.

Dataset collection and preparation

To evaluate the performance of the proposed algorithm we have used a total of 13 benchmark

omic datasets. The details of the datasets are given in Table 1. The datasets are downloaded

from the following repositories: The Cancer Genome Atlas (TCGA) https://tcga-data.nci.nih.

gov/tcga/, NCBI GEO http://www.ncbi.nlm.nih.gov/geo and Memoral Sloan-Kettering Cancer

Center (MSKCC)http://cbio.mskcc.org/cancergenomics/prostate/data/.

TCGA.BRC. This Breast cancer the dataset contains samples from patients with invasive

tumors. It contains data for three views: miRNASeq(Level 3), RNAseq and DNA Methylation.

Using PAM50 classifier [42, 43] patients were classified into four categories: Her2, Basal,

LumA, LumB.

OXF.BRC.1. This Breast cancer [1][44] dataset contains data for three views: microRNA

expression (GSE22220 accession number), mRNA (GSE22219 accession number) and DNA

Methylation. Using PAM50 classifier [42, 43] patients were classified into four categories:

Her2, Basal,LumA, LumB.

OXF.BRC.2. This Breast cancer [44] dataset contains data for three views: microRNA

expression (GSE22220 accession number), mRNA (GSE22219 accession number) and DNA

Methylation. Using clinical data also retrieved from the same source, patients were classified

into four categories: Level1, Level2, Level3, Level4.

MSKCC.PRCA. This dataset contains samples from patients with prostate cancer tumors.

It has three views: gene expression, miRNA expression and DNA Methylation. According to a

study performed on this dataset [45], patients are grouped into two categories: first class is

Tumor stage I and the second class is Tumor stage II, III and IV.

TCGA.GBM. Glioblastoma cancer the dataset has three views: gene expression, miRNA

expression and DNA Methylation. As described in [46], patients are grouped into four catego-

ries: Classical, Mesenchymal, Neural and Proneural.

TCGA.OVG. Ovarian cancer dataset contain samples from patients with ovarian serous

cystadenocarcinoma tumors. It has three views: gene expression, miRNA expression and DNA

Methylation. Based on clinical stages, patients are grouped into four categories: class one: stage

IA, IB, IC, IIA, IIB and IIC; class two: IIIA, IIIB and IIIC; class three: stage IV.

TCGA.COAD. Colon cancer dataset contain samples from patients suffering from Colon

Adenocarcinoma (COAD). It has three views: gene expression, miRNA expression and DNA

Methylation. Based on clinical stages, patients are grouped into four categories: class one: stage

I, IA, IB, IC; class two: II, IIA, IIB and IIC; class three: III, IIIA, IIIB and IIIC; class four: stage

IVA, IVB, IV.

TCGA.LIHC. Liver cancer dataset contain samples from patients with Liver Hepatocellu-

lar Carcinoma. It has three views: gene expression, miRNA expression and DNA Methylation.

Based on clinical stages, patients are grouped into four categories: class one: stage I; class two:

stage II; class three: IIIA, IIIB and IIIC; class four: stage IV.
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TCGA.LUSC. Lung cancer dataset contain samples from patients with Lung Squamous

Cell Carcinoma. It has three views: gene expression, miRNA expression and DNA Methyla-

tion. Based on clinical stages, patients are grouped into four categories: class one: stage IA, IB,

IC; class two: stage II, IIA, IIB; class three: stage III; and class four: stage IV.

TCGA.SKCM. Melanoma cancer dataset contain samples from patients with skin cutane-

ous melanoma (SKCM). It has three views: gene expression, miRNA expression and DNA

Table 1. Descriptions of datasets.

Dataset Views Total Features Selected Features Samples

TCGA.BRC RNASeq 20510 4300 621

miRNASeq 1046 220

DNA Methylation 4885 1125

OXF.BRC.1 Gene Expression 21439 4500 349

miRNA Expression 734 164

DNA Methylation 4885 1125

OXF.BRC.2 Gene Expression 21439 4500 349

miRNA Expression 734 164

DNA Methylation 4885 1125

MSKCC.PRA Gene Expression 26446 5300 151

miRNA Expression 368 82

DNA Methylation 3894 858

TCGA.GBM Gene Expression 12042 2500 274

miRNA Expression 534 110

DNA Methylation 5000 1200

TCGA.OVG Gene Expression 12043 2500 398

miRNA Expression 800 190

DNA Methylation 5000 1200

TCGA.COAD Gene Expression 20351 4883 220

miRNA Expression 705 170

DNA Methylation 5000 1200

TCGA.LIHC Gene Expression 20531 4792 367

miRNA Expression 705 170

DNA Methylation 5000 1200

TCGA.LUSC Gene Expression 20531 4880 341

miRNA Expression 705 170

DNA Methylation 5000 1200

TCGA.SKCM Gene Expression 20531 4884 448

miRNA Expression 705 170

DNA Methylation 5000 1200

TCGA.SARC Gene Expression 20531 4617 257

miRNA Expression 1046 241

DNA Methylation 5000 1150

TCGA.KIRC Gene Expression 20531 4880 183

miRNA Expression 705 170

DNA Methylation 5000 1200

TCGA.AML Gene Expression 20531 4520 170

miRNA Expression 705 168

DNA Methylation 5000 1198

https://doi.org/10.1371/journal.pone.0216904.t001
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Methylation. Based on Clerk’s level in clinical data, patients are grouped into four categories:

class one: Level I; class two: Level II; class three: Level III; and class four: Level IV.

TCGA.SARC. The Cancer Genome Atlas Sarcoma (TCGA.SARC) contain samples from

patients suffering from sarcoma. It has three views: gene expression, miRNA expression and

DNA Methylation. Based on the sample types in clinical data, patients are grouped into four

categories.

TCGA.KIRC. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-

KIRC) contain samples from patients suffering from kidney cancer. It has three views: gene

expression, miRNA expression and DNA Methylation. Based on clinical stages, patients are

grouped into four categories: class one: stage I; class two: stage II; class three: stage III; and

class four: stage IV.

TCGA.AML. TCGA.AML dataset contain samples from patients suffering from Acute

Myeloid Leukemia. It has three views: gene expression, miRNA expression and DNA Methyla-

tion. Based on clinical data, patients are divided into four categories.

Preprocessing of datasets

One of the common features of omics datasets is that the number of samples is much smaller

than the number of features. Normalization of features in different omics is necessary for han-

dling different distributions. Further, feature selection for dimensionality reduction is essential

to provide different omics an equal prior opportunity to contribute to clustering. Dimension-

ality reduction is also crucial for keeping the most informative features, reducing the load on

the clustering algorithm. In our approach, we have used an unsupervised feature selection

technique, variance score. For this, we calculated the variance of each feature. Among them,

top 22 − 24% features having highest scores are selected. The number of selected features for

different benchmark datasets are given in Table 1.

Evaluation metrics

To compare enAMOSA with other methods we have used two evaluation metrics, normalized
mutual information (NMI) [47] and adjusted rand index (ARI) [48]. These metrics measure

the similarity between the true and predicted partitions; higher values signify predicted class is

more similar to true class.

Results

Input parameters

The proposed approach, enAMOSA, is based on the multiobjective optimization technique,

AMOSA [35]. It has three main components: (i) initial temperature value (Tmax); (ii) cooling

schedule; and (iii) number of iterations (iter) at each temperature.

The initial temperature is selected such that the algorithm can capture the entire search

space. If initial temperature is set to too high, then it will accept all the proposed solutions and

if set to too low it will transform into a greedy search. Here, the initial temperature (Tmax) is

set to achieve an initial acceptance rate of approximately 50% on derogatory proposals. Here,

Tmin is set to 10−3. The initial temperature is selected based on the acceptance ratio of z, and

average positive change in objective function, Δfo [49].

Tmax ¼ �
Dfo
ln z
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Here z = 1/2,

Tmax ¼
Dfo
lnð2Þ

The cooling schedule determines the functional form of the change in temperature required

in SA [35]. The temperature is changed using commonly used geometric schedule, Ti + 1 = α ×
Ti, where α is the cooling rate and 0< α< 1. As stated in [35], value of α is chosen between

0.5 to 0.99. This cooling schedule is simple in nature. There is a need for a small number of

transitions to be sufficient to reach the thermal equilibrium. Here, the value of α is set to 0.8,

causing a sufficiently small number of transitions in temperature to reach equilibrium.

The number of iterations at each temperature is chosen so that the system is sufficiently

close to the stationary distribution at that temperature [35]. Less number of iterations will sig-

nificantly reduce the search space, and the solution will not reach the global optimal. For our

problem, as the sample size is not considerably large, the iteration value is set to 100.

In Table 2, we have reported the parameter settings used in the experiments.

Clustering performance

An extensive comparative study is performed to show the effectiveness of enAMOSA with

respect to different approaches. The comparing approaches are briefly described below:

1. In order to show the effectiveness of using multiple clustering techniques to initialize the

archive, we have developed different versions of enAMOSA clustering technique varying

the base clustering algorithms. Abbreviations used km− K-means, spec− spectral, cl− com-

plete linkage and fs− fast search. All these algorithms follow the exact steps of enAMOSA.

Those are shown below:

a. enAMOSAkm: this is the enAMOSA approach where only K-means clustering technique

is used to generate the base partitionings. Here all the initial solutions of the archive are

generated after running K-means clustering algorithm for different values of K. Other

steps of this algorithm are very similar to those of enAMOSA.

b. enAMOSAcl: this is the enAMOSA approach where only complete linkage clustering

technique is used to generate the base partitionings. Here all the initial solutions of the

archive are generated after running complete linkage clustering technique for different

values of K. Other steps of this algorithm are very similar to those of enAMOSA.

c. enAMOSAfs: this is the enAMOSA approach where only fast search clustering technique

is used to generate the base partitionings. Here all the initial solutions of the archive are

generated after running fast search clustering technique with different parameter values.

Other steps of this algorithm are very similar to those of enAMOSA.

Table 2. Parameter settings for the proposed algorithm enAMOSA.

enAMOSA

Max Temperature 100

Min Temperature 0.0001

# Iteration 100

Rate of cooling (α) 0.8

Soft Limit 40

Hard Limit 20

https://doi.org/10.1371/journal.pone.0216904.t002

A multiobjective multi-view cluster ensemble technique

PLOS ONE | https://doi.org/10.1371/journal.pone.0216904 May 23, 2019 18 / 30

https://doi.org/10.1371/journal.pone.0216904.t002
https://doi.org/10.1371/journal.pone.0216904


d. enAMOSAspec: this is the enAMOSA approach where only spectral clustering technique

is used to generate the base partitionings. Here all the initial solutions of the archive are

generated after running spectral clustering technique with different values of K. Other

steps of this algorithm are very similar to those of enAMOSA.

Further, as a part of our experimentation, we have also developed different versions of

proposed enAMOSA approach where different combinations of size 2 / 3 base clustering

algorithms are utilized for generating the initial solutions in the archive. Other steps of

these approaches are very similar to those of enAMOSA. For Eg, enAMOSAkm,spec, uses

the K-means and spectral clustering for generating base partitionings and follows the

exact steps of enAMOSA. The results of these different variants of enAMOSA are shown

in Tables 3 and 4.

2. In order to show the efficacy of ensemble based perturbation operator in enAMOSA pro-

cess, we have developed another ensemble based multiobjective multi-view based approach,

namely, AMOSA(ensemble). The steps of this approach are enumerated below:

• The initialization of the archive will be done similar to that of enAMOSA. Four different

clustering techniques, K-means, complete linkage, spectral and fast search clustering are

executed multiple times with varying parameter values and the number of clusters. The

membership matrices generated by these clustering techniques are encoded in the form

of solutions of the archive.

Table 3. Comparison of Normalized Mutual Information (NMI) scores of different combinations of our proposed approach.

BRC BRC.1 BRC.2 MSKCC GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

enAMOSAkm,spec 0.4461 0.4714 0.3842 0.1495 0.4816 0.1194 0.1377 0.1209 0.3435 0.0814 0.09708 0.0910 0.4615

enAMOSAkm,cl 0.4131 0.4219 0.4692 0.0979 0.4401 0.1107 0.1201 0.0984 0.3321 0.0618 0.0483 0.0291 0.3078

enAMOSAkm,fs 0.4601 0.4679 0.4097 0.1401 0.4487 0.1303 0.1417 0.1334 0.3647 0.0796 0.1040 0.0951 0.5157

enAMOSAcl,spec 0.4515 0.4653 0.3904 0.1425 0.4803 0.1147 0.1207 0.1134 0.3476 0.0784 0.0736 0.0891 0.4574

enAMOSAcl,fs 0.4641 0.4730 0.4012 0.1498 0.4817 0.1203 0.1297 0.1219 0.3574 0.07807 0.1022 0.01074 0.5098

enAMOSAspec,fs 0.4689 0.4717 0.4397 0.1521 0.4927 0.1104 0.1514 0.1298 0.3651 0.1126 0.1013 0.1095 0.5231

enAMOSAkm,cl,fs 0.4787 0.5105 0.4475 0.1735 0.5094 0.1394 0.1704 0.1473 0.3747 0.1319 0.0985 0.1025 0.5201

enAMOSAcl,fs,spec 0.4702 0.5447 0.4778 0.1916 0.5407 0.2236 0.2012 0.1603 0.4096 0.1594 0.1102 0.1154 0.5487

enAMOSAcl,spec,km 0.4707 0.4804 0.4584 0.1605 0.5146 0.1264 0.1537 0.13199 0.3815 0.1409 0.1017 0.0920 0.4701

enAMOSAkm,spec,fs 0.4772 0.5546 0.4760 0.2066 0.5419 0.2176 0.1952 0.1693 0.4106 0.1609 0.1130 0.1161 0.5507

https://doi.org/10.1371/journal.pone.0216904.t003

Table 4. Comparison of Adjusted Rand Index (ARI) scores of different combinations of our proposed approach.

BRC BRC.1 BRC.2 MSKCC GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

enAMOSAkm,spec 0.4007 0.3717 0.3212 0.0998 0.3921 0.1091 0.02851 0.0163 0.3164 0.03205 0.0987 0.1048 0.4015

enAMOSAkm,cl 0.3681 0.3402 0.2954 0.0481 0.3620 0.0493 0.0224 0.0098 0.1712 0.0216 0.0190 0.0401 0.3634

enAMOSAkm,fs 0.4116 0.3797 0.3207 0.1034 0.3975 0.1017 0.03196 0.0185 0.2705 0.0330 0.1045 0.1314 0.4184

enAMOSAcl,spec 0.3918 0.3697 0.3102 0.0981 0.3816 0.1034 0.02961 0.0185 0.2624 0.03105 0.0991 0.1034 0.4087

enAMOSAcl,fs 0.4066 0.3757 0.3198 0.1018 0.3943 0.1009 0.03114 0.0179 0.2695 0.0321 0.1051 0.1326 0.4161

enAMOSAspec,fs 0.4216 0.4375 0.3792 0.1085 0.4369 0.1078 0.10184 0.0704 0.2459 0.0253 0.1098 0.1311 0.4201

enAMOSAkm,cl,fs 0.4291 0.5120 0.3915 0.1294 0.4593 0.1011 0.1211 0.0935 0.2901 0.0843 0.1057 0.1319 0.4198

enAMOSAcl,fs,spec 0.4501 0.5284 0.4201 0.1513 0.4710 0.1012 0.1213 0.1016 0.3103 0.1023 0.1107 0.1402 0.4215

enAMOSAcl,spec,km 0.4393 0.5101 0.40914 0.1302 0.4601 0.1008 0.1461 0.1015 0.3091 0.0879 0.1008 0.1084 0.4087

enAMOSAkm,spec,fs 0.4513 0.5304 0.4284 0.1601 0.4709 0.094 0.1437 0.1065 0.3002 0.0934 0.1103 0.1412 0.4208

https://doi.org/10.1371/journal.pone.0216904.t004
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• For the perturbation operator we have used the following operator. The simple binary

mutation is applied on each membership matrix encoded as a string with some probability.

The binary bit value is flipped with some probability. Some points are randomly selected

and their membership values are changed.

• In order to compute the objective functions, V number of membership matrices present in

the string are obtained. The conn-XB-index values of all these V partitionings are calcu-

lated. The agreement index between these V partitionings is also calculated. The objective

functions are conn � XB1; conn � XB2; . . . ; conn � XBV ;
1

AI

� �

• AMOSA process is applied to simultaneously minimize these objective functions.

Note that the above process is different from the proposed approach only in the use of per-

turbation operator. Unlike enAMOSA here normal binary perturbation operations are

used to generate new solutions. Thus initial solutions generated by base clustering algo-

rithms were not ensembled during the optimization process. Each individual solution is

evolved separately without mixing with other solutions. This algorithm is developed to

show that ensemble based mutation operation indeed plays an important role in generat-

ing good solutions.

3. In order to show the potency of multiobjective based multiview clustering, we have also

compared the performance of enAMOSA with state-of-the art multiview based classifica-

tion techniques, namely MVDA (unsupervised) algorithm [16], LRAcluster [18], PINS [21],

SNF [23] and iClusterBayes [28].

Using Eq 12, we have calculated the degree of contribution by each view in the final cluster-

ing obtained. Contributions computed for different views are shown in Fig 4.

Degreev ¼
kAdjv \ Adj[vk

kAdj[vk
ð12Þ

Here, Adjv = the adjoint matrix of the partitioning obtained using view v Adj[v = the adjoint

matrix corresponding to the final consensus partitioning.

Statistical significance test

For statistical significance test we have used a non-parametric test one-way Analysis of Vari-

ance (ANOVA) because it is independent of the distribution type of the dataset. The test is per-

formed at 1% significance level. Results obtained by all the seven algorithms for each dataset

are divided into seven groups. One-way ANOVA is conducted between enAMOSA group and

remaining groups and results are reported in Table 5. All the p-values reported in Table 5 are

less than 0.01. These values establish that improvements obtained by enAMOSA over other

comparing algorithms are statistically significant.

Gene marker identification

From the clustering results obtained by enAMOSA on the OXF.BRC.1 dataset, we tried to

extract the group of genes which have mainly contributed in patient classification. There are

four patient classes in OXF.BRC.1 data set, viz., Her2, Basal, LumA, LumB. To identify the

gene markers from Her2 class, we solved a binary classification problem. Two groups are cre-

ated, one containing the samples from Her2 class and the other containing samples from rest

of the classes. After considering both the groups, Signal-to-Noise Ratio (SNR) [50] is calculated
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for each of the genes. It is defined as,

SNR ¼
m1 � m2

s1 þ s2

� 100; ð13Þ

where σj and μj, j 2 [1, 2], respectively, denote the standard deviation and the mean of class j
for the corresponding gene. Higher SNR value for an individual gene signifies that it is having

higher expression value for the class it belongs to and lower expression values for others.

Finally total 10 genes are selected from the SNR list, with top 5 genes having highest SNR val-

ues (up regulated genes) and bottom 5 genes having lowest SNR values (down regulated

genes). Similarly like Her2, the process is repeated for other classes too present in the dataset.

Gene markers for OXF.BRC.1 dataset. OXF.BRC.1 dataset is having 4 classes, so a total

of 40 genes are obtained with 20 up regulated genes and 20 down regulated genes. Fig 5 shows

Table 5. The p-values reported by one-way ANOVA test on comparing enAMOSA with other methods.

BRC BRC.1 BRC.2 MSKCC GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

enAMOSAkm 9.35e-36 1.38e-35 2.84e-44 8.46e-51 1.01e-31 1.61e-17 7.77e-4 5.65e-5 6.20e-10 9.05e-8 1.28e-5 3.56e-4 8.07e-5

enAMOSAcl 3.94e-63 1.18e-54 7.69e-50 8.18e-65 3.28e-57 3.11e-22 5.32e-9 2.31e-7 3.67e-7 7.11e-10 2.01e-4 2.01e-7 3.17e-5

enAMOSAspec 3.55e-15 3.08e-18 4.00e-20 1.93e-14 1.98e-28 1.79e-24 1.23e-8 2.14e-5 1.05e-11 8.12e-6 5.18e-5 2.28e-7 1.21e-4

enAMOSAfs 1.28e-31 2.56e-30 7.07e-32 3.65e-41 6.22e-42 7.05e-25 3.24e-14 1.27e-9 5.42e-8 79.12e-7 6.65e-5 7.22e-4 6.05e-5

AMOSA (ensemble) 7.24e-25 5.05e-28 2.49e-31 1.78e-27 3.14e-33 2.82e-26 2.17e-24 3.24e-7 2.78e-8 5.31e-7 0.44e-7 5.12e-7 4.64e-6

LRAcluster 8.94e-28 3.11e-28 4.77e-26 7.84e-28 4.11e-28 2.57e-26 1.84e-13 3.76e-11 1.11e-4 1.61e-7 3.74e-8 4.41e-4 4.37e-5

PINS 1.44e-7 1.12e-7 8.64e-6 2.73e-7 8.93e-9 4.53e-5 2.44e-9 6.72e-6 6.50e-7 1.63e-4 3.08e-8 1.00e-4 1.93e-4

SNF 1.26e-12 5.71e-4 8.63e-8 7.64e-9 2.77e-5 6.23e-7 1.19e-7 6.34e-12 2.63e-10 6.22e-11 8.94e-9 7.53e-11 1.43e-9

iClusterBayes 0.0045 0.0118 0.0086 0 0.0357 0.0023 0.0076 0.0048 0.0034 0.0043 4.93e-9 4.51e-5 2.24e-10

MVDA 3.74e-12 1.41e-4 7.37e-7 1.24e-15 4.13e-6 8.73e-10 9.87e-11 1.45e-17 1.35e-5 7.86e-7 4.11e-8 2.57e-6 1.84e-3

https://doi.org/10.1371/journal.pone.0216904.t005

Fig 4. Contribution by each view in clustering.

https://doi.org/10.1371/journal.pone.0216904.g004
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the heatmap plot of these genes along with their class names on X-axis. Here red signifies

higher expression levels, green signifies lower expression levels and black signifies moderate

expression levels. It is also seen from the Fig 5 that for a particular tumor class identified genes

are either up-regulated or down-regulated. List of selected gene markers for Her2, Basal,

LumA, LumB classes are reported in Table 6. Note that a gene up-regulated in one class can be

down-regulated in another.

Biological significance test

To show the biological significance of selected genes, a biological significance test is conducted

using Gene ontology consortium (http://www.geneontology.org/). For each GO term, the per-

centage of genes sharing that term among the genes of that cluster (% Cluster) and among the

Fig 5. Heatmap to show the expression levels of the selected gene markers for each subclass in OXF.BRC.1

dataset.

https://doi.org/10.1371/journal.pone.0216904.g005

Table 6. Selected 10 gene markers for OXF.BRC.1 dataset.

Her2 Basal LumA LumB

Gene ID Down/Up Gene ID Down/Up Gene ID Down/Up Gene ID Down/Up

2064 Down 2296 Down 9 Down 51523 Down

2886 Down 8190 Down 25800 Down 23594 Down

2264 Down 7052 Down 4137 Down 4193 Down

644 Down 55165 Down 11065 Down 11004 Down

573 Down 54443 Down 9232 Down 5241 Down

991 Up 9833 Up 9156 Up 4288 Up

898 Up 26996 Up 1063 Up 599 Up

57180 Up 120224 Up 83540 Up 1956 Up

4609 Up 2099 Up 4605 Up 26227 Up

6422 Up 3169 Up 332 Up 1001 Up

https://doi.org/10.1371/journal.pone.0216904.t006
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whole genome (%Genome) has been reported in Table 7. From the results, it can be seen that

the genes belonging to the same cluster share a higher percentage of GO terms compared to

the whole genome. This signifies that the genes of a particular cluster are more involved in the

similar biological process compared to the remaining genes of the genome.

Discussion

The average NMI and ARI values obtained by the execution (20 times) of our proposed

method, enAMOSA, on all the 13 datasets are shown in Tables 8 and 9, respectively. From

the Tables 8 and 9, it is observed that the results obtained by our proposed methodology out-

perform the results obtained by other state-of-the-art single objective algorithms (MVDA

(unsupervised) algorithm [16], LRAcluster [18], PINS [21], SNF [23] and iClusterBayes [28])

by 10 − 11% (approx.) and 10 − 14% (approx.) in terms of NMI and ARI, respectively. Com-

parison of enAMOSA with other baseline versions (enAMOSAkm, enAMOSAspec, enAMOSAcl

and enAMOSAfs) shows that combination of all the four base partitions (i.e., enAMOSA) per-

forms better than its single base partition counterparts (enAMOSAkm, enAMOSAspec, enAM-

OSAcl and enAMOSAfs) by 5 − 10% (approx.) and 8 − 11%(approx.) in terms of NMI and

ARI, respectively. To show the effectiveness of the new perturbation operator, enAMOSA is

compared with AMOSA(ensemble). NMI and ARI scores obtained by enAMOSA exceed

AMOSA(ensemble) by 5 − 9%(approx.) and 8 − 10% (approx.), respectively. Results reflect the

efficiency of the proposed integrated approach of ensemble and multi-objective algorithm

through new perturbation operator over using them separately.

To further explore the importance of diversity in the base partitions, all possible combina-

tions of the base partitions are generated and the results of NMI and ARI are presented in

Table 7. Significant shared Gene Ontology (GO) terms by gene markers.

Classes Gene Ontology(GO) term (%) Genome (%)Cluster

Her2 regulation of catalytic activity: GO:0050790 47% 50%

regulation of cell proliferation: GO:0042127 31% 40%

negative regulation of programmed cell death: GO:0043069 50% 50%

negative regulation of apoptotic process: GO:0043066 2% 20%

positive regulation of cell proliferation: GO:0008284 3% 40%

negative regulation of cell death: GO:0060548 5% 38%

Basal biological process: GO:0008150 50% 50%

biological regulation: GO:0065007 52% 60%

signal transduction: GO:0007165 6% 10%

nitrogen compound metabolic process: GO:0006807 27% 30%

multicellular organismal process: GO:0032501 3% 30%

LumA cell cycle: GO:0007049 30% 46%

regulation of chromosome organization: GO:0033044 2% 20%

organelle fission: GO:0048285 3% 10%

regulation of chromosome segregation: GO:0051983 8% 10%

mitotic nuclear division: GO:0140014 3% 20%

LumB regulation of biological process: GO:0050789 17% 20%

regulation of cellular process: GO:0050794 0.5% 10%

multicellular organism development: GO:0007275 GO:0007275 1.3% 10%

regulation of macromolecule metabolic process: GO:0060255 16% 20%

organic substance biosynthetic process: GO:1901576 21% 30%

https://doi.org/10.1371/journal.pone.0216904.t007
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Tables 3 and 4 respectively. Comparing these results with that obtained by the proposed algo-

rithm enAMOSA (from Tables 8 and 9) it is observed that the proposed method outperforms

its counterparts by 2 − 4% (approx.) for both NMI and ARI. The following observations are

drawn from careful analysis of the results in Tables 3 and 4:

1. The hypothesis of the work is that the diversity in the initial solutions will allow the algo-

rithm to capture more accurate cluster structures. From Tables 3 and 4, we can see that the

NMI and ARI values obtained by combined base partitions are higher compared to their

single counterparts in Tables 8 and 9 respectively. Further, within Tables 3 and 4 it is seen

that combination of 3 base partitions produces higher results compared to the combination

of 2 base partitions. For example, results obtained by enAMOSAcl,km,spec are better compared

to any of its 2 base partitions like enAMOSAcl,km, enAMOSAcl,spec and enAMOSAkm,spec. Sim-

ilar results are true for other combinations also that are reported in Tables 3 and 4. Results

support the initial hypothesis of the work.

2. The performance of the algorithm depends on the type of base partitions used for populat-

ing the archive initially. In the worst case scenario, enAMOSA generates results comparable

to the best base partition solution the archive is initialized with. By this we mean that, sup-

pose initially the archive is initialized with solutions obtained from two different base

Table 8. Comparison of Normalized Mutual Information (NMI) scores of our proposed approach (enAMOSA) with other baseline approaches and state-of-the art

methods.

BRC BRC.1 BRC.2 MSKCC GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

enAMOSA 0.5092 0.5714 0.4980 0.2296 0.5649 0.2347 0.2151 0.1894 0.4216 0.1809 0.1147 0.1208 0.5607

enAMOSAkm 0.4021 0.4185 0.3618 0.0906 0.4383 0.0797 0.0971 0.0594 0.3021 0.0281 0.0463 0.0184 0.3017

enAMOSAcl 0.4067 0.4206 0.3531 0.1076 0.4354 0.0814 0.1014 0.0498 0.2841 0.0212 0.0315 0.0281 0.2962

enAMOSAspec 0.4215 0.4418 0.3615 0.1206 0.4519 0.1067 0.1098 0.0961 0.3196 0.0684 0.0748 0.0907 0.4517

enAMOSAfs 0.4375 0.4668 0.3798 0.1179 0.4708 0.1201 0.1147 0.0948 0.3089 0.0716 0.1005 0.1104 0.5141

AMOSA (ensemble) 0.4581 0.5071 0.4104 0.1390 0.4615 0.1421 0.1227 0.1103 0.3284 0.1097 0.1091 0.1109 0.5207

LRAcluster 0.0146 0.0232 0.0118 0.1098 0.0532 0.0304 0.0328 0.0573 0.0672 0.0483 0.0475 0.0389 0.3629

PINS 0.0118 0.0146 0.00392 0.0572 0.0153 0.0095 0.0459 0.0348 0.0237 0.0382 0.0262 0.0279 0.2219

SNF 0.0358 0.0475 0.0153 0.0098 0.0026 0.0068 0.0332 0.0129 0.0082 0.0088 0.0233 0.0908 0.4349

iClusterBayes 0.0121 0.09931 0.0153 0.0780 0.0306 0.0081 0.0106 0.0258 0.0112 0.0044 0.0177 0.0108 0.0894

MVDA 0.3912 0.4034 0.3403 0.1124 0.4213 0.0863 0.0793 0.0175 0.2594 0.0195 0.0321 0.0655 0.2871

https://doi.org/10.1371/journal.pone.0216904.t008

Table 9. Comparison of Adjusted Rand Index (ARI) scores of our proposed approach (enAMOSA) with other baseline methods and state-of-the art methods.

BRC BRC.1 BRC.2 MSKCC GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

enAMOSA 0.4723 0.5534 0.4414 0.1721 0.4809 0.1157 0.1461 0.1215 0.3471 0.1105 0.1215 0.1537 0.4315

enAMOSAkm 0.3641 0.3471 0.2815 0.0448 0.3561 0.0430 0.02051 0.0083 0.1573 0.0161 0.0189 0.0384 0.3412

enAMOSAcl 0.3651 0.3384 0.2901 0.0457 0.3620 0.0473 0.02110 0.0082 0.1615 0.0186 0.0175 0.0115 0.3603

enAMOSAspec 0.3805 0.3547 0.2981 0.0935 0.3726 0.0984 0.02751 0.0096 0.2136 0.0228 0.0984 0.1045 0.3942

enAMOSAfs 0.3916 0.3675 0.3102 0.0958 0.3864 0.0953 0.02814 0.0094 0.2219 0.0231 0.1041 0.1308 0.4107

AMOSA (ensemble) 0.3943 0.3861 0.3306 0.1006 0.3937 0.1002 0.0447 0.0108 00.2419 0.0259 0.1114 0.1137 0.4208

LRAcluster 0.0086 0.0112 0.0012 0.0105 0.0076 0.0051 0.0184 0.0054 0.0098 0.0055 0.0263 0.0392 0.2546

PINS 0.0144 0.0112 0.00864 0.01142 0.0089 0.0045 0.0244 0.0067 0.0065 0.0016 0.0152 0.0136 0.1195

SNF 0.0126 0.0057 0.0863 0.00081 0.0027 0.0062 0.0119 0.0063 0.0026 0.00062 0.0238 0.0157 0.3667

iClusterBayes 0.0045 0.0118 0.0086 0.0171 0.0357 0.0023 0.0076 0.0048 0.0034 0.0043 0.0399 0.0288 0.0482

MVDA 0.2457 0.3441 0.2831 0.067 0.3441 0.0614 0.0194 0.0085 0.1351 0.0145 0.02366 0.0355 0.2021

https://doi.org/10.1371/journal.pone.0216904.t009
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algorithms, one producing good results and other producing bad. Final results obtained

from enAMOSA will be comparable to that of the good results. For example, for dataset

SARC in Table 8, we can see enAMOSAkm and enAMOSAfs provide NMI values of 0.0184

and 0.1005, respectively. When the partitions obtained from base algorithms Kmeans and

fast search are used jointly, the NMI result obtained by enAMOSAkm,fs on SARC dataset is

0.1040, reported in Table 3. By analyzing Tables 3 and 4, it is observed that similar pattern

is followed for other datasets also. At least, enAMOSA ensures to generate best possible

solution among the base partitions.

3. From Tables 3 and 4, it is also observed that enAMOSAkm,spec,fs performs better than other

algorithms presented in these tables for most of the datasets. A closer analysis shows that

mainly density-based clustering algorithms (fast search and spectral clustering) capture bet-

ter structures from the datasets compared to K-means and hierarchical. It may be because

density-based clustering algorithms are capable of capturing arbitrary cluster structures

from the datasets.

Apart from NMI and ARI scores, we have also reported the F1-measure and accuracy score

obtained by enAMOSA on all the 13 benchmark datasets in the Table 10.

In Fig 6, we have reported the gene expression profile plot for each individual classes (Basal,

Her2, LumA and LumB) of OXF.BRC.1 dataset. The compactness of the structures shows that

Table 10. F1-measure and accuracy values obtained by enAMOSA for all the datasets.

Datasets F1-measure Accuracy

TCGA.BRC 0.6592 0.6814

OXF.BRC.1 0.7048 0.7184

OXF.BRC.2 0.6067 0.6126

MSKCC 0.5146 0.5541

TCGA.GBM 0.6975 0.7068

TCGA.OVG 0.5012 0.5236

TCGA.COAD 0.4905 0.5131

TCGA.LIHC 0.4718 0.4946

TCGA.LUSC 0.6056 0.6479

TCGA.SKCM 0.4861 0.4931

TCGA.SARC 0.4315 0.4415

TCGA.KIRC 0.4174 0.4212

TCGA.AML 0.6904 0.6882

https://doi.org/10.1371/journal.pone.0216904.t010

Fig 6. Gene expression profile plot for each subclass in OXF.BRC.1 dataset.

https://doi.org/10.1371/journal.pone.0216904.g006
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the clustered samples share the same type of gene expressions, i.e, within a cluster genes have

good coherence among them.

In Table 11, we have reported the execution time (in seconds) for all the algorithms used in

the experiment. All the algorithms are executed on machine having intel Core i5 7th Genera-

tion processor with 8GB of RAM. The time is calculated by taking the average over 20 runs

of the algorithms. Execution time of enAMOSA is comparable to that of LRAcluster and

iClusterBayes.

Scalability analysis

An important aspect of performance analysis is the study of how algorithm performance varies

with parameters. In particular, we may evaluate the scalability of the algorithm, that is, how

effectively it can use an increased number of samples. From the time complexity equation,

Eq 6, it is observed that the execution time of the model depends on the total number of itera-

tions (TotalIter), number of samples (n), number of clusters (r), size of archive (N) and num-

ber of objective functions (M). Now, the total number of iteration (TotalIter), size of archive

(N) and number of objective functions (M) are fixed for all the datasets. As for the number of

clusters are concerned, in our algorithm, the number of clusters is not fixed for any particular

dataset, the algorithm automatically determines the number of clusters. So, the increase in exe-

cution time depends on the number of samples (n) present in the datasets. By analyzing the

numeric values obtained by empirical studies in Table 11, clearly supports our finding. TCGA.
BRC has the highest number of samples (629), it has the highest execution time of 9631.21 sec-

onds and MSKCC.PRA has the lowest number of samples (151), it has the lowest execution

time of 727.08 seconds. Similar kind of results are seen for other datasets also in Table 11, that

is, execution time increases with an increase in sample points. The results reported in Table 11

reveals that the execution time of the algorithm is not huge with the increase in the number of

samples in the data set; it converges in polynomial time even with a large number of samples

and also the execution time is comparable to the state-of-the-art method iClusterBayes.

Conclusion

In order to properly subclassify the patient data, consideration of multiple views is highly solic-

ited. A single clustering method is not enough to capture all possible structures in a dataset.

This is a multi-view classification problem which is solved with the help of the proposed multi-

objective based multi-view cluster ensemble based technique.

In the current paper, we have proposed a multiobjective based cluster ensemble technique

for multi-view classification. Initially different simple clustering algorithms are applied to gen-

erate some base partitionings by varying the number of clusters. These initial solutions are

finally combined using some cluster ensemble based operators. The goodness of the individual

partitionings obtained using different views is measured using a connectivity-based internal

Table 11. Execution time of the algorithms in seconds.

BRC BRC.1 BRC.2 MSKCC GBM OVG COAD LIHC LUSC SKCM SARC KIRC AML

enAMOSA 9531.21 4389.12 4380.98 727.08 2045.80 4419.02 2241.11 4373.24 4352.51 6533.02 3016.14 2045.03 978.42

LRAcluster 15034.51 3421.16 3415.77 972.30 2055.93 3417.27 2104.53 5918.45 5074.86 8550.49 3057.00 1569.91 1025.22

PINS 1219.78 612.71 614.45 121.45 356.52 634.88 379.28 371.29 596.02 798.99 376.72 379.28 206.98

SNF 65.71 19.61 20.71 12.04 13.72 20.07 15.89 27.21 24.31 36.23 17.30 15.89 14.90

iClusterBayes 9041.95 4503.10 4523.06 1014.06 2923.39 4543.08 3635.03 5669.00 5309.83 6776.40 4197.39 3635.03 1847.40

MVDA 222.11 146.73 140.27 153.54 190.24 136.37 197.62 224.15 141.09 214.08 175.583 211.07 225.11

https://doi.org/10.1371/journal.pone.0216904.t011
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cluster validity index, namely conn-XB and an agreement index computing the agreement

amongst the partitionings captured on different views. The values of these measures are simul-

taneously optimized using the search capability of AMOSA, which is a multiobjective simu-

lated annealing based optimization technique. Obtained results on 13 cancer data sets

illustrate the utility of the proposed approach for patient sub-classification task. An extensive

comparative study has been conducted to show the efficacy of individual components of the

proposed enAMOSA approach. Some approaches are developed to show the utility of initiali-

zation step of enAMOSA; further another multi-view based cluster ensemble technique is

developed which utilizes some normal mutation operators instead of using an ensemble-based

operator. This comparative study reveals that all the components of the proposed approach,

enAMOSA are important.

Some of the important findings we made are (i) proposed algorithm successfully captures

complex heterogeneous structures from multi-omics data compared to other state-of-the-art

methodology; (ii) the proposed perturbation operator proves effective in integrating the

ensemble technique with multi-objective technique. The comparative results support its effec-

tiveness; (iii) the algorithm, enAMOSA, effectively combines multiple views having different

number of clusters; (iv) the execution time of the algorithm is not huge; it converges in polyno-

mial time and also the execution time is comparable to the state-of-the-art method iCluster-
Bayes. Study of the various comparative results presented in this paper supports our findings.

In future research, works will be carried out in developing a multi-view based biclustering

framework. The developed multi-view based clustering techniques will be applied for solving

some real-life problems of social media data. Documents can also be represented using multi-

ple views. Thus many of the document classification problems can be solved using the devel-

oped multiobjective based multi-view clustering technique.
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