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Abstract

As the challenge of mental health problems such as anxiety and depression increasing

today, more convenient, objective, real-time assessing techniques of mental state are in

need. The Microsoft Kinect camera is a possible option for contactlessly capturing human

gait, which could reflect the walkers’ mental state. So we tried to propose a novel method for

monitoring individual’s anxiety and depression based on the Kinect-recorded gait pattern. In

this study, after finishing the 7-item Generalized Anxiety Disorder Scale (GAD-7) and the 9-

item Patient Health Questionnaire (PHQ-9), 179 participants were required to walked on the

footpath naturally while shot by the Kinect cameras. Fast Fourier Transforms (FFT) were

conducted to extract features from the Kinect-captured gait data after preprocessing, and

different machine learning algorithms were used to train the regression models recognizing

anxiety and depression levels, and the classification models detecting the cases with spe-

cific depressive symptoms. The predictive accuracies of the regression models achieved

medium to large level: The correlation coefficient between predicted and questionnaire

scores reached 0.51 on anxiety (by epsilon-Support Vector Regression, e-SVR) and 0.51

on depression (by Gaussian Processes, GP). The predictive accuracies could be even

higher, 0.74 on anxiety (by GP) and 0.64 on depression (by GP), while training and testing

the models on the female sample. The classification models also showed effectiveness on

detecting the cases with some symptoms. These results demonstrate the possibility to rec-

ognize individual’s questionnaire measured anxiety/depression levels and some depressive

symptoms based on Kinect-recorded gait data through machine learning method. This

approach shows the potential to develop non-intrusive, low-cost methods for monitoring

individuals’ mental health in real time.
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Introduction

Anxiety disorders and depression were the two most common mental disorders [1], which

brought great challenge to personal wellbeing and social economy around the world [2]. The

population with anxiety and depression had grown from 416 million in 1990 to 615 million in

2013 [2], and these two problems accounted 55.1% of the global burden of mental disease in

terms of disability-adjusted life years [3]. The internet-based and mobile-based interventions

have become recognized as an important means of dealing with this challenge and improving

psychological wellbeing in large populations [4, 5]. Based on this trend, the need of more con-

venient, objective, real-time assessing of user’s mental state appears to be more and more

urgent.

As the most commonly used tools, a series of questionnaires capturing anxious or depres-

sive symptoms had been developed and showed great success in psychiatric practice. However,

purely relying on self-report questionnaires also limited the availability and effectiveness of

today’s mental health service. First, filling out a questionnaire could often be an extra burden

for users and sometimes the quality of the answers is hard to be guaranteed in practice [6]. Sec-

ond, it is usually not feasible to require the users to answer the same questions repeatedly and

frequently, which could make the questionnaire not suitable for a real-time assessing of the

dynamic nature of mental states.

As a natural, easily observed body movements, human gait has been found to reflect walk-

er’s mental aspects, including the state of anxiety and depression. As the typical symptoms

of anxiety disorders, fear could be recognized by human observers through the head upright

and elbows bent during walking [7] or the posture with backward head bend, forearms raised

and weight shift backward [8]; anxious state could be reflected in low energy, slow movement

and expanded limbs and torso torso [9]. The electro-myographic (EMG) study also found

increased muscle tension in patients with generalized anxiety disorder (GAD), which would

affect their body movements [10]. As the typical symptom of depression, sadness during walk-

ing were reflected by reduced walking speed, reduced arm swing, reduced vertical head move-

ments, larger lateral swaying movements of the upper body and a more slumped posture [11].

Hand movements and head-down position in walking were found to be different in neutral

and depressed participants [12], and depressed patients showed significantly lower gait veloc-

ity, reduced stride length, increased double limb support [13] and larger swing time variability

[14].

Although there has been much evidence that anxiety and depression could be reflected in

gaits, which could be an objective, easily accessible data source, the methods of gait-based

mental health state detection has not yet been fully established. The previous findings only pre-

sented some gait features statistically different between target and control groups (e.g., [7, 11]),

but did not provide any comprehensive model to recognize the status of anxiety or depression

using those features. There is no evidence that the gait features found in the anxiety/depression

group were specific for anxiety/depression, so till now we cannot make any assessment on

anxiety/depression just based on single or a couple of those gait features. Besides, a practical

method should also include convenient tools to record gaits data. The need of expensive, com-

plex facilities (e.g., the Motion Capture System) or human perceivers in previous studies made

them not much of a basis for a real-life solution.

The use of Kinect may be a practical option to conveniently record gaits data in real life.

With the advantage of portability and low cost, the marker-free sensor system Microsoft

Kinect which is designed for Xbox [15, 16] could conduct a continuous monitoring of body

movement patterns from a three-dimensional perspective. It has been demonstrated that

Kinect has acceptable validity in estimating body posture and motion [17–19]. In the
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laboratory, with the use of Kinect researchers were able to distinguish different daily human

activities [20], identify the gait cycles in treadmill [21] and record the trace of people’s simple

step movements [22]. And this capability of monitoring body movements was soon used in

clinical applications [23, 24]. As Hondori and Khademi [25] reviewed, Kinect could bring cer-

tain benefits as a part of rehabilitation system for the patients of stroke, Parkinson’s, cerebral

palsy and some other neurological disorders, and have the potential to be a reliable solution

for telerehabilitation [26]. Further more, Li et al. [27] tried to detect induced emotions from

Kinect-recorded gait data, showing that through Kinect, researchers could not only analyze

the movement itself, but also possibly recognize some motion-reflected mental states.

To establish a anxiety/depression detection method based on natural gaits using Kinect,

we need to build computational models which could recognize anxiety/depression based on

Kinect-recorded gaits data, rather than only find some gait features relevant to anxiety or

depression. In order to reach this goal, we would try to extract low-level features from configu-

rations directly described by values of 3D coordinate, and construct computational models

using machine learning methods to automatically recognize the levels of anxiety and depres-

sion. These data-driven low-level features could not provide a high-level description of the

gaits pattern of anxiety or depression, such as walking speed, arm swing, head movements,

etc., but may carry more complete information which would be utilized by the computational

models to detect anxiety or depression. This approach has been shown feasible in the field of

affective computing [28, 29].

In the present study, we hypothesized that the questionnaire measured anxiety and depres-

sion levels could be recognized based on individual’s natural gaits, and the computational

model could be built through machine learning methods using Kinect-recorded data. We con-

ducted an experiment to test this hypothesis.

Materials and methods

Participants and apparatus

In this study, we recruited 179 graduate students (100 males, 79 females) with an average age

of 24.2(SD = 1.5) from the University of Chinese Academy of Sciences. All the participants

enrolled in this experiment reported no physical disease or injury which affects daily walking.

The experiment environment was set to similar as the one in Li et al.’s study [27], including a

6m � 1m footpath with two Kinect 2.0 cameras placed at the beginning and the end of the

footpath.

Data collection procedures

After signing an institutionally approved informed consent, each participant was firstly

required to complete a series of questionnaires. Besides basic demographic information, the

questionnaires included the 7-item Generalized Anxiety Disorder Scale (GAD-7) [30], which

asks about the states in past two weeks to calculate an anxiety score, and the 9-item Patient

Health Questionnaire-Depression (PHQ-9) [31], which asks about the depressive symptoms

in past two weeks to calculate a depression score. These two questionnaires are widely used as

screening tools for assessing and monitoring anxiety and depression severity, to assist the clini-

cian in making diagnosis. Both of them showed excellent internal reliability (.92 for GAD-7;

.86-.89 for PHQ-9) and test-retest reliability (.83 for GAD-7; .84 for PHQ-9) [30, 31]. The

good sensitivity and specificity of GAD-7 for detecting anxiety disorders and of PHQ-9 for

detecting depressive disorders had also been proved by many previous studies, with the usual

cutpoint�10 for both the two scales [32]. All the participants finished GAD-7, while 167 valid

samples with PHQ-9 scores were achieved (95 males, 72 females; Mean Age = 24.2, SD = 1.5).
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Secondly, all the participants were asked to walk on the footpath, back and forth naturally

as their daily performance, for two minutes with Kinect cameras continuously shooting in

order to make sure of adequate high-quality gait record. The protocol had obtained permission

from the Institutional Review Board of the Institute of Psychology, Chinese Academy of Sci-

ences. (approved number: H15010).

Data preprocessing

Denoise. The original record from Kinect was the 3-dimentinal accelerations of the 25

main body joints [27], by 30Hz sampling rate. The Sliding Window Gaussian Filtering [33]

was firstly conducted on the original data of each body joint to remove the noise and smooth

the records. With the window size as 5 and the convolution kernel c = [1, 4, 6, 4, 1]/16, the

denoising process is defined as:

Out½i� ¼
1

16
ðIn½i� � 1þ In½iþ 1� � 4þ In½iþ 2� � 6þ In½iþ 3� � 4þ In½iþ 4� � 1Þ: ð1Þ

In refers to the original time series data recorded by Kinect, and Out refers to the smoothed

time series data. Fig 1 shows a segment of one single joint’s X-axis data before and after

denoise. The time series data processed by Gaussian Filter (Fig 1A) is obviously smoother than

the original data (Fig 1B).

Coordinate system transformation. Using the Kinect-default 3D coordinates with the

camera position as the origin may cause considerable mistake in the process of gait pattern

analysis, due to the different positions relative to Kinect camera of different participants dur-

ing walking. As a solution, in each frame (containing 25 main body joints) we replaced the

coordinate system with the position of SpineBase joint as the origin point, and the data of the

rest 24 joints would be used in next steps.

Resampling. As a non-intrusive recording method, shortening the necessary recording

time would increase its practical value, so we tried to select shorter time series from each par-

ticipant during resampling. We divided the two minutes long recording of each Kinect into

front and back segments, based on whether the participant were facing to the camera. Since

the accuracy of joints tracking was better while the participant facing to the camera, the back

segments and the frames of turning were dropped.

Fig 1. The comparison of recorded data before and after Gaussian filtering. A: Before filtering. B: After filtering.

https://doi.org/10.1371/journal.pone.0216591.g001
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Since walking is a periodical body movement, the final data we used should cover at least

one cycle. Meanwhile, our feature extraction method Fast Fourier Transform required a data

length equal to power of 2. So we chose 64 frames (about 2s) as the length of the final data seg-

ments used in feature extraction. We firstly cut the front segments into several 64-frame long

small segments, each of which was perfectly continuous without any invalid frame. Then we

randomly selected one 64-frame segment from each participant, as the final sample used in

feature extraction.

Feature extraction

For feature extraction, Fast Fourier Transforms (FFT) [34] (defined as Eq (2)) were conducted.

N refers to the length of the data segment, and xn (x 2 {X, Y, Z}) refers to the preprocessed gait

data. We calculated the amplitude of FFT Xk which converts the sampled function from its

original domain (time domain) to the frequency domain for each joint axis (X, Y and Z), and

got 64 amplitude coefficients from each axis as features. Then we used the Z-score function to

normalize these features.

Xk ¼
XN� 1

n¼0

xne
� i2pknN k ¼ 0; � � � ;N � 1; ð2Þ

Feature selection

To minimize the error caused by redundant information and improve predictive accuracy, we

conducted the Pearson correlation, one of the most commonly used methods for feature selec-

tion [35, 36]. The correlation coefficients were calculated between anxiety/depression score

and each feature (FFT amplitude) on each axis. Then, on each axis, we selected the 5 features

with the largest absolute value of correlation coefficients, generating a total of 360 selected fea-

tures (5 � 3 � 24 = 360) for each participant.

Model training

To predict the anxiety and depression scores, we trained models using five frequently used

regression algorithms, i.e. Simple Linear Regression (SLR), Linear Regression(LR), epsilon-

SVR (e-SVR), nu-SVR (n-SVR) and Gaussian Processes (GP), and applied 10-fold cross valida-

tion to test each model, which means that we randomly selected 10% of the sample for testing

and used the rest of the sample for training, and repeated this process ten times for each

model. The Pearson correlation coefficient between the predicted scores of each model and

the questionnaire scores was calculated as the predictive accuracy index of each model.

As each of the PHQ-9 items represents a unique symptom of depression in DSM-IV crite-

ria, the score of each item is also helpful to assess the specific symptom of an individual besides

the overall score [31]. For each item, the scale ranges from 0 (not at all) to 3(nearly every day),

and we divided our samples into the symptomatic group (scoring 1-3) and non-symptomatic

group (scoring 0). Then we tried to build classification models on each item to find out the

cases with that symptom. We utilized the algorithms of Simple Logistic (SL), K-Star (K-S) and

C-SVC (C-SVC), and tested the models through 10-fold cross validation. The precision, recall

and F-measure were calculated as the measurement of the predictive accuracy, which are com-

monly used to evaluate classification models in machine learning: Precision is the fraction of

the cases with symptom among the cases retrieved by the model; recall is the fraction of the

model-retrieved symptomatic cases among all the cases with symptom; and F-measure is the

harmonic mean of both precision and recall.
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The model training and testing process was conducted through WEKA3.8, a tool as the col-

lection of machine learning algorithms for data mining tasks.

Results

Questionnaire scores of anxiety and depression

The distributions of questionnaire scores of anxiety and depression were shown in Figs 2

and 3. In our sample males showed higher anxiety scores than females (p = .039, df = 177),

while the depression scores between two genders showed no significant difference (p = .442,

df = 165). The anxiety and depression scores of both genders generally distributed in the rela-

tively healthy region, while a few cases had anxious or depressive symptoms of different severi-

ties. Since we would also build the models to recognize each symptom in PHQ-9, the sampling

distribution on each item of PHQ-9 were also presented in Table 1.

The recognition of anxiety levels by regression models

The predictive accuracies of the regression models on GAD-7 score were presented in Table 2.

The performances of different models varied considerably. While training and testing the

models using the whole sample, the correlation coefficients between predicted and question-

naire scores achieved 0.51 (by e-SVR). If building models separately on males and females, the

Fig 2. The distributions of the whole sample, males, and females on the GAD-7 scores. A: All. B: Male. C: Female.

https://doi.org/10.1371/journal.pone.0216591.g002

Fig 3. The distributions of the whole sample, males, and females on the PHQ-9 scores. A: All. B: Male. C: Female.

https://doi.org/10.1371/journal.pone.0216591.g003
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predictive accuracies could be even higher, up to 0.61 (on males by GP) and 0.74 (on females

by GP).

The recognition of depression levels by regression models

The predictive accuracies of the regression models on PHQ-9 score were presented in Table 3.

The performances of different models also varied. While using the whole sample, the correla-

tion coefficients between predicted and questionnaire scores achieved 0.51 (by GP). And if the

model being trained separately by data from different genders, the predictive accuracies also

changed. For males it was 0.45 (by GP), and for females it was up to 0.64 (by GP).

Table 1. The sampling distribution on the PHQ-9 items (the whole sample).

0: Not at all 1: Several days 2: More than half the days 3: Nearly every day

Item 1. Losing interest or pleasure. 25 136 4 1

Item 2. Feeling down or depressed. 57 107 3 0

Item 3. Sleep problems. 78 73 11 5

Item 4. Low energy. 41 115 11 0

Item 5. Eating problems. 85 67 11 4

Item 6. Feeling of failure. 103 60 3 1

Item 7. Trouble in concentration. 74 75 13 5

Item 8. Moving or speaking too slow or being fidgety. 134 30 2 1

Item 9. Thoughts of suicide. 163 4 0 0

Note: table entries are the numbers of cases.

https://doi.org/10.1371/journal.pone.0216591.t001

Table 2. Predictive accuracies of the regression models on GAD-7 scores.

SLR LR e-SVR n-SVR GP

All -0.07 0.24�� 0.51 ��� 0.48��� 0.43���

Males 0.01 0.54��� 0.56��� 0.53��� 0.61 ���

Females 0.29� 0.69��� 0.62��� 0.56��� 0.74 ���

Note: table entries are Pearson correlation coefficients (r).

� p<.05

�� p<.01

��� p<.001

https://doi.org/10.1371/journal.pone.0216591.t002

Table 3. Predictive accuracies of the regression models on PHQ-9 scores.

SLR LR e-SVR n-SVR GP

All -0.16� 0.23�� 0.38��� 0.40��� 0.51 ���

Males 0.20 0.32�� 0.24� 0.30�� 0.45 ���

Females 0.05 0.60��� 0.41��� 0.43��� 0.64 ���

Note: table entries are Pearson correlation coefficients (r).

� p<.05

�� p<.01

��� p<.001

https://doi.org/10.1371/journal.pone.0216591.t003
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The detection of cases with different depressive symptoms by classification

models

In Table 4, the precision, recall and F-measure of the three classification models on each symp-

tom are presented. For some symptoms, such as Item 1, Item 2 and Item 4, the predictive accu-

racies were relatively high. The recall on these items achieved over 0.9 while the precision

could be around 0.7 or higher, which means that the models could help us to find out more

than 90% cases with these symptoms, with less than 30% false alarms. On some other symp-

toms, such as Item 3, Item 5, Item 6 and Item 7, our models also showed some effectiveness,

especially for the models of LR and C-SVR, and their predictive accuracies varied in the whole

sample, males and females. The predictive accuracies on Item 8 were low, and for Item 9, the

symptomatic cases were too few to train the models.

Discussion

Our results supported the hypothesis that the individual’s questionnaire measured severities of

anxiety and depression could be recognized based on their natural gaits, with the predictive

Table 4. Predictive results of the classification models on each symptom in PHQ-9.

ALL Male Famele

LR K-S C-SVC LR K-S C-SVC LR K-S C-SVC

Item 1 P 0.85 0.85 0.84 0.87 0.87 0.91 0.83 0.83 0.84

R 0.95 0.99 0.94 0.97 0.98 0.92 0.95 0.96 0.80

F 0.90 0.92 0.89 0.92 0.93 0.91 0.89 0.89 0.82

Item 2 P 0.67 0.66 0.66 0.61 0.60 0.61 0.67 0.70 0.70

R 0.86 0.95 0.98 0.91 0.93 0.96 0.80 0.94 0.99

F 0.76 0.78 0.79 0.73 0.73 0.74 0.73 0.80 0.82

Item 3 P 0.59 0.56 0.64 0.58 0.60 0.62 0.65 0.56 0.74

R 0.68 0.91 0.69 0.54 0.15 0.74 0.62 0.92 0.64

F 0.66 0.69 0.66 0.56 0.25 0.67 0.63 0.70 0.69

Item 4 P 0.78 0.76 0.76 0.73 0.70 0.75 0.82 0.79 0.85

R 0.96 0.96 0.99 0.94 0.98 0.77 0.93 0.95 0.91

F 0.86 0.85 0.86 0.82 0.82 0.76 0.88 0.86 0.88

Item 5 P 0.66 0.49 0.62 0.58 0.47 0.66 0.66 0.49 0.63

R 0.61 0.89 0.65 0.53 0.88 0.68 0.69 0.92 0.60

F 0.63 0.64 0.63 0.55 0.61 0.67 0.67 0.64 0.62

Item 6 P 0.66 0.57 0.75 0.19 0.43 0.42 0.40 0.53 0.60

R 0.61 0.06 0.14 0.11 0.11 0.36 0.28 0.25 0.17

F 0.63 0.11 0.24 0.14 0.17 0.39 0.32 0.34 0.26

Item 7 P 0.37 0.57 0.46 0.54 0.71 0.51 0.61 0.58 0.63

R 0.20 0.88 0.50 0.51 0.13 0.64 0.63 0.91 0.65

F 0.26 0.70 0.48 0.53 0.22 0.57 0.62 0.71 0.64

Item 8 P 0.33 0.25 0.31 - 0.33 0.2 0.50 1.00 0.24

R 0.09 0.06 0.33 - 0.14 0.14 0.11 0.16 0.21

F 0.14 0.10 0.32 - 0.2 0.2 0.17 0.27 0.22

Note: Due to the small sample size of item 9 symptomatic group, no valid results were obtained. The results are marked in bold if the precision and recall are both higher

than 0.6.

P refers to precision;

R refers to recall;

F refers to F-measure.

https://doi.org/10.1371/journal.pone.0216591.t004
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models built through machine learning. For both anxiety and depression, the correlation

between predicted anxiety/depression scores and self-reported questionnaire scores achieved

medium to large level (0.43 * 0.74). Furthermore, the classification models were effective in

detecting the cases with several depressive symptoms. These results indicated two facts. First,

the individual’s anxiety and depression degrees did be reflected in the natural gaits, which is

consistent with the previous studies revealing the gait features relevant to anxiety and depres-

sion (e.g., [7, 9, 11, 13]). Second, our results also showed that no matter to what extent this

target information in gaits could be visually inspected, it could be measured and utilized in rec-

ognition with the help of electronic devices.

The effective predictive model in the current study was built through machine learning

method, based on the low-level features directly extracted from the original 3D coordinates of

the walker’s main body joints. The high-level feature descriptors of body movements in this

field often appeared to be based on subjective, qualitative evaluations [37], which restricted the

practice integrating different features into one predictive model. The low-level features in our

study (FFT amplitudes) may not provide any intuitive understanding of individual’s gait, how-

ever, it could cover the information of target psychological aspects reflected in gaits more com-

prehensively. Our results showed the validity of the computing model based on the low-level

features in recognizing questionnaire measured severities of anxiety and depression, and

showed the potential of this data-driven approach in the field of psychometrics.

The apparent differences among the model effectiveness in detecting different depressive

symptoms (Table 4) bring us more information about the usage of the predictive model. Con-

sidering both precision and recall, our classification models performed well in screening losing

interest or pleasure, feeling down or depressed, and low energy. But for other symptoms like

sleep problem, eating problem, feeling of failure and trouble in consideration, our models

showed relatively lower effectiveness, or even no effect for recognizing moving or speaking too

slow or being fidgety. Although these results may be affected by different distributions of item

scores, they suggested that some of depressive symptoms are reflected in gaits more strongly

than others. There are two scoring methods of PHQ-9 in clinical practice [38]: the cut-off

based on summed-item scores, and the algorithm based on DSM-IV criteria, which requires

a total of at least five symptoms rated as at least more than half the days except the suicidal ide-

ation item, and also requires at least one of the first two symptoms of PHQ-9 (losing interest

or pleasure; feeling down or depressed) scored as at least more than half the days. As the

summed-item method is more sensitive and has been dominant in the screening of depression

[38], the prediction of the total score of PHQ-9 has greater value in practice. Meanwhile, the

detection of certain items provides additional information of the subject’s symptom appear-

ance, but is still not able to support the algorithm scoring method, as it is not valid for all the

items.

In our study the predictive accuracies of the models trained by different machine learning

algorithms also showed great disparity, which may be seen as a clue suggesting the relation-

ships between the features we used and anxiety/depression. SLR and LR were linear regression

models, while e-SVR, n-SVR and GP were nonlinear regression models. The outstanding per-

formances of nonlinear regression models in our study implied that the relationship between

the gait information and anxiety/depression was more possible to be nonlinear rather than

linear. It may be one reason of that the specificity of the gait patterns relevant to anxiety and

depression in previous studies were not unambiguously permitted [11].

For both anxiety and depression scores, if we trained and tested regression models on

males and females separately, the predictive accuracy on females was higher than on males. In

detecting the symptomatic cases, models trained on females also performed better on some

symptoms, such as feeling down or depressed and trouble in concentration. Intuitively, it
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seemed that for females the level of their anxiety and depression could be reflected in their

gaits more obviously than for males, in other words, women seemed to “express” their anxiety

and depression more through natural gaits than men, especially for some symproms. As many

studies shown, there existed some difference on males’ and females’ symptoms of anxiety/

depression (e.g., [39–41]). Researchers claimed that women may receive more positive rein-

forcement for expressing concerns toward anxiety symptoms [42], and men with depression

showed impairment at lower symptoms levels than women [43], and reported consistently

fewer symptoms than women [44]. These findings were consistent with the inference in our

study that females’ gaits could reflect their anxiety/depression better than males. Although

we have not seen any reports revealing gender difference of anxiety/depression symptoms in

terms of gaits, it may be valuable to conduct such comparison in future study.

As a pilot study, it is appropriate to highlight several limitations. First, the current study

used questionnaire-based scales of anxiety and depression symptoms but not a clinical diagno-

sis of either. Although the validity of the questionnaires as a screening tool in accessing anxiety

and depression severity has been well proved in literatures [32], the questionnaire score itself

cannot be used as diagnosis. Second, the sample in this study was composed of graduate stu-

dents rather than clinical patients. With the cutpoint�10 for the two scales [32], quite few par-

ticipants achieved the level of moderate to severe anxiety or depression, which means that

there were few “real” patients with anxiety or depression disorders in our sample. So the

validity of our model in recognizing questionnaire scores of anxiety or depression cannot be

equated with the effectiveness in clinical practice, and the diagnostic performance of the

model such as the sensitivity and specificity in finding patients were not yet tested. Third, the

current approach was data-driven and just built the association between low-level gait features

and anxiety/depression severity. For a clear description of the relationship between those intui-

tively visible, high-level gait features and anxiety/depression scores, further kinesiological

study is necessary. Forth, although the large correlation between the predicted and question-

naire summed-item scores showed the validity of screening depression by the model, the

relationship between gaits and different symptoms relevant to depression is left as an open

question. The great disparity of the accuracies in detecting different symptoms implied that

not all the depression-relevant symptoms could be equally reflected in gaits. As the first step,

this study mainly focused on predicting the summed-item score which is the most useful in

practice. But to get a better understanding on how gaits reflect certain symptoms and then the

general level of depression, it still needs more indepth analysis, such as factor analysis, in future

study.

Despite those limitations due to the exploratory nature of the study, it suggests the potential

in future mental health services. An individual’s gait is objective and could be obtained repeat-

edly at any time, while requiring him/her finishing a questionnaire repeatedly and frequently

is often not acceptable in practice. So our gait-based predictive model may be more suitable

than questionnaires for monitoring the continuous change of anxiety/depression severity of

individuals. The low volume of gait data needed and the timeliness of measurement made this

method suitable for a very fast screening. In the current study, we trained and tested predictive

models based on the continuous gaits data as short as 64 frames (about 2s). It means that we

could possibly get enough data clips while participants naturally passing by the Kinect, and

may not need to raise extra requirement of walking back and forth in practical applications.

This method may also show advantages in some other situations where the use of question-

naire is restricted, such as on the population with low education level. Besides screening anxi-

ety and depression by the predicted total scores, our classification models with high accuracy

could be used to detect some certain symptoms relevant to depression, such as losing interest

or pleasure, feeling down or depressed, and low energy. To reach these potentials, more future
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works need to continue from two aspects: First, building and testing the model with the sample

of larger size and similar to the target users, such as real patients; Second, exploring the validity

and availability of this method in the target scenarios, for example, the diagnostic performance

of it if used as an aid to clinical judgment.

In conclusion, this study moved one step forward towards a non-intrusive, low-cost solu-

tion for real-time monitoring the metal health condition, which would be of potential value in

mental health services. Our experiment demonstrated that the natural gaits could be an objec-

tive data source for measuring anxiety and depression, and the predictive models showed the

effectiveness not only in recognizing the total questionnaire scores of anxiety and depression,

but also in detecting some self-reported specific depressive symptoms. Though the nonpatient

sample and the questionnaire-based design limited the applicability of the current model, this

pilot study indicated one possible direction that is worthy of further investigation for new con-

venient mental health measuring methods.
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