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Abstract

In this paper, we present a method to estimate the market parameters modelled by an asym-

metric jump diffusion process. The method proposed is based on Kou’s jump diffusion

model while the market parameters refer to the market drift, the market volatility, the jump

intensity on market price, and the rate of jump occurrence in a consistent manner throughout

the entire paper. The model captures the asymmetric nature of the price fluctuation during

up trend markets and down trend markets. The results are compared to conventional

options to observe the impact of jump effects. The results from simulation show that the

asymmetric jump diffusion model can estimate the fair prices of European call options and

annuity better than the Black-Scholes model and the symmetric jump diffusion model pro-

posed by Kou and Merton.

Introduction

It is well known that the financial market is volatile and difficult to predict. Nevertheless, inves-

tors are still trying to learn and forecast the financial market. The most commonly used

method in modelling the stock price movement is the Brownian motion model. An example

that applies the Brownian motion model in pricing option is the Black-Scholes model [1–3].

In the early 90s, the Black-Scholes model [4] was regarded to be one of the most favourable

methods in calculating option prices. The Black-Scholes model was derived from the expected

volatility (implied volatility) to project future prices of the financial assets while many investors

use it to calculate the fair price of an option. During the 1997 financial crisis, most investors,

including the experienced market investors, suffered from significant losses due to the drastic

downward “jumps” in prices. This incidence had shown that Black-Sholes model might be use-

ful to a certain extent, but it could not handle the extreme events where market movements

are out of ordinary [5].

Much research had proposed modifications to both the Black-Scholes model and the jump

diffusion model. In this paper, we will focus on the extension of the jump diffusion model,

introduced by Kou [6] and Merton [7], which allows separate treatments for the up trend and
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down trend price movements. Carr et al. [8] had also studied the model with the assumption

that infinite jump events are possible.

Bates [9] proposed an approach that used a stochastic volatility model along with the jump

diffusion models. Bates’s model considers jumps that are in the value of an underlying asset.

More extensive reviews on the jump diffusion model with a stochastic volatility model can

refer to Eraker et al. [10].

Salmi and Toivanen [11] proposed an iterative method for pricing American options under

the jump diffusion model. They compared the prices of both European option and American

option with other researchers, i.e. D’Halluin [12] and Toivanen [13]. Their approaches pro-

vided similar results under predefined model parameters; i.e. when the jump diffusion models

being used are identical. Chiarella and Ziogas added another method for pricing American

option that applies the Fourier-Hermite series expansion [14].

Sidorov [15] used the GARCH model to show that the expected volatility of underlying

asset changes over time. However, the changes are only significant if the measured period is

long enough. In this paper, we investigate each period through a yearly basis; hence, the

changes in volatility would be insignificant unless a jump event occurs.

Sidorov [16] also proposed several GARCH models to forecast two indices. He compared

and investigated the forecasting ability of GARCH models using some standard performance

measurements. Among all the models used, the better model is the EGARCH skewed Student-

t model. However, the research could not show significant results to draw a general

conclusion.

Dutta [17] studied the daily exchange rate of US Dollar to Japanese Yen by modelling the

volatility using the symmetric and asymmetric GARCH models. The author assumed that the

exchange rate changes followed the normal or a heavy-tailed distribution. The author’s analysis

reveals that when the heavy-tailed distribution is considered, the persistence of the jumps is

found to be reduced in each of the cases under studied. These few papers had shown that the

GARCH model does not consider the scenario where jump events occurred in the underlying

asset.

Here we propose an asymmetric jump diffusion model aimed to extend the usage of the

Black-Scholes model with asymmetric jumps. Incorporating jumps into the Black-Scholes

model is not new; most of the researchers had proposed different approaches that used the

Kou or Merton jump diffusion model. Both models proposed by Merton and Kou assume

symmetric jump distributions in both upward and downward directions, while through our

study, we realised that a jump event could occur in both symmetric and asymmetric. Hence, in

our model, we will treat the jumps in two directions separately.

The implication of this extension is that practitioners should treat the effects of the jumps

in the upward and downward trends differently. The fact that market returns have asymmetric

jumps is mostly well known in the stock market [18] and affects other derivatives. The study

on asymmetric jumps is especially crucial for derivatives with different risks in the up trend

markets or down trend markets [19]. Our empirical model that provides a way to estimate the

jump intensities and demonstrates that the asymmetric property of the jump could affect the

pricing of the derivatives. This information allows practitioners to have a clearer picture of the

actual risk that they are taking as compared to the pricing model assumming symmetric

volatility.

The outline of this paper is as follows. Next section provides a brief explanation of the geo-

metric Brownian motion model and the jump diffusion model proposed by Kou and Merton.

In the research methodology section, we will show our modification to the jump diffusion

model, along with a brief introduction of the Gibbs sampling method, and the details of the

empirical method that we use. Subsequently, we present the pricing models for European call
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and annuity products that use the Black-Scholes model and the Heston model respectively.

This is followed by the results and data analysis of the empirical method and the asymmetric

jump diffusion model. Last section is the discussion and conclusion. The main contributions

of this paper are the empirical method and the modification of jump diffusion model proposed

in the methodology.

Geometric Brownian motion model and jump diffusion model

The geometric Brownian motion model is the basis of the Black-Scholes model. Mentioned by

Samuelson [20], the stochastic process of the prices of an asset could be described as a geomet-

ric Brownian motion (GBM) in a form of a stochastic differential equation (SDE):

dSðtÞ ¼ mSðtÞdt þ sSðtÞdWðtÞ; ð1Þ

where μ is the drift rate or the rate of return; σ is the volatility of the asset; W(t) is a Wiener

process, and S(t) is the spot price of the underlying assets.

A study by Adeosun [21] explains that anticipating a market takes much more than a geo-

metric Brownian motion (GBM) which is considering only the volatility and drift of an asset.

The pricing model solely based on GBM will not be sufficient to accommodate the market

prices.

In the past 40 years, various models had been proposed to reflect the discontinuity and the

jump in asset returns. These include Merton [7], Press [22], Bates [9], and Kou [6]. In these

models, typically a compound Poisson component is added into the Black-Sholes model to

emulate the jump component of the asset returns:

SðtÞ ¼ Sð0Þe m� 1
2
s2ð ÞþsWðtÞ

YNðtÞ

i¼1

eYi ; ð2Þ

where N(t) is a Poisson process; Yi is a standard normal distributed with the mean of zero and

standard deviation of one; μ is the drift coefficient of underlying GBM while σ is the volatility

of the underlying GBM.

Assuming the market follows a geometric Brownian motion, the additional Poisson process

describes the arrival of jump events. The jump event has its drift and volatility terms that differ

from those of the underlying GBM. Kou modified the above model, with Yi being changed to

the double exponential distribution [6]. Kou claimed that this modification would enable one

to obtain analytical solutions for most path-dependent options, including barrier options and

analytical approximations for American options [6]. The following expression describes Kou’s

double exponential distribution for Yi:

fYðyÞ ¼ p � Z1 exp
� Z1y1fy�0g þ q � Z2 exp

Z2y1fy<0g; ð3Þ

where

• η1 > 1, η2 > 0;

• p, q� 0, p + q = 1, representing the upward and downward jumps;

• η1 > 1 is required so that E(ey)<1;

• E(S(t)) <1.

Kou had pointed out two properties of double exponential distribution are of importance

for the model. The first one is the leptokurtic or “fat tail” feature of the jump size where it

inherits the return distribution. This property makes sense as a jump of an instrument is not
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entirely random but depends on the characteristic of the instrument itself. For example, a

stock price would not have a drastic hike that is several folds of magnitude difference relative

to its spot price [23].

The second crucial property of the double exponential distribution is its martingale prop-

erty. This unique property makes closed-form solutions (or approximations) for option pric-

ing problems feasible. Besides, Kou’s model also has the advantage of being internally self-

consistent and free of arbitrage in an equilibrium setting. The model can capture the empirical

aspect of the stock markets, and the model parameters are straightforward to calibrate [24].

Kou shows that the jump diffusion model can improve the empirical implications of the

Black-Scholes model, as it remains and retains its analytical tractability [25]. On the other

hand, Chan and Wong had shown that the jump model could be used to attain better market

pricing than the Black-Scholes model option pricing method using the geometric Brownian

motion [26].

Therefore, this research aims to incorporate the jump diffusion model into the Black-

Scholes model and show its applicability on European call options and annuity. The next sec-

tion discusses how the jump model’s parameter is calculated as well as the impact of these

parameters on option pricing.

Research methodology

Data collection

In this research, we chose the Dow Jones industrial (DJI), NASDAQ Composite 100 (NAS-

DAQ 100), Financial Times Stock Exchange 100 Index(FTSE 100), Standard & Poor’s 500

(S&P 500) and NYSE ARCA oil & gas Index (OilGas). We retrieved those market data from

Yahoo Finance covering the period from January 2005 to December 2014.

We separated the retrieved data into two different periods: (a) between 2005 to 2010, and

(b) between 2011 to 2015. The first period covers the year 2007 and 2008, which is known as

the economic crisis period. The second period is used as the control period. By doing this, we

could compare the parameters for both sets of data.

Gibbs sampling method and jump diffusion model parameters

In this research, we will use the Gibbs sampling method to obtain the values of the parameters

μ, σ, μjump and λjump in the jump diffusion model [26, 27]. The fundamental idea of the Gibbs

sampling method is using the Bayesian inference from Markov Chain Monte Carlo (MCMC)

with Metropolis-Hasting model. Metropolis-Hasting model is an iterating process that updates

initialised values towards the distribution with an accept-reject method while the Gibbs sam-

pling technique is a particular case where we accept every update for the iterations [28, 29].

The model begins with a probability mass function (pmf), π on a countable set of states, X
and a real-valued function, f(X). Here, both π and f(X) are assumed to be complicated and

computing their exact values is intractable and exact sampling is impossible. Hence, we use

the model to sample from π approximately, or to approximate the expected value E[f(X)]

where X* π and E[f(X)] is distributed according to π.

The steps of the Gibbs sampling algorithm are as follows:

1. We introduce the proposal matrix Q. Q is a stochastic matrix, where all its element is posi-

tive, and sum of each row is equal to 1. (Qab = Qba 8a, b 2 X)

2. Initialize X0 2 X. Where X0 is an element from X.

3. For iteration where i = 0, 1, 2, . . ., n-1:
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a. Sample x from Q(xi, x), such that xi is a fixed, known variable and x is the sample that

range over all possible state, (or can be say as P(xjxi) = Q(xi, x)).

b. Sample a u from uniform(0,1), where u represent the constant for the rate to accept or

not accept in the next step.

c. If u < ~pðxÞ
~pðxiÞ

(the probability of x), then xi+1 = x, else we reject the newly drawn sample and

xi+1 = xi.

4. The output is a sequence of x0, x1, x2, . . ., xn as i goes from 1 to n − 1.

The iteration process will be used in sampling the market parameters. By iterating each dif-

ferent market parameter on their own posterior distributions, we can sample out the market

parameters with past market prices.

We implemented a Gibbs sampler to sample out the parameters needed for Merton’s jump

diffusion model; i.e. μ—the drift, σ—the volatility of the underlying asset, λ—the frequency of

the jump event, μjump—the intensity of the jumps, and σjump—the volatility of the jumps.

These parameters will show the behaviour and movement of the underlying asset; hence know-

ing these characteristics will provide insight for investors when managing risks.

Take note that there are two sources of fluctuations in the underlying asset prices. The term

intensity of the jumps is used to make the distinction of the sudden up-surge or down-surge in

the fluctuations of the underlying asset from the less drastic Gaussian fluctuations of the asset,

i.e. the volatility.

In the context of parameter sampling with the Gibbs sampler, the proposal matrix Q would

be the posterior distribution of parameters. We will let the initial parameter be X0 and will

repeat the sampling process until it converges. The list of output will be the samples of the

parameters.

The Table 1 reports the values of the parameters from the Gibbs Sampling method gener-

ated by a simulated jump diffusion model.

The results show the Gibbs sampler’s limitations in converging for the parameter jump

drift and standard deviation of the jump; i.e. the calculated mean of each simulated parameter

deviates from the preset value while the standard deviation is higher than 30%. These show

that the accuracy of the Gibbs sampling is not good enough to recover the preset parameters of

the model.

The empirical method

The values of the parameters are obtained by using an empirical method as the Gibbs sampling

method is not good at distinguishing fluctuations from assets volatility or jump volatility;

hence, unable to retrieve the modelling parameters effectively.

Table 1. Testing Gibbs sampler algorithm.

Parameters Preset Mean Standard Deviation

Drift of Asset 0.1 0.00198 0.43901

Volatility of Asset 0.5 0.04132 0.02244

Frequency of Jump 10.0 9.51044 3.77489

Intensity of Jump 0.05 0.05295 0.08975

Volatility of Jump 0.025 0.07128 0.03999

https://doi.org/10.1371/journal.pone.0216529.t001
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First, we calculate the daily rate of difference in close prices with respect to previous day for

each day,

diff i ¼ pricei � pricei� 1
;

where i goes from day 1 to day n. Next, we group the calculated differences according to their

signs and find the medians for both positive and negative rate of differences separately, i.e.

median+ and median−.

We redefine those differences that are four times larger than the positive median (or four

times smaller than negative median) as the jumps. Hence, the average jump intesity for upward

and downward, denoted as Y1,i and Y2,i respectively, are described in Eq 4. Our asymmetric

model requries the jump intensity as E(jump)�j4 ×medianj. This definition is different from

the previous symmetric jump model that defines jump intensity at zero, E(jump) = 0.

The number of times of such jump values are treated as the frequency of jumps and will be

used in the Poisson distribution of the jump event, N1(t) (or N2(t) for downward jump). Lastly,

by taking the average log of the rate of return of the underlying asset, we would get the drift

and volatility of the underlying asset, i.e. μ and σ.

For example, we use the data from Dow Jones in the year 2007 as illustrated in Fig 1. The x-

axis is the period number and y-axis is the rate of changes in price. We will get 1 upward jump

and 5 downward jumps, with average intensities of 0.012 and −0.0107 respectively. The drift

and volatility of DJI at 2007 are −0.0043 and 0.1454 respectively.

Fig 1. An illustration of jump event identification where the jumps exceeded the lines are considered as jump events.

https://doi.org/10.1371/journal.pone.0216529.g001
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The Table 2 is retrieved using the empirical methods on S&P 500 and DJI indices from the

year 1995 until 2014.

From Table 2, the upward jumps are not in line with the downward jumps. The frequency

of downward jumps is higher as compared to that of upward jumps. The intensity of jumps is

different for each direction of the jump as well. Hence, we can conclude that it is essential to

modify the model by Kou and Merton, to accommodate the two different directions of the

jump.

Modified double exponential jump diffusion models

As shown in Eq 3, the usage of the double exponential requires more parameters for Kou’s

model. Besides the drift and volatility of the assets, μ and σ, Kou’s model requires η1 and η2

which are the mean intensity of upward and downward jumps for the double exponential dis-

tribution. Note that the frequency of jump, λjump, in Kou’s model includes both upward and

downward jump events.

Throughout the research, the results show that the intensity on upward jumps and down-

ward jumps are independent of each other. Hence, we propose a method that splits the fre-

quency of jump arrival and intensity of jumps into two different parameters each. This will

ensure the retractability of upward and downward jumps, as each direction has its own fre-

quency of jump and jump intensity. The results are as shown in Eq 4.

SðtÞ ¼ Sð0Þe m� 1
2
s2ð ÞþsWðtÞ

YN1ðtÞ

i¼1

eY1;i
YN2ðtÞ

i¼1

eY2;i ; ð4Þ

Table 2. Jump parameters for DJI and S&P 500 from year 1995 to 2014.

DJI S&P

Year Up Up intensity Down Down intensity Year Up Up intensity Down Down intensity

1995 0 0.000000 4 0.006452 1995 1 0.003583 5 0.007322

1996 5 0.006385 9 0.010148 1996 2 0.009151 11 0.008307

1997 0 0.000000 1 0.029571 1997 1 0.006960 1 0.025787

1998 3 0.010684 3 0.025415 1998 2 0.013205 8 0.017721

1999 1 0.009298 5 0.012175 1999 0 0.000000 1 0.013725

2000 1 0.040104 3 0.016139 2000 5 0.015921 2 0.018840

2001 4 0.016356 5 0.020903 2001 1 0.020283 3 0.021277

2002 5 0.028068 2 0.018651 2002 3 0.024552 2 0.030803

2003 1 0.015568 2 0.015361 2003 1 0.014023 2 0.014982

2004 2 0.007285 5 0.008304 2004 1 0.007017 3 0.010429

2005 1 0.008557 2 0.007423 2005 0 0.000000 2 0.009941

2006 0 0.000000 5 0.009115 2006 0 0.000000 5 0.008411

2007 1 0.012031 5 0.010785 2007 2 0.013596 3 0.012453

2008 3 0.052077 4 0.039357 2008 4 0.052090 7 0.048799

2009 2 0.017149 3 0.017408 2009 1 0.027948 5 0.022862

2010 1 0.009696 7 0.012784 2010 1 0.011456 10 0.013855

2011 2 0.023121 3 0.017075 2011 2 0.024247 4 0.016401

2012 3 0.007883 6 0.007448 2012 0 0.000000 4 0.010550

2013 3 0.005309 5 0.008180 2013 1 0.005189 3 0.011769

2014 4 0.008574 9 0.008321 2014 4 0.008849 5 0.013490

Up represents the frequency of upward jumps for the year, while down represents the frequency of downward jumps for the year.

https://doi.org/10.1371/journal.pone.0216529.t002
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where N1(t) is a Poisson process for upward jump frequency in a period; N2(t) is a Poisson

process for downward jump frequency in a period; Y1,i is a standard normal distributed ran-

dom variable for upward jump; Y2,i is a standard normal distributed random variable for

downward jump; μ is the drift coefficient for underlying asset; and σ is volatility of the underly-

ing asset.

Pricing European call with asymmetric jump diffusion model

The number of jump events is different for each market instrument. Generally it is believed

that a market crisis will occur once every ten years. However, a jump does not always cause a

drop in prices; an upward jump is also possible. How the investors should group and identify

the jump aside from normal daily fluctuation will be a critical element to consider.

For the European call option price, we use the Black-Scholes model that was worked out

and developed by three economists—Fisher Black, Myron Scholes and Robert Merton.

C ¼ SNðd1Þ � K exp ð� rtÞ Nðd2Þ; ð5Þ

where, C is the call premium at time zero, S is the current stock price, K is the strike price, t is

the time to expiry, r is the risk-free rate, σ is volatility of the underlying asset, N(�) denotes the

standard cumulative normal distribution, while d1 ¼
ln S

Kþðrþ
s2

2
Þt

s
ffi
t
p , and d2 ¼ d1 � s

ffiffi
t
p

.

The stock price, S is calculated using the asymmetric jump diffusion model, in Eq 4. The

results we achieved in Table 2 will be used in Eq 4. Hence, the option price will change accord-

ing to the impact of the jump for the period.

Since the values of the jump parameters are different for different instruments, we set the

value range of 0 to 4 for the frequency of jump and 0 to 0.08 for the intensity of jump (0< λ
<4, 0<μjump <0.08). These ranges are selected, as per our research of 20-year data across 5

indices, where most of the jump frequency and intensity fall within these ranges. Note that the

zero jump frequency is equivalent to a standard geometric Brownian motion model.

The initial price and strike price are set at $100. The drift, μ and volatility of the asset, σ val-

ues are fixed at 0.08 and 0.4 respectively, as calculated over 20 years of Dow Jones index for its

average drift and volatility. We calculate the expected price of the European call option and

results are shown in the result section.

Pricing annuity with asymmetric jump diffusion model

The values of annuity vary depending on different requested requirements by the annuitant. A

larger stream of income and insured guarantee in the future would cost higher premium (or a

regular annuity payment) and vice versa. Under the Black-Scholes model assumptions, the

dynamics of annuity account value are as follows [30]:

dAt ¼ ðm � cÞAtdt þ sAtdBt þ kdt: ð6Þ

where At and c are denoted as the sub account value at time t and the mortality and expense

fee payable continuously respectively. While k is the subsequent contributions to the sub-

account [31].

Under the Black-Scholes model, the combined GBM with jump event (Eq 2) model is given

by the following SDE:

dSt ¼ mStdt þ sStdBt þ JStdNt ð7Þ
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In the case of an extreme event, the sub account value will be modified with jump diffusion

model assumption and becomes:

dAt ¼ AtðdStÞ=St � cAtdt þ kdt

¼ Atðdt þ dBt þ JdNtÞ � cAtdt þ kdt

¼ ð� cÞAtdt þ AtdBt þ JAtdNt þ kdt

ð8Þ

We consider annuitant has guarantee benefits with roll up premium, consisting of both

guarantee minimum death benefits (GMDB) and guarantee minimum accumulation benefits

(GMAB) [32]. The guarantee benefits had a pre-agreed guaranteed interest rate g� 0, which is

chosen such that g< r. Hence the guarantee benefits are given as follows:

Gt ¼
AtðdStÞ=St � cAtdt þ kdt

Atðmdt þ sdBt þ JdNtÞ � cAtdt þ kdt;

(

ð9Þ

This guarantee benefits resemble an Asian put option where the sub-account value, At is

treated as the underlying asset. The payoff function, P(t) will be given as follows:

PðtÞ ¼ ½GðtÞ � At�þ ¼ max ðGt � At; 0Þ; for t � T ð10Þ

The price of the annuity depends on the sub-account value, At. This sub-account value

price will fluctuate according to the market movement, similar to the stock price in the Euro-

pean call option. Hence, by changing the model of the account value from the GBM model to

the asymmetric jump diffusion model, we can calculate and simulate the price of the annuity.

Results and data analysis

Gibbs sampler for market indices

From the Gibbs sampler we have retrieved the drift, standard deviation along with jump

parameters in jump model described by Eq 2 for various market indices. We picked Dow

Jones industrial (DJI), NASDAQ Composite 100 (NASDAQ 100), Financial Times Stock

Exchange 100 Index(FTSE 100), Standard & Poor’s 500 (S&P 500) and NYSE ARCA oil & gas

Index (OilGas) with two different periods. In the Table 3 we show the results from the Gibbs

sampler using data from year 2005 October to year 2010 December, while Table 4 shows the

results for period between October 2010 and December 2015.

The Tables 3 and 4 show that the first period between 2005 and 2010 contains relatively

more jumps compared to the second period between 2010 and 2015. The first period had a

minimum frequency of 14 jumps across the indices. The intensity of jumps, however, had a

smaller scale than expected, with an average value of 1%. We believe there are two reasons that

caused the intensity of the jumps to be small. First, the jump parameter generates intermittent

Table 3. Comparison between extracted parameters of different indices between year 2005 and 2010.

Parameters DJI S&P 500 NASDAQ 100 FTSE 100 OilGas

Drift 0.10245 0.11345 0.10625 0.11171 0.22821

Volatility 0.12574 0.14119 0.17082 0.14919 0.22557

Jump Frequency 19.33768 19.24939 14.06721 16.59051 15.91333

Jump Intensity -0.00407 -0.00519 -0.00388 -0.00475 -0.01131

S.D of jump 0.04524 0.04711 0.05277 0.04554 0.06655

https://doi.org/10.1371/journal.pone.0216529.t003
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jumps, however, the net effects on these intermittent jumps are indistinguishable from the

fluctuations generated from the volatility parameters. Secondly, the distribution of Yi in Eq 2 is

symmetric, hence occurrences of jumps can happen in both upward and downward directions.

The cancelling effects of the upward jumps and downward jumps resulted in a small jump

intensity value and with large standard deviation.

Comparing the values of the second period in Table 4 to the first period in Table 3, the val-

ues for jump intensity and its volatility do not differ by much, whilst the jump shows an obvi-

ous difference where most of the indices had an average frequency of jump of 6, besides NYSE

ARCA OIL & GAS INDEX.

Fig 2 shows the frequency of jumps for each index from two different periods of time. We

can see that the market had a high jump event between Oct 2005 to Dec 2010 as compared to

the next 5 year period. There was a world economic recession during the year 2007 and 2008,

the plummet of asset prices caused the number of jump arrivals to shoot up to nearly 20. Sub-

sequently, the market was more stable after 2010; hence, the jump occurrences reduced to

between five and six times a year.

The frequency of the jumps for NYSE ARCA Oil & Gas Index during the period of 2010 to

2015 was higher as compared to the other four indices. Although the average frequency of

jumps had lowered to 6, the NYSE ARCA Oil & Gas index recorded a jump arrivals as high as

Table 4. Comparison between extracted parameters of different indices between year 2010 and 2015.

Parameters DJI S&P 500 NASDAQ 100 FTSE 100 OilGas

Drift 0.13043 0.14949 0.17544 0.06069 0.11527

Volatility 0.12365 0.12797 0.14913 0.14301 0.18886

Jump Frequency 5.23150 6.83121 6.07712 6.08239 12.74748

Jump Intensity -0.00592 -0.00478 -0.00568 -0.00446 -0.00615

S.D of jump 0.05644 0.05294 0.05739 0.05095 0.04405

https://doi.org/10.1371/journal.pone.0216529.t004

Fig 2. Jump frequency of different market indiecs for 2 different periods of times (2005 to 2010 and 2010 to 2015).

https://doi.org/10.1371/journal.pone.0216529.g002
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13; hence, we checked on the historical index prices throughout Oct 1, 2005, till Sept 30, 2015,

as depicted in Fig 2.

Fig 3 shows that there are some drastic changes between year 2008 to year 2009, and those

regions are in the circles. We can see that the number of jumps of NYSE ARCA OIL & GAS

INDEX remains at a higher level due to the sudden drop in prices in the second period

(around 2012), while the other indices had started getting slightly more stable. Until year 2015,

the oil and gas prices remain highly volatile from time to time, hence the frequency of jumps

that remain at a higher level is reasonable. This shows that the Gibbs sampler could provide

good estimation on the frequency of jumps that occurred over the time period; however it

remains weak in estimating the jump intensity.

In the next section, we studied the asymmetric diffusion model with European call options

and annuity and investigated its impact on the pricing of both instruments. This is to study if

the jump model could retain its characteristics for two different types of instruments.

Pricing European calls with asymmetric jump diffusion model

We would like to determine how much the impact of jumps had on the price of an European

call option. Here, we had simulated a asymmetric jump diffusion model with the initial price,

S0 of 100, with a strike price, K = 100. The drift μ is set to be a constant following the underly-

ing asset, where it is -0.005 for DJI index. The volatility σ is constructed with Dupire’s formula

Fig 3. Comparison of price behavior for 4 indices. (Data retrieved from Yahoo Finance).

https://doi.org/10.1371/journal.pone.0216529.g003
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under a risk neutral measure in order to reduce arbitrage opportunities [33, 34].

ŝðT;KÞ ¼
1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dC=dTðT;KÞ
d

2C=dx2ðT;KÞ

s

ð11Þ

The constructed volatility of DJI index over 20 years is 0.00555, using Dupire’s formula.

The price of the European call option based on the GBM model is calculated using the

Black-Scholes formula. On the other hand, the price of the call option based on the asymmetric

jump diffusion model can also be calculated by simulating Eq 4 [35].

Both results are mapped on to a contour with horizontal axis denoting the range of the fre-

quency of the jumps and the vertical axis denoting the jump intensity. The frequency of the

jumps, λ, ranges from zero (no jump event, i.e., the GBM model) to four (indicating four

jumps per year), while the jump intensity ranges from 0 to 0.8. (0 < λ<4, 0<μjump <0.08).

The results are shown in Fig 4.

The white dot at the left bottom in Fig 4 is the payoff of the European call option with

GBM. Along the vertical axis, when jump had zero arrival, we can observe that the call option’s

payoff fluctuates around zero.

Fig 4. The expected call option price for different jump intensity and frequency.

https://doi.org/10.1371/journal.pone.0216529.g004
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When the jump events occur, the payoff from the asymmetric model is greater than the

expected payoff of the Brownian motion and increases proportionally to the increment of the

jump intensity. From the result, as the intensity of jump increases, the payoff increases even

higher. The highest peak occurs, when the jump intensity and frequency are at their highest

levels.

The results in Fig 4 consider only the positive jumps. Although a large asset price down-

swing could occur upon negative jumps, a call option is always protected from the downside

risk and hence no impact on the payoff.

In the following context, Dow Jones index and S&P 500 are calculated with the empirical

method we mentioned previously. The results can be referred to in Table 2. The average drift

of the Dow Jones index and the S&P 500 over 20 years from year 1995 to 2015 are -0.0050198

and -0.0052949 respectively, therefore we take the average value of -0.00515. The contructed

volatility for both indices is 0.0055 using Eq 11.

We will use the data from the S&P 500 index and the Dow Jones index and compare them

with the European call option. After we evaluated the Dow Jones index and the S & P 500, the

jump frequency we get can range from 0 to 11 (during year 1996 in Table 2). The jump inten-

sity will go up 0.0052 during year 2008; hence, we set value ranges of 0 to 12 and 0 to 0.05 for

the frequency of jump and the intensity of jump, respectively (0 < λ<12, 0 <μjump <0.05).

An event with 0 jump frequency is similar to the standard geometric Brownian motion

model.

Using the market parameters with the value we mentioned aboved, we can construct the

countour from the pricing model that uses the asymmetric jump model. The countour will

show the value of the option, with different frequencies of jump and jump intensities.

From Fig 5, the diamond marks the estimated yearly positive jump frequencies and jump

intensities for the Dow Jones (DJI) based on the data in the past 20 years from 1995 to 2015.

The contour lines are the expected payoff of the European call based on the empirical asym-

metric jump diffusion model. Fig 5 shows that the pricing from standard GBM is not good

enough to compensate risk from volatile periods. We observe that the expected payoff would

differ from the Black-Scholes formula and the difference can be as high as 0.7 from the normal-

ized return.

Similarily, the cross sign in Fig 5 shows the expected positive jump frequency and jump

intensities for the S&P 500 over the past 20 years from 1995 to 2015. The highest attainable

option price using the S&P 500 could exceed 1.0 from the normalized return. This observation

shows that, for different indics or assets, the impacts of the jump to the option prices can differ

significantly.

Annuity pricing with asymmetric jump diffusion model

We also investigated the impacts of the frequency of the jumps on the price of an annuity. We

plotted the contour of the annuity’s price based on the Heston model in Eq 10 [30]. Similar to

the case of the European call option, we set the value ranges of 0 to 12 and 0 to 0.05 for the fre-

quency of jump and the intensity of jump, repectively (0 < λ<12, 0<μjump <0.05). Zero

jump frequency corresponds to the standard geometric Brownian motion model. Then, the

sub-account value At was simulated based on Eq 8 and the price of the annuity was calculated.

Fig 6 shows the contour of the calculated annuity price for different jump frequencies and

intensities. The cross and diamond mark the jump frequencies and intensities for the S&P 500

index and the Dow Jones Index for the 20 years. The diamond mark shows the pricing payoff

that is evaluated based on the Dow Jones index using data from year 1995 to year 2015. The

cross mark was evaluated based on the S&P 500 index, and with the same year period as DJI.
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In Fig 6, the price of an annuity corresponding to the GBM is located at the bottom left cor-

ner with a value that is less than 2.4. However, from the frequencies and intensities corre-

sponding to the historical data, we can see that in some of the years the value of the annuity

can go above 3.0. This shows that without considering the chances of positive extreme events,

the annuity is undervalued. Vice versa, the expected payoff of pricing would suffer a higher

loss upon a series of negative or downward jump events that cause the annuity policy to be

overvalued. In either case, the estimated value of the annuity in our model differs from the

value in the model that assumes no jump. This indicates that additional risk exposure for the

pricing company and the empirical asymmetric jump diffusion model provides a better way to

estimate this additional risk.

Conclusion and discussion

Both economic downturn in 1998 and the subprime crisis in the year 2007 are the most notice-

able extreme events that happened in the economy. It is undeniable that extreme events do

exist in the market or even single asset. The ability to capture its signal before it happens is sig-

nificant and important so that it can help reduce the risk borne by investors.

The jump diffusion model is definitely more useful in capturing such signals than observing

the past prices or market behavior such as moving average and trend. As for the Black-Scholes

Fig 5. The contour of the expected payoff for 1-year at-the-money European call based on empirical asymmetric jump

diffusion model. The parameters are estimated from 20 years of S&P 500 index (cross) and Dow Jones index (diamond).

https://doi.org/10.1371/journal.pone.0216529.g005

An empirical study on asymmetric jump diffusion for option and annuity pricing

PLOS ONE | https://doi.org/10.1371/journal.pone.0216529 May 7, 2019 14 / 18

https://doi.org/10.1371/journal.pone.0216529.g005
https://doi.org/10.1371/journal.pone.0216529


model, we had shown that the inability to capture the extreme jump event would lead the

investor into a riskier situation that the BS model could not foresee.

This research had identified the effect of jump on European call options with different

jump intensities and frequencies. The results show that the drift of jump, μjump and frequency

of jump, λ will affect the option payoff. The result will be either higher or lower depending on

the drift of jump. Even the drift is zero, the payoff would be affected too, as the volatility of

jump would alter the prices. This means that, whenever we expect a jump from the stock or

market, even if the drift is small, the risk of volatility is still existing. As long as there is a jump,

there will be larger risk and a fluctuation of price should be expected.

The Gibbs sampling technique could provide the values and parameters of the market data,

which is the drift and volatility of the model itself, the frequency of jumps and the drift and vol-

atility of the jump. However in the context of the jump diffusion model, it cannot converge

everytime. Sometimes, the same path and pattern of a stock could be simulated using different

sets of market parameters. For example, a high drift low volatility stocks path might be able to

be attained by a slightly lower drift but higher volatility. Hence, the results attained had a range

of possibilities.

However, if the frequency of jumps and jump intensity is high, the stock itself is undergoing

several jump events and a huge fluctuation in price is expected in the near future.

Fig 6. The contour of the value of an annuity based on empirical asymmetric jump diffusion model. The parameters are

estimated from 20 years of S&P 500 index (cross) and Dow Jones index (diamond).

https://doi.org/10.1371/journal.pone.0216529.g006
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The jump diffusion model does not solely fit in options only. It could help in calculating the

expectations of other derivatives. The payoff of annuity is shown in results that, the reward

function could be higher if the underlying assets are undergoing a positive jump event. Simi-

larly, there is a large risk of loss if it is going to undergo a negative jump event. In this case, we

can say that the annuity is undervalued, as the risk being undertaken is far larger than what is

expected. For example, we refer to Fig 6 from the previous section, the price should be some-

where around 2.6 rather than 2.3 without considering the risk of jump.

There could be other derivatives and purposes that the jump diffusion model can fit into it

for better risk managing and loss preventing. Hence, it is important to consider jump model

than geometric Brownian motion when dealing with market derivatives.
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