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Abstract

Electroencephalogram (EEG) is a common base signal used to monitor brain activities and
diagnose sleep disorders. Manual sleep stage scoring is a time-consuming task for sleep
experts and is limited by inter-rater reliability. In this paper, we propose an automatic sleep
stage annotation method called SleepEEGNet using a single-channel EEG signal. The
SleepEEGNEet is composed of deep convolutional neural networks (CNNs) to extract time-
invariant features, frequency information, and a sequence to sequence model to capture the
complex and long short-term context dependencies between sleep epochs and scores. In
addition, to reduce the effect of the class imbalance problem presented in the available
sleep datasets, we applied novel loss functions to have an equal misclassified error for each
sleep stage while training the network. We evaluated the performance of the proposed
method on different single-EEG channels (i.e., Fpz-Cz and Pz-Oz EEG channels) from the
Physionet Sleep-EDF datasets published in 2013 and 2018. The evaluation results demon-
strate that the proposed method achieved the best annotation performance compared to
current literature, with an overall accuracy of 84.26%, a macro F1-score of 79.66% and k =
0.79. Our developed model can be applied to other sleep EEG signals and aid the sleep spe-
cialists to arrive at an accurate diagnosis. The source code is available at https://github.
com/SajadMo/SleepEEGNet.

Introduction

The electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) sig-
nals are widely used to diagnose the sleep disorders (e.g., sleep apnea, parasomnias, and hyper-
somnia). These signals are typically recorded by placing sensors on different parts of the
patient’s body. In an overnight polysomnography (PSG) (also called as sleep study), the EEG
signal is usually the main collected signal being used to monitor the brain activities to diagnose
different sleep disorders [1] and other common disorders such as epilepsy [2].
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The EEG signals are split into a number of predefined fixed length segments which
are termed as epochs. Then, a sleep expert manually labels each epoch according to sleep scor-
ing standards provided by the American Academy of Sleep Medicine (AASM) [3] or the
Rechtschaffen and Kales standard [4]. Each EEG recording is around 8-hour long on average.
Therefore, the manual scoring of such a long signal for a sleep expert is a tedious and time-
consuming task. The human-based annotation methods also highly rely on an inter-rater
agreement in place. Therefore, such restrictions call for automated sleep stage classification
system that is able to score each epoch automatically with a high accuracy.

Several studies have focused on developing automated sleep stage scoring algorithms. Gen-
erally, they can be divided into two different categories in terms of the feature extraction
approaches. First, the hand-engineered feature-based methods that require a prior knowledge
of EEG analysis to extract the most relevant features. These approaches first extract the most
common features such as time, frequency and time-frequency domain features of single chan-
nel-EEG waveforms [5-7]. Then, they apply conventional machine learning algorithms such
as support vector machines (SVM) [8], random forests [9] and neural networks [10] to train
the model for sleep stage classification based on the extracted features. Although these meth-
ods have achieved a reasonable performance, they carry several limitations including the need
for a prior knowledge of sleep analysis and are not able to generalize to larger datasets from
various patients with different sleep patterns. The second category includes the automated
feature extraction-based methods such as deep learning algorithms, in which the machine
extracts the pertaining features automatically (e.g., the CNNs to extract time-invariant features
from raw EEG signals).

In recent years, deep neural networks have shown impressive results in various domains
ranging from computer vision and reinforcement learning to natural language processing [11-
14]. One key reason for the success of deep learning based methods in these domains is the
availability of large amounts of data to learn the underlying complex pattern in the data sets.
Due to availability of a large number of sleep EEG recordings [15], deep learning algorithms
have also been applied for sleep stage classification [1, 16-19]. However, in spite of the remark-
able achievements in using deep learning models compared to the shallow machine learning
methods for sleep stage scoring task, they still suffer from the class imbalance problem present
in the sleep datasets. Thus, this problem can limit the use of deep learning techniques and in
general machine learning techniques toward reaching an expert-level performance for sleep
stage classification.

The sleep is a cyclical process. Typically, a sleeper experiences five main sleep stages during
his sleep time, including wake, N1, N2, N3, and rapid eye movement (REM) stages. Usually,
each sleep cycle goes through the Non-REM (Stages 1, 2 and 3) sleep to REM sleep. In most
cases, the cycle takes 90-120 minutes resulting in four to five cycles per night [20]. Hence, we
believe the sleep stage classification problem is sequential in nature and taking into account
this sequential characteristic by considering the correlation between different stages can
enhance the accuracy of sleep stage scoring process. Therefore, it is essential to propose a sleep
stage scoring system with the capability of extracting non-linear dependencies present in the
consecutive stages during scoring different stages. In this paper, we introduced a novel deep
learning approach, called SleepEEGNet, for automated sleep stage scoring using a single-chan-
nel EEG. In this model, we applied a sequence to sequence deep learning model with the
following building blocks: (1) CNNs to perform the feature extraction, (2) a bidirectional
recurrent neural network (BiRNN) to capture temporal information from sequences and con-
sider the previous and future input information simultaneously, and (3) an attention network
to let the model learn the most relevant parts of the input sequence while training. Also, we
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utilized new loss functions to reduce the effect of imbalance class problem on the model by
treating the error of each misclassified sample equally regardless of being a member of the
majority class or minority class.

The main contributions of our study are as follows:

» We propose a sequence to sequence deep learning approach along with the BIRNN and
attention mechanism that suits best for the sleep stage scoring problem.

o We apply novel loss functions to address the imbalance class problem.

o The proposed model is an end-to-end deep learning approach that uses raw single-channel
EEGs as its input without using any handcrafted features and significant signal pre-process-
ing such as filtering or noise removal methods.

The rest of the paper is structured as follows: Methodology section introduces the proposed
method. Dataset and Data Preparation section describes the utilized datasets and the data
preparation techniques. Experimental Results section presents the experimental design and
shows the achieved results by the proposed method along with a performance comparison to
the state-of-the-art algorithms. Finally, Conclusion section concludes the paper.

Methodology

In the following sections, we present a detailed description of our proposed model developed
to automatically score each sleep stage from a given EEG signal.

Pre-processing

The input to this method is a sequence of 30-s EEG epochs. In order to extract the EEG epochs
from a given EEG signal, we follow two simple steps:

1. Segmenting the continuous raw single-channel EEG to a sequence of 30-s epochs and
assigning a label to each epoch (i.e., sleep stage) based on the annotation file.

2. Normalizing 30-s EEG epochs such that each one has a zero mean and unit variance.

It is worth mentioning that, these pre-processing steps for the sleep stage extraction are
very simple and do not involve any form of filtering or noise removal methods.

The architecture

The sequence to sequence models have shown very impressive results in neural machine trans-
lation applications, nearly similar to human-level performance [21]. The architecture of
sequence to sequence networks is usually composed of two main parts: the encoder and
decoder which are types of recurrent neural network (RNN). In this study, we used an RNN
sequence to sequence model along with a convolutional neural network (CNN) to perform
automatic sleep stage scoring task.

Fig 1 illustrates the proposed network architecture for automatic sleep stage classification.
We applied almost the same CNN architecture provided by [17]. The CNN consists of two sec-
tions, one with small filters to extract temporal information and another one with large filters
to extract frequency information. The idea behind these variable sizes of filters comes from the
signal processing community to have a trade-off between extracting time domain (i.e., time-
invariant) and frequency domain features [22]. This helps get benefit from both time and fre-
quency domain features in the classification task.
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Fig 1. Illustration of the proposed sequence to sequence deep learning network architecture for automated sleep stage scoring. The input signal is
a sequence of 30-s EEG epochs and the outputs are their corresponding stages (or classes) generated by our proposed method.

https://doi.org/10.1371/journal.pone.0216456.9001

Each CNN part consists of four consecutive one-dimensional convolutional layers. Each
convolutional layer is passed to a rectified linear unit (ReLU) nonlinearity. The first layer is
followed by a max pooling layer and a dropout block, and just a dropout block comes after
the last convolutional layer. At each time-step of training/testing the model, a sequence
(size of maxtime) of 30-s EEG epochs is fed into the CNN for feature extraction. In the end,
the outputs of CNN parts are concatenated serially and followed by a dropout block in order
for the encoder network to encode the sequence input. Fig 2 depicts the detailed CNN
structure.

The sequence to sequence model is designed based on the encoder-decoder abstract ideas.
The encoder encodes the input sequence, while the decoder computes the category of each
single channel 30-s EEG of the input sequence. The encoder is composed of long short-term
memory (LSTM) units which capture the complex and long short-term context dependencies
between the inputs and the targets [23]. They capture non-linear dependencies present in the
entire time series while predicting a target. The (time) sequence of input feature vectors
herein are fed to the LSTMs and then the hidden states, (e, €3, €, . . .), calculated by the
LSTM are considered as the encoder representation, and are fed to the attention network (or
to initialize the first hidden state of the decoder, if the basic decoder is used), as depicted in
Fig 1.

Bidirectional recurrent neural network

We have utilized the bidirectional recurrent neural network (BiRNN) units in the network
architecture instead of the standard LSTM (i.e., standard RNN). Standard RNNs are unidirec-
tional, hence they are restricted to use the previous input state. To address this limitation, the
BiRNN have been proposed [24], which can process data in both forward and backward direc-
tions. Thus, the current state has access to previous and future input information simulta-
neously. The BiRNN consists of forward and backward networks. The input sequence is fed in
normal time order, t =1, ..., T for the forward network, and in reverse time order, t =T, .. ., 1
for the backward network. Finally, the weighted sum of the outputs of the two networks is
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Fig 2. Detailed sketch of the utilized CNN model in the proposed work.
https://doi.org/10.1371/journal.pone.0216456.g002

computed as the output of the BiIRNN. This mechanism can be formulated as follows:

— — —— —
h, = tanh (Wx, +V h,_, +b) (1)
<h_, = tanh(Wxt +VEH —i—?) (2)

y, = (U] t;ht]—i_by)’ (3)

— — — —
where (h,, b ) are the hidden state and the bias of the froward network, and (h,, b ) are the
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Fig 3. A schematic diagram of the bidirectional recurrent neural network.
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hidden state and the bias of the backward network. Also, x, and y, are the input and the output
of the BiRNN, respectively. Fig 3 illustrates a BIRNN architecture with T time steps.

Attention decoder

The decoder is used to generate the target sequence epoch by epoch. Similar to the encoder,
the building block of the decoder is an LSTM. In a basic decoder, at every step of decoding,
the decoder gets a new representation of an input element of the sequence generated by the
encoder and an element of the target input. The last element of the input sequence is usually
the last influence to update the encoder’s hidden state. Therefore, the model can be biased to
the last element. To address such a problem, we have applied an attention mechanism to the
model to consider not only the whole encoder representation of the input but also to put
more emphasis on different parts of the encoder outputs in each step of decoding. In other
words, the attention mechanism makes the model to learn the most relevant parts of the input
sequence in the decoding phase. In a sequence to sequence model without an attention
approach, the decoder part relies on the hidden vector of the decoder’s RNN (or BiRNN),
while the sequence to sequence model with the attention is more goal-oriented by putting
attention on the most related input regions to produce the targets. It considers the combina-
tion of encoder’s representation and decoder hidden vector calling the context vector or the
attention vector, (c,).

To calculate the ¢, vector, we first computed a set of attention weights with a function f{.)
followed by a softmax function. These attention weights are probabilities, (;), corresponding
to the importance of each hidden state. Then, these scores are multiplied by the hidden states
(i.e, the encoder output vectors) to calculate the weighted combination, (c,).

f(h_1;¢) = tanh (W,h,_, + We) (4)

exp (f(h._,,e)) ;
Z;lzl exp (f(h,_, ej)) ’

o, = softmax(f(h, ,,e)) ~ €1,2,...,n, (5)
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¢ = Xn:fxiei, (6)
=0

where @; is a parameter reflecting the importance of part i of hidden state e;. In other words, at
every time step t, the attention layer computes f{.), a combination of the values of e; (the
encoder’s hidden state) and h,_; (the decoder’s hidden state) followed by a tanh layer. Then,
the f{.) output is fed into a softmax module to calculate ¢; over » parts. Finally, the attention

module computes c;, a weighted sum of all vectorse;, i € 1,2, ..., n based on computed a;’s.
Thus, the model can learn to focus on the important regions of the input sequence when
decoding.

During the training phase, the decoder, in addition to the augmented version of the encod-
er’s hidden states, captures the given target sequence shifted by one starting with a special
feature vector < SOD > (i.e., the start of decoding) as its input. Then, the decoder starts to gen-
erate outputs until it confronts the special label called < EOD > (i.e., the end of decoding). We
should note that the target sequence is just used during the training phase and is not applied
for the testing phase. During the testing phase, the decoder uses whatever label it generates
at each step as the input for the next step. Finally, a softmax is applied to the output of the
decoder to convert it to a vector of probabilities p € [0, 1], where C represents the number of
classes and each element of p indicates the probability of each class of the sleep stage.

Loss calculation

Similar to other biomedical applications, the sleep stage classification also deals with the prob-
lem of class imbalance. To alleviate the effect of this problem on the model, we calculated new
loss functions based on [25] to treat the error of each misclassified sample equally regardless of
being a member of the majority or minority class.

We extended the proposed loss functions, mean false error (MFE) and mean squared false
error (MSFE), in [25] for the multi-class classification task. MFE and MSFE can be defined as
follows:

le) =230y =5, o)

i =

byee = Zl(ci)’ (8)

ZMSFE = Zl(ci)z, (9)

where c; is the class label (e.g., W or N1), C; is the number of the samples in class ¢;, N is the
number available classes (here sleep stage classes), and I(c;) is the calculated error for the class
¢;. In the most common used loss function, mean squared error (MSE), the loss is calculated by
averaging the squared difference between predictions and targets. This way of computing the
loss function makes the contribution of the majority classes be much more in comparison with
the minorities classes in the imbalanced dataset. However, the MFE and MSFE try to consider
the errors of all classes equally.

PLOS ONE | https://doi.org/10.1371/journal.pone.0216456 May 7, 2019 7/15


https://doi.org/10.1371/journal.pone.0216456

@ PLOS|ONE

SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach

Dataset and data preparation

In this study, we used the Physionet Sleep-EDF dataset [15, 26]: version 1 contributed in 2013
with 61 polysomnograms (PSGs) and version 2 contributed in 2018 with 197 PSGs to evaluate
the performance of the proposed method for the sleep stage scoring task. For simplicity’s sake,
the Sleep-EDF-13 and the Sleep-EDF-18 are used for versions 1 and 2, respectively. Sleep-EDF
2013 to The Sleep-EDF dataset contains two different studies including (1) study of age effects
on sleep in healthy individuals (SC = Sleep Cassette) and (2) study of temazepam effects on
sleep (ST = Sleep Telemetry). The dataset includes whole-night polysomnograms (PSGs) sleep
recordings at the sampling rate of 100 Hz. Each record contains EEG (from Fpz-Cz and Pz-Oz
electrode locations), EOG, chin electromyography (EMG), and event markers. Few records
often also contain oro-nasal respiration and rectal body temperature. The hypnograms (sleep
stages; 30-s epochs) were manually labeled by well-trained technicians according to the
Rechtschaffen and Kales standard [4].

Each stage was considered to belong to a different class (stage). The classes include wake
(W), rapid eye movement (REM), N1, N2, N3, N4, M (movement time) and ‘?’ (not scored).
According to American Academy of Sleep Medicine (AASM) standard, we integrated the
stages of N3 and N4 in one class named N3 and excluded M (movement time) and ? (not
scored) stages to have five sleep stages [3]. Stages 1 and 2-3 are the light sleep time in which the
stage N1 is the lightest stage and has a short period time. The stage N2-N3 takes longer than
the stage N1, including approximately 40-60% of total sleep time. The stage N3 is called as
deep sleep and the REM is known as the dreaming stage taking 90-120 minutes per night [20].
Considering different stage time periods results in having a imbalanced stage numbers in the
sleep datasets. In addition, we considered Fpz-Cz/Pz-Oz EEG channels from SCs of both ver-
sions in our evaluations. Table 1 presents the number of sleep stages in two different versions.

Experimental results
Experimental design

The distribution of sleep stages in the Sleep-EDF database is not uniform. Hence, the number
of W and N2 stages are much greater than other stages. The machine learning approaches do
not perform well with the class imbalance problem. To address this problem, in addition to
using the novel loss functions described in Loss calculation section, the dataset is oversampled
to nearly reaching a balanced number of sleep stages in each class. We have used the synthetic
minority over-sampling technique (SMOTE) to generate the synthetic data points by consider-
ing the similarities between existing minority samples [27].

Our proposed model was evaluated using a k-fold cross-validation. We set k to 20 and 10
for version 1 and version 2 of the Sleep-EDF dataset, respectively. In other words, we split the
dataset into k folds. Then, for each unique fold, (1) the fold is taken as test set and the remain-
ing folds as a training set and (2) trained the model using the training set and evaluated the
model using the test set. Finally, all evaluation results were combined.

The network was trained (for each dataset) with a maximum of 120 epochs. RMSProp
optimizer was used to minimize the Iy;rg loss with mini batches of size 20 and a learning rate

Table 1. Details of number of sleep stages in each version of Sleep-EDF dataset.

Dataset
Sleep-EDF-13
Sleep-EDF-18

https://doi.org/10.1371/journal.pone.0216456.t001

N1 N2 N3-N4 REM Total
2,804 17,799 5,703 7,717 42,308
21,522 96,132 13,039 25,835 222,479
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of a = 0.001. We also applied an additional L, regularization element with 8 = 0.001 to the loss
function to mitigate the overfitting. Python programming language and Google Tensorflow
deep learning library were utilized to implement our proposed approach. We ran the k-fold
cross validation on a machine with 8 CPUs (Intel(R) Xeon(R) CPU @ 3.60 GHz), 32 GB mem-
ory and Ubuntu 16.04. The training time for each epoch was 98 seconds on average and the
testing time for each batch of 20 EEG epochs was approximately 0.102 seconds.

Evaluation metrics

We have used different metrics to evaluate the performance of the proposed approach includ-
ing, overall accuracy, precision, recall (sensitivity), specificity, and F1-score. We also computed
macro-averaging of F1-score (MF1) which is the sum of per-class F1-scores over the number
of classes (i.e., sleep stages). These metrics are defined as follows:

B TP + TN
ccuracy =
Y = TN+ FP+ FP + FN

(10)

Precision = TP/(TP + FP) (11)
Recall = TP/(TP + FN) (12)
Specificity = TN /(TN + FP) (13)

Precision x Recall
Fy score = Precision + Recall
where TP (True Positive), TN (True Negative), FP (False Positive) and FN (False Negative)
indicate the number of sleep stages correctly labeled, the number of sleep stages correctly iden-
tified as not correspond to the sleep stages, the number of sleep stages that incorrectly labeled,
and the number of sleep stages which were not identified as the sleep stages that they should
have been, respectively. The other main metric that we have used for performance evaluation
of our proposed method is Cohen’s Kappa coefficient (x). When two persons (algorithms or
raters) try to measure the same data, the Cohen’s Kappa coefficient, k, is used as a measure of
agreement between their decisions. For example, in this study, we aim to measure the amount
of agreement between our algorithm as one rater and the provided labels for sleep stages by
the dataset as another rater.

Results and discussion

Tables 2 and 3 present the confusion matrices and the performances of each class achieved by
the proposed method using Fpz-Cz and Pz-Oz channels of the EDF-Sleep-2013 data set,

Table 2. Confusion matrix and per-class performance achieved by the proposed method using Fpz-Cz EEG channel of the EDF-Sleep-2013 database.

Predicted Per-class Performance (%)
W1 N1 N2 N3 REM Pre Rec Spe F1
W1 7161 432 67 27 219 87.84 90.58 96.97 89.19
N1 442 1486 364 25 409 50.05 54.51 96.08 52.19
N2 359 735 14187 1035 837 91.26 82.71 94.20 86.77
N3 37 9 560 4857 2 81.69 88.87 96.90 85.13
REM 153 307 368 2 6520 81.63 88.71 95.59 85.02

https://doi.org/10.1371/journal.pone.0216456.t1002
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Table 3. Confusion matrix and per-class performance achieved by the proposed method using Pz-Oz EEG channel of the EDF-Sleep-2013 database.

W1
N1
N2
N3
REM

https://doi.org/10.1371/journal.pone.0216456.t003

N1

7094 398

1167
655
12
314

Predicted Per-class Performance (%)
N2 N3 REM Pre Rec Spe F1
82 41 238 90.20 90.33 97.65 90.27
455 29 492 45.84 43.51 96.36 44.64
14220 1157 971 88.58 83.07 92.19 85.74
791 4658 10 78.48 84.88 96.36 81.55
506 50 6489 79.13 87.00 94.84 82.88

respectively. The main diagonals in each confusion matrix denote the true positive (TP) values
which indicate the number of stages scored correctly. It can be seen from the tables (the confu-
sion matrices’ parts) that TP values are higher than other values in the same rows and columns.
These tables also show the prediction performance (i.e., the precision, recall, specificity and F1
score) of our model for each class (i.e., the stage). Among all stages, the model performance is
better for W1, N2, N3, and REM stages than the N1 stage. This may be because the number of
N1 stages in the dataset is smaller compared to the other stages. However, our results for stage
N1 is better than other state-of-the-art algorithms listed in Table 4.

Typically, there are two approaches to evaluate the proposed methods in the literature:
(i) intra-patient paradigm in which the training and evaluation sets can include epochs from
the same subjects, and (ii) inter-patient paradigm in which the epochs sets for test and training
come from different individuals. As the inter-patient scheme seems to be a more realistic eval-
uation mechanism, the results and comparisons presented in this study are based on the inter-
patient paradigm. Table 4 presents the comparison of stage sleep scoring results for the pro-
posed method with the existing algorithms. It can be noted from Table 4 that the proposed
model outperformed the state-of-the-art algorithms presented in the table. Our model has per-
formed better in all listed channels (i.e., the Fpz-Cz and the Pz-Oz EEG channels) in terms of
all evaluation metrics compared to others. According to Table 4, the results for Fpz-Cz channel
are better than Pz-Oz channel. The reason is that Fpz-Cz channel position captures most of
the frequencies including delta activity, K-complexes, lower frequency sleep spindles (predom-
inantly frontal phenomena) that are important for sleep staging. However, Pz-Oz channel
position extracts Theta activity and higher frequency sleep spindles (predominantly parietal
phenomena) [18].

Table 4. Comparison of performance obtained by our approach with other state-of-the-art algorithms.

Method Dataset CvV EEG Channel Overall Performance Per-class Performance (F1)
ACC MF1 K w N1 N2 N3 REM
SleepEEGNet Sleep-EDEF-13 20-fold CV Fpz-Cz 84.26 79.66 0.79 89.19 52.19 86.77 85.13 85.02
Supratak et al. [17] Sleep-EDF-13 20-fold CV Fpz-Cz 82.0 76.9 0.76 84.7 46.6 85.9 84.8 824
Tsinalis et al. [18] Sleep-EDE-13 20-fold CV Fpz-Cz 78.9 73.7 71.6 47.0 84.6 84.0 81.4
Tsinalis et al. [28] Sleep-EDE-13 20-fold CV Fpz-Cz 74.8 69.8 65.4 43.7 80.6 84.9 74.5
SleepEEGNet Sleep-EDE-13 20-fold CV Pz-Oz 82.83 77.02 0.77 90.27 44.64 85.74 81.55 82.88
Supratak et al. [17] Sleep-EDEF-13 20-fold CV Pz-Oz 79.8 73.1 0.72 88.1 37 82.7 77.3 80.3
SleepEEGNet Sleep-EDF-18 10-fold CV Fpz-Cz 80.03 73.55 0.73 91.72 44.05 82.49 73.45 76.06
SleepEEGNet Sleep-EDF-18 10-fold CV Pz-Oz 77.56 70.00 68.94 90.26 42.21 79.71 94.83 72.19
Sleep-EDF-13: Sleep-EDF 2013; Sleep-EDF-18: Sleep-EDF 2018; CV: Cross Validation
https://doi.org/10.1371/journal.pone.0216456.t004
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Fig 4. Graphs of the performance of the accuracy (a) and the loss function (b) of the proposed model in each epoch for a randomly selected fold

(i.e., the fold 4).

https://doi.org/10.1371/journal.pone.0216456.9004

Furthermore, it may be noted that in spite of the imbalance-class problem, our model
yielded desirable performance, especially for stage N1. In addition to the Sleep-EDF 2013 data-
set, we also evaluated our model with the Sleep-EDF 2018 dataset. Since the dataset has been
published recently, we could not find any work to compare the performance of our model.
Therefore, we just reported our findings without any comparison.

Fig 4a (left) shows the performance graph of the accuracy. It is shown that the model can
offer a comparable performance on both training and test sets. Also, we can see that the test
accuracy is greater than the training accuracy meaning the network has generalized very well.
Fig 4b (right) illustrates the performance graphs of the loss function. From Fig 4b (right), we
can see that the loss curves grow constantly at the final epochs. This means that we should stop
training.

Fig 5 illustrates the hypnogram produced manually by a sleep expert and its corresponding
hypnogram generated by our method for a subject for approximately 8 hours of sleep at night.
It can be noted from the figure that around 85% the manually scored hypnogram and automat-
ically scored correctly.

Furthermore, by employing the attention mechanism into the network, we are able to illus-
trate (in the form of attention maps) which input epochs are important to score the sleep
stages. As shown in Fig 6, we can see the network used almost the exact input epoch to predict

Expert scored
Machine scored

N3 H

N2

Sleep stage

N1

0 ) 100 200

" 500 600 "~ 700 800 900 1000

~8 hours; 30-s epochs

300 400

Fig 5. A example of hypnograms generated by the machine (i.e., the proposed method) and a sleep expert of a subject from the Sleep-EDF-13 dataset;

approximately 85% coverage.

https://doi.org/10.1371/journal.pone.0216456.9005
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Fig 6. Attention maps of two sequence inputs (EEG epochs) and their corresponding sleep stage scores provided by our proposed method.

https://doi.org/10.1371/journal.pone.0216456.g006

its corresponding sleep stage (on the diagonal of each figure). The higher brightness indicates
more attention (i.e., the amount of each square brightness shows the importance of its corre-
sponding input (on the x-axis in the figure)) to generate each sleep stage. For example, Fig 6a
(left) shows that to score the input epoch 8 (on the x-axis) the important epochs are its previ-
ous (epoch 7, N1) and next (epoch 9, N2) epochs, and specially its epoch as the corresponding
square in the attention map is brighter.

Our model has performed better than the rest of the works due to the following two rea-
sons: First, the nature of the sleep stage scoring task is sequential in which each sleep stage has
a relationship with the previous and next stage. Hence, applying a sequence to sequence deep
learning model for such a problem would be a desirable choice. Also, using the attention
model and BiRNNs as the building blocks of the sequence to sequence model enhanced the
performance. Second, the sleep stage classification suffers from the imbalance-class problem.
To reduce the effect of this problem, we applied new loss functions (i.e., the MFE and MSFE)
to have an equal misclassified error effect for each sleep stage while training the network.

One of the remarkable aspects of our proposed method is that, the model is generic in
nature hence it generalizes for other problems in the biomedical signal processing applications
that are inherently sequential and have the imbalance-class problem such as the heartbeat clas-
sification for arrhythmia detection [29, 30].

Even though our proposed model achieved significant results compared to the existing
methods for the sleep stage classification, the model still carries several limitations. First, simi-
lar to other deep learning methods, our method needs a sufficient amount of sleep stage sam-
ples in training phase to learn discriminative features of each stage. Second, as our model is a
sequence to sequence approach, at each time step, it requires to have a certain amount of 30-s
EEG epochs (as input sequence) to be able to score the input epochs. Finally, our proposed
method is evaluated with two available EEG channels (i.e., Fpz-Cz and Pz-Oz EEG channels)
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extracted from the Physionet Sleep-EDF datasets. Therefore, to evaluate its performance on
other EEG channels, the network has to be trained with new EEG epochs.

Furthermore, in future, we intend to extend this work using multimodal polysomnography
(PSG) signals including EEG, EOG (electrooculography) and EMG (electromyogram) to boost
the performance of the sleep stage classification.

Conclusion

We have presented a novel algorithm for automated sleep stage annotation problem. The pro-
posed method leverages the ability of deep convolutional neural network and encoder-decoder
network in which we have used bidirectional recurrent neural networks and attention mecha-
nisms as its building blocks. The proposed new loss calculation approaches helped to reduce
the effect of the class-imbalance problem and boost the performance, especially the perfor-
mance of our method on the stage N1, that is more difficult than other sleep stages to score.
Table 4 presents that, our proposed model significantly outperformed the existing algorithms
by yielding the highest performance for the sleep stage scoring task. While developing the
automated systems, generally there will be imbalance data problem (normal class more data
than diseased class). Our developed model can be applied to such biomedical applications
such as arrhythmia detection using ECG signals, epilepsy detection using EEG signals and
EMG signals to study the postures.
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