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Abstract

Since 1959 with the proposal of Double Agar Layer (DAL) method for phage detection and

quantification, many sophisticated methods have emerged meanwhile. However, many of

them are either too complex/expensive or insensitive to replace routine utilization of DAL

method in clinical, environmental and industrial environments. For that purpose, we have

explored an alternative method for the detection and quantification of bacteriophages that

fulfills the criteria of being rapid, simple and inexpensive. In this paper we have developed a

method based on the analysis of optical density kinetics in bacterial cultures exposed to

phage-containing samples. Although the decrease in optical density caused by cell lysis

was one of the first observable consequences of the effect of viral infection in bacterial cul-

tures, the potential of the method for the assessment of phage abundance has never been

fully exploited. In this work we carry out a detailed study of optical density kinetics in phage-

infected bacterial cultures, as a function of both, phage abundance and initial concentration

of the host organisms. In total, 90 different combinations of bacteria/phage concentrations

have been used. The data obtained provide valuable information about sensitivity ranges,

duration of the assay, percentages of inhibition and type of lysing behavior for each phage

concentration. The method described can detect, as few as 10 phage particles per assay

volume after a phage incubation period of 3.5h. The duration of the assay can be shortened

to 45min at the expense of losing sensitivity and increasing the limit of detection to 108 pfu/

ml. Despite using non-sophisticated technology, the method described has shown sensitiv-

ity and response time comparable to other high-end methods. The simplicity of the technol-

ogy and of the analytical steps involved, make the system susceptible of miniaturization and

automation for high-throughput applications which can be implemented in routine analysis

in many environments.

Introduction

Methods for the detection and quantification of bacteriophages have been available ever since

their discovery by Felix d’Herelle in 1917 [1]. These methods, based on the presence of lysis

plaques in lawns of host bacteria growing in a double agar layer (DAL), were described in
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detail by Mark Adams in 1959 [2] and, with the addition of several modifications and improve-

ments [3–7] they have constituted the workhorse of virus quantification until now.

Despite the well-established value of the DAL method, the long times required to achieve

detection (24 to 48 h), the labor intensive nature of the methodology, and the impossibility to

convert it to an automated or semi-automated format for high throughput testing, make the

classical DAL method ill-suited to provide a response to the challenges of current clinical, envi-

ronmental or industrial applications. In the clinical field, for example, the need to assess phage

interference in microbiological diagnostic tools, both pathogen detection and antibiotic sus-

ceptibility testing [8] and the growing need to monitor emerging phage therapy technologies

[9–13] call for the development of reliable and fast methods for phage detection. In public

health, detection of enteric phages has been proposed as an indicator of fecal contamination in

water [14,15]. Finally, the availability of fast phage detection methods in the industrial environ-

ment, has been sorely missing for many years. Monitoring of phages responsible for the failure

of microbe-based industrial processes such as yogurt or cheese production [16–20], as well as

the use of phages in the biocontrol of food pathogenic bacteria or as an aid in the eradication

of biofilms [13], all require fast, inexpensive and sensitive methods for routine monitoring

applications.

The growing interest in phage monitoring in these fields has prompted the development of

a new generation of agile and sensitive methods able to overcome the limitations derived from

DAL. These methods are based either on the direct detection of viral particles by PCR [21],

qPCR [22, 23], Raman spectroscopy [24], immunoassay [25, 26], MALDI-TOF [27, 28], or on

the lysis of the host organism by flow cytometry [29], fluorescence microscopy [30], enzyme

release [13, 31, 32], surface plasmon resonance (SPR) [33, 34] or impedance measurements

[35]. Sophisticated as they are, many of these methods do not match the sensitivity and preci-

sion of the DAL method. Moreover, whereas most of them are considerably faster, the com-

plexity and cost of the instrumentation required for the analysis constitute a definitive barrier

for their routine implementation in many environments.

With this in mind, we revisit the idea of using optical density measurements as a simple

and inexpensive method for the detection and quantification of bacteriophages in all kind of

samples, at different levels of sensitivity and in remarkably short times. Although the decrease

in optical density caused by cell lysis was one of the first observable consequences of the effect

of viral infection of bacterial cultures, the potential of the method for the assessment of phage

abundance has never been fully exploited. In this work we carry out a detailed study calibrating

optical density kinetics as a function of both, phage abundance and concentration of the host

organisms. Our study determines the percentage of growth inhibition from integrated growth

curves and correlates this value to the amount of phage initially present in the sample. The

results are discussed in the context of their use in the design of simple and sensitive methods

for the monitoring of bacteriophages in industrial, clinical or environmental samples.

Materials and methods

Microorganisms and growth conditions

Escherichia coli DSMZ 613 (DSMZ, Germany) was grown overnight in Luria-Bertani (LB)

medium at 37 ˚C in an incubator shaker (100 rpm). The cultures were centrifuged at 4000 x g
for 10 min and resuspended in 1 mL of 0.1 M phosphate buffer (PB, pH = 7.2). Optical density

of the cell suspensions was measured at 600 nm using a Smartspec Plus spectrophotometer

(Bio-rad, California, USA) and diluted to the required concentration using 0.1 M PB. Bacterial

concentrations were determined by viable plate counts and expressed as colony forming unit

per mL (cfu/mL).
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Bacteriophage T4 was kindly provided by Dr. M. Llagostera from the Department of Genet-

ics and Microbiology of the Autonomous University of Barcelona. Phage lysates were prepared

following the protocol of Bonilla et al. [36] using E. coli as a host. 100 mL of an E. coli culture

growing in LB broth supplemented with CaCl2 (1 mM) and MgCl2 (1 mM) were infected with

100 μL of virus suspension. After achieving lysis, the culture was centrifuged at 4000 x g for 20

min. The supernatant was filtered through a 0.22 μm membrane cellulose acetate filter (What-

man) and further treated with chloroform to remove lipids. The resulting suspension was con-

centrated by ultrafiltration using Amicon Ultra-15 centrifuge tubes with a cutout size of 100

kDa. Additional endotoxin removal, prior to sample storage, was done using 1-octanol as

described by Szermer-Olearnik and Boratyński [37] followed by membrane dialysis in a Spec-

tra/Por Float-A-Lyzer G2 Dialysis Device with a MWCO of 3.5–5 kDa. The purified product

was stored in SM buffer [36] at 4 ˚C. Determination of virus concentration was performed by

counting plaque forming unit (pfu) using the double layer agar method described by Adams

[2]. Prior to their use, virus suspensions were diluted in LB to achieve the desired final

concentration.

Experimental design

Our objective was to characterize the optical density kinetics of different combinations of

phage/bacteria concentrations in order to assess to what extent kinetic measurements could

be used as a reliable indicator of the abundance of phage in a certain sample. Therefore, an

experiment was designed in which bacterial concentrations ranging from 105 to 5x108 cfu/

mL were tested in combination with concentrations of T4 phage ranging from 0 to 5x108

pfu/mL.

Overnight cultures of E. coli were centrifuged and the pellets resuspended in 0.1 mM PB to

achieve a concentration of 1010 cfu/mL. The resulting suspensions were subject to serial dilu-

tion in such a way that after mixing with the phage in LB medium the desired final concentra-

tion was obtained. In a similar way, stock lysates of T4 were serially diluted in LB medium in

order to achieve the desired concentrations. For each assay, 160 μL of LB were mixed with

20 μL phage solution, 20 μL of bacteria solution and 20μL of PB in transparent 96-well plates

(Thermo Scientific, Massachusetts, USA). The plates were incubated at 37 ˚C in a Varioskan

Flash plate reader (Thermo Scientific, Massachusetts, USA) and OD600 was recorded at regular

intervals. Samples, controls and blanks were always assayed as triplicates.

Analysis of the experimental data

The experimental design used provides an extensive set of data that has to be further processed

in order to carry out a proper interpretation of the results. For each bacteria concentration

used we calculated the Start Point of Detection (SPD) as the time required for the different

controls (bacteria without phages) to reach the threshold of detectable growth. We arbitrarily

defined this threshold as a growth rate of 0.002 OD units per min. For further calculations we

also defined the End Point of Detection (EPD) as a time corresponding to SPD + 120 min,

thus allocating a 2-hour window for the assay to develop (Fig 1).

Growth inhibition due to lysis

For each bacteria/phage combination, we integrated the area of the curve between the points

SPD and EPD. Numerical integration was carried out using the Euler method with the sam-

pling interval as the integration step. The integrated areas were used to calculate a percentage

of inhibition (PI) using the following formula based on the procedure described by Xie et al
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[11]:

PI ¼
ðAcontrol � AblankÞ � ðAphage � AblankÞ

ðAcontrol � AblankÞ
� 100 ð1Þ

in which Acontrol corresponds to the area of the curve of a control culture without phage inocu-

lation, Aphage corresponds to the area of the curve of a culture exposed to a certain phage con-

centration, and Ablank corresponds to the area of the baseline curve consisting only of culture

medium without either bacteria or phages (Fig 1). Simplification of Eq 1 yields:

PI ¼
Acontrol � Aphage

Acontrol � Ablank
� 100 ð2Þ

As a rule, in the absence of phage lysis, PI equals 0% and complete lysis gives a PI of 100%.

Intermediate results can be correlated to phage concentration for each bacterial concentration

used.

Probability of void samples

The probability of void samples (samples containing no phages) was calculated using the prob-

ability mass function of the Poisson distribution [38] expressed as follows:

P x ¼ Nð Þ ¼
ðc � VÞN � e� c�V

N!
ð3Þ

Where N is the number of phages expected (in this case 0), c is the concentration of phages in

Fig 1. Graphical representation of the procedure used to determine inhibition due to phage lysis in each

experiment. Optical density vs time curves of a control (●) and a phage-inoculated culture (�) were integrated and

subtracted. The difference, represented by the shaded area, indicates the extent of the inhibition. This area is expressed

as a percentage of the area of the control. In cases with little or no phage effect, the shaded area is very small and the

percentage of inhibition approaches 0%. In the most extreme cases the shaded area virtually coincides with the area of

the control, and the percentage of inhibition approaches 100%. In order to standardize all calculations, integration is

carried out between the Start Point of Detection (SPD) and End Point of Detection (EPD) as defined in the text.

https://doi.org/10.1371/journal.pone.0216292.g001
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the medium subject to sampling and V is the volume of the sample. For the specific case of

N = 0, Eq 3 can be simplified to:

Pðx ¼ 0Þ ¼ e� c�V ð4Þ

Results and discussion

In order to check the suitability of optical density measurements for the detection of low phage

concentrations we carried out a series of experiments in which different concentrations of bac-

teria (105, 5x105, 106, 5x106, 107, 2.5x107, 5x107, 108, 2.5x108 and 5x108 cfu/mL) were exposed

to different concentrations of phage (0, 5x101, 5x102, 5x103, 5x104, 5x105, 5x106, 5x107, and

5x108 pfu/mL). Each combination of phage/bacteria was incubated at 37 ˚C and optical density

at 600 nm was recorded at regular intervals. In total, 90 different combinations of bacteria/

phage concentrations were used. Representative results corresponding to three bacterial con-

centrations (108, 107 and 106 cfu/mL) have been represented in Fig 2. The remaining data can

be found in S1 Fig and S1 Dataset. Fig 2A shows the evolution of optical density over time for

a 108 cfu/mL E. coli culture exposed to different initial phage concentrations. As can be seen,

optical density of the control increased during the first 90 minutes until the culture reached

stationary phase. The effect of phage addition depended to a large extent on the concentration

of phage. Addition of 5x108 pfu/mL resulted in a very fast decrease in optical density: after

only 25–30 minutes, the culture was completely lysed and optical density had reached the level

of the blank. Lower phage concentrations, however, had a less pronounced effect. Thus, 107

pfu/mL gave rise to a small decrease in optical density during the first 30 minutes, followed by

a second decrease 30 minutes later that brought the culture down to blank levels. This stepwise

behavior is highly consistent with the expected kinetics of the lytic cycle for phage T4 which

has a latent period of 21 to 35 minutes [39]. With lower phage concentrations (106 and 105

pfu/mL) cultures grew to some extent before lysis was apparent. Specifically, at 106 pfu/mL

optical density started to decrease 90 minutes after the beginning of the experiment while at

105 pfu/mL this decrease was observed only after 120 minutes of incubation. Below 105 pfu/

mL (5x104, 5x103, 5x102 and 5x101 pfu/mL), phage addition had virtually no effect on the

kinetics of the culture and the increase in optical density was not much different from that

observed in the control.

When the same experiment was performed using a tenfold lower cell concentration (107

cfu/mL) (Fig 2B) the results were somewhat different. While in the 108 cfu/mL culture of Fig

2A optical density started to increase after only 15 minutes of incubation, in this case, OD

increase started 70 minutes after the beginning of the experiment. The control without phages

showed unrestricted growth which slowed down after 180 minutes. As before, addition of

phages had a clear impact on growth dynamics. Even very low amounts of phage (5x101 pfu/

mL) caused detectable cell lysis, with a decrease in OD starting at 190 minutes. Addition of

higher phage concentrations shortened the time required for the onset of detectable lysis. That

is, the time necessary to detect cell lysis at 5x102, 5x103, 5x104 and 5x105 pfu/mL was progres-

sively shortened from 190 to 133 minutes. A regular trend seems apparent when looking at

this data, in which the time required to reach the onset of lysis increased by roughly 20–25

minutes every time that phage concentration was decreased one order of magnitude. Cultures

containing phage concentrations above 5x105 pfu/mL did not grow and their OD remained

constant over time, indicating that bacterial populations lysed before having the chance to

reach detectable OD levels.

Finally, Fig 2C shows the kinetics of OD for a 106 cfu/ml E. coli culture exposed to the same

phage concentrations as above. In this case OD in the cultures only started to increase after

131 minutes. As in the other cases, the control without phages grew unrestricted, but the
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Fig 2. Evolution of optical density during time in cultures of E.coli exposed to different T4 phage concentrations.

Several bacteria concentrations: A) 108, B) 107 and C) 106 were tested against different phage concentrations: 5x108

(◇), 5x107 (◆), 5x106 (4), 5x105 (▲), 5x104 (□), 5x103 (■), 5x102 (�), 5x101 pfu/ml (●) and without phages (×). Error

bars represent the standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0216292.g002
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addition of as little as 5x101 pfu/mL at the beginning of the experiment resulted in the lysis of

the culture, with OD starting to decrease at 199 minutes. As before, higher phage concentra-

tions (5x102 and 5x103 cfu/mL) resulted in lower times to lysis (185 and 166 minutes). Increas-

ing phage concentration above these values resulted in very low or null increases in optical

density, once more indicating that the culture had been lysed before having the opportunity to

reach a detectable OD level.

Overall, comparison of the three graphs shows several facts: First, decreasing initial cell con-

centration results in progressively longer lag periods before growth and/or lysis can be

detected using optical density. In Fig 2A (108 cfu /mL) changes can already be observed 20

minutes after the start of the experiment. When 107 cfu/mL are used (Fig 2B) this lag extends

to 60 minutes. Use of 106 cfu/mL (Fig 2C) further extends this lag to 120 minutes.

In order to assess systematically the magnitude of this delay we recorded the time required

for the different controls to reach the threshold of detectable growth. We arbitrarily defined

this threshold as a growth rate of 0.002 OD units per min. This time, referred to as the Start

Point of Detection (SPD) has been plotted in Fig 3 for all the different conditions used, as a

function of initial bacterial concentration. As can be seen in Fig 3, the Start Point of Detection

decreases exponentially when increasing cell concentration. Thus, at the lowest cell concentra-

tion used (105 cells/mL), SPD is 200 minutes. This time decreases at a rate of 70 minutes per

log increase in cell concentration, down to approximately 20 minutes. In the same graph, the

End Point of Detection (EPD) has also been represented. As explained in the methods section,

EPD is calculated as SPD + 120 min and corresponds roughly to the time required to carry out

reliable phage detection at each bacterial concentration. EPD values range from a maximum of

5.5 h when using 105 cfu/mL, to 2h 15’ when using higher cell concentrations.

Fig 3. Representation of the Start Point of Detection (SPD) (�) and End Point of Detection (EPD) (●) as a

function of the concentration of bacteria used in the experiment. SPD is the time at which detectable growth

(defined as� 0.002 OD units per minute) starts. EPD is defined as SPD + 120 minutes, the time usually required to

carry out a reliable phage detection.

https://doi.org/10.1371/journal.pone.0216292.g003
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A second observation concerning the experiment presented in Fig 2 refers to the range of

phage concentrations that can be detected using each cell concentration. In general, the kinet-

ics of optical density show three types of behavior:

1. No lysis. No effect on growth. High bacterial concentrations combined with low phage

concentrations result in unrestricted growth that most of the times cannot be differentiated

from the growth kinetics of the control. This can be seen in Fig 2A when 108 cfu/mL are

exposed to 104, 103, 102 and 101 pfu/mL).

2. Complete lysis. No growth. Low bacterial concentrations combined with high phage con-

centrations display no detectable growth as the complete culture is lysed before optical den-

sity starts to increase. This behavior can be observed in Fig 2C, in which 106 cfu/mL

exposed to 106, 107 and 108 pfu/mL show virtually no growth.

3. Delayed lysis. A detectable increase in OD occurs, but after a certain time, which depends

on the concentration of phage, OD starts to decrease as a consequence of bacterial lysis.

This can be observed in Fig 2B (107 cfu/mL) when the culture is exposed to 101, 102, 103,

104 and 105 pfu/mL.

The type of behavior observed has been recorded for each of the 90 different combinations

of phage/bacteria assayed. The results are shown in Fig 4. Data have been encoded in such a

way that Complete Lysis is represented as a very small dot, No Lysis appears as a large size cir-

cle, and Delayed Lysis is shown as an intermediate sized circle. As can be seen in the right

hand side of the graph, cultures with high cell concentrations are not sensitive to low phage

numbers as the culture reaches stationary phase before the phage has had time to propagate

enough to cause detectable lysis. In opposition, on left hand side of the graph it can be

observed how low concentrations of bacteria are completely lysed by phage concentrations of

5x104 pfu/mL or higher. As a rule, decreasing initial cell concentration improves detection at

low phage titers, but there is a tradeoff. Use of low cell concentrations, as seen in Fig 3,

increases considerably the time required for the assay. In general terms, the best results for

phage detection were obtained with the use of 5x106 and 107 cfu/mL. In this concentration

range, delayed lysis was detected for samples containing only 50 pfu/mL with a short incuba-

tion between 2 and 3 hours.

In an attempt to make the assay quantitative, we used the procedure described in Materials

and Methods to calculated the % inhibition (PI) caused by the presence of phages in each sam-

ple. The results, corresponding to each bacterial concentration, are presented in Fig 5 as a

function of phage concentration. Fig 5 can be read as a set of calibration curves, each carried

out at a different concentration of bacteria. In general, high bacterial concentrations are only

sensitive to very high phage concentrations. At the same time, detection of low phage concen-

trations requires the use of low bacterial concentrations. To exemplify this, the calibration

obtained with 108 cfu/ mL provides a 3 log dynamic range between 5x105 and 5x108 pfu/mL.

In the case of the curve obtained using 107 cfu/mL, the dynamic range stretches 4 log between

5x102 and 5x106 pfu/mL. At 106 cfu/mL, the sensitivity range narrows again to 3 log but allows

detection of much lower phage concentration, between 5x101 and 5x104 pfu/mL.

Each of the points in the graph has been calculated from data of experiment carried out in

triplicate. For each set of replicates, variability was always low with relative standard errors

averaging 3.5% of the means. In order to see whether this experiments could be consistently

reproduced the measurements corresponding to 107 cells/mL were repeated three times at dif-

ferent dates using different inocula and different batches of culture medium and reagents. The

results of these experiments allowed the estimation of an independent standard error for the

measurements which has been included as a set of error bars for the 107 cells/mL curve. In
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most cases standard errors are between 1 and 3% of the mean and, therefore, error bars are

smaller than the symbols used in the graph. In two cases standard errors reach 4% of the mean

and can be actually be seen as error bars expanding beyond the symbol. Overall, our conclu-

sion is that the results are highly consistent and can be accurately reproduced in experiments

carried out independently.

On the other hand, the detection limit of the method is inherently tied to the small volumes

at which the assay is carried out. In a typical microplate assay, a working concentration of 50

pfu/mL (10 phages per microwell) in the microplate well requires taking 20 μL of a 500 pfu/

mL sample in a total volume of 200 μL of phage + bacterial culture. The probability under

these conditions of having a 20 μL sample containing zero phages, calculated using the proba-

bility mass function of the Poisson probability distribution (Material and methods, Eq 4), is

4.54x10-5 which means that only one out of approximately 22.000 samples will not contain

phages. Lowering down the concentration to 5 phages per mL in the microplate well would

require taking 20 μL of a 50 phage/μL sample in a total assay volume of 200 μL. Under these

conditions the probability of having samples with no phages increases considerably, up to

Fig 4. Lysis behavior of the different combinations of T4 and E. coli concentrations assayed. Large circles indicate the absence of lysis; small dots

indicate complete lysis right from the beginning of the experiment. Intermediate circles indicate the existence of delayed lysis, this is, significant

bacterial growth can be observed before the onset of lysis.

https://doi.org/10.1371/journal.pone.0216292.g004
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0.368. At this probability practically 1 of every 3 samples would come void decreasing consid-

erably the reliability of the assay.

Therefore, based on the design of the microplate assay and the volumes of sample involved,

this method is able to detect 50 phages corresponding to an actual concentration of 500

phages/mL in the original sample. The time required for the assay under this conditions is 3.5

hours at the most, but this time can be reduced considerably when attempting to detect higher

phage concentrations. Thus, detection of 108 phages/mL can carried out in only 45 minutes.

In order to compare the method described in this paper with methods previously described

in the literature, the performance of currently available methods, using nucleic acid detection,

immunoassay, electron microscopy, impedance, SPR or release of intracellular components,

has been summarized in Table 1. The sensitivity of these methods ranges across several orders

of magnitude. At the low sensitivity end of the spectrum, electron microscopy provides precise

quantification in a short time, but it requires high phage titers (� 107 phages/mL) to provide

reliable results. In addition, electron microscopy requires expensive equipment and highly

skilled personnel, while providing a very low analytical throughput. At the other end, the high-

est sensitivity is found in methods that measure the release of intracellular components (ATP,

ß-galactosidase, ß-glucuronidase) which allow the detection of 101 phages/mL with short pro-

tocols requiring 2–3 hours of assay. The remaining methods have limits of detection in the

102−103 phages/mL range with time-to-result between 1 and 6 hours. The assay proposed in

this paper fits in this middle segment. Using relatively simple equipment it is possible to detect

102 phages/mL in 3.5 hours, a time that can be shortened considerably at the expense of

increasing the limit of detection.

In this paper we do not describe a fully applicable method. The results obtained with our E.

coli/T4 model system cannot be directly extrapolated to other bacteria/phage systems. But we

establish a proof of concept that shows that kinetic-based methods can provide reliable phage

Fig 5. Percentage of inhibition as a function of phage concentration for different values of cell concentration.

5x108 (◇), 2.5x108 (◆), 108 (4), 5x107 (▲), 2.5x107 (□), 107 (■), 5x106 (�), 106 (●), 5x105 (5), 105 cfu/ml (▼).

Percentages of inhibition were calculated as described in Materials and Methods.

https://doi.org/10.1371/journal.pone.0216292.g005
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detection and quantification in a reasonably short period of time. The paper also describes a

methodology backed up by a very extensive data set, that can be used as a solid framework for

the development of solutions to specific problems. Development of methods for the detection

of phage levels in food preservation applications or in phage therapy, or detection of phages in

industrial or environmental applications would demand an extensive full-fledged study requir-

ing careful standardization, a characterization of the effect of the analytical matrix and taking

into account the kinetics of the particular phage/host system that was beyond the scope of our

work. The approach we propose is not devoid of problems. Samples containing toxic com-

pounds might show inhibition in the absence of phages thus leading to false positive readings.

Also, the samples could contain heterogeneous phage populations with very different infection

kinetics, thus precluding accurate calibration and quantitative use, relegating the assay to a

qualitative detection method. The effect of toxicity can be addressed, if required, by separately

assessing toxicity or including phage-resistant organisms as controls. All of this elements, as

mentioned above, are part of a specific method development and should be taken into account

for each specific application.

In summary, this study presents a model based on the measurement of OD kinetics for

phage enumeration and detection, using simple and inexpensive equipment. Although it uses

non-sophisticated technology it has shown sensitivity and response time comparable to other

high-end methods. Due to the simplicity of the technology and of the analytical steps involved,

we anticipate that the system is susceptible of miniaturization and automation for high-

throughput applications.

Supporting information

S1 Fig. Evolution of optical density during time in cultures of E.coli exposed to different

T4 phage concentrations. Several bacteria concentrations: A) 5x108, B) 2.5,108, C) 108, D)

5x107, E) 2.5x107 F) 107 G) 5x106, H) 106, I) 5x105 and J) 105 were tested against different

phage concentrations: 5x108 (◇), 5x107 (◆), 5x106 (4), 5x105 (▲), 5x104 (□), 5x103 (■),

5x102 (�), 5x101 pfu/ml (●) and without phages (×). Error bars represent the standard devia-

tion (n = 3).

(TIF)

Table 1. Sensitivity, expressed as the limit of detection, and time required for detection, in different methods currently available for phage detection.

Method Limit of detection (pfu/mL) Time to detection (h) Reference

OD kinetics 102 0.75–3.5 this work

Surface Plasmon Resonance (SPR) 102 3 [33]

Impendance measurements 102 6 [35]

ß-glucuronidase release 101 2.5 [13]

ß-galactosidase release 101 2.5 [31]

ATP release 101 3 [32]

DNA—qPCR 102 2 [22]

DNA—qLAMP 103 1 [40]

DNA—PCR 103 4 [21]

Antibodies—Paper based ELISA 103 2 [25]

Antibodies—Carbon nanotubes 103 1 [41]

Fluorescence microscopy 102 1 [30]

Transmission electron microscopy 107 1 [42]

https://doi.org/10.1371/journal.pone.0216292.t001
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S1 Dataset. Contains the optical density (OD) vs time data corresponding to 90 different

phage/bacteria combinations. Data have been used to build the graphs in Supplemental S1

Fig. A subset of the data has been used for Fig 2 of the paper.

(XLSX)
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