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Abstract

We theoretically study the effects of non-monotonic response curves in genetic auto-regula-

tion by exploring the possible dynamical behaviors for such systems. Our motivation is

twofold: we aim at conceiving the simplest genetic circuits for synthetic biology and at under-

standing the natural auto-regulation of the LrpB protein of the Sulfolobus solfataricus

archaeon which exhibits non-monotonicity. We analyzed three toy models, based on mass-

action kinetics, with increasing complexity and sought for oscillations and (fast) bistable

switching. We performed large parameter scans and sensitivity analyses, and quantified the

quality of the oscillators and switches by computing relative volumes in parameter space

reproducing the sought dynamical behavior. All single gene systems need finely tuned

parameters in order to oscillate, but bistable switches are more robust against parameter

changes. We expected non-monotonic switches to be faster than monotonic ones, however

solutions combining both auto-activation and repression in the physiological range to obtain

fast switches are scarce. Our analysis shows that the Ss-LrpB system can not provide a bis-

table switch and that robust oscillations are unlikely. Gillespie simulations suggest that the

function of the natural Ss-LrpB system is sensing via a spiking behavior, which is in line with

the fact that this protein has a metabolic regulatory function and binds to a ligand.

Introduction

Synthetic biology aims at building an extended toolbox of elementary genetic circuits and effi-

cient designs for assembling them. These building blocks are inspired by electronics. The bio-

logical equivalent of many circuits have been built for timekeeping, electronic memory

storage, toggle switches, oscillators, cascades, pulse generators, time-delayed circuits, spatial

patterning and logic gate behavior [1–6]. In order to construct predictable complex circuits,

each building block must itself be predictable. In this work, we searched for the simplest

genetic networks consisting of a single gene that produce, at the deterministic level, a dynam-

ical behavior other than a stable steady state, i.e. oscillations or bistable switching. We also

assessed the importance of molecular noise by performing Gillespie simulations. Our
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motivation is twofold. First, conceiving the simplest building blocks with only one gene is of

interest to synthetic biology as it can potentially reduce undesired interference with other

modules and facilitate the construction of complex circuits based on orthogonal compounds.

Second, we want to understand the possible functions that can be fulfilled by single gene cir-

cuits. We are in particular interested in the function of the protein Ss-LrpB in the archaeon

Sulfolobus solfataricus, both in the natural context and for its potential utility to develop simple

building blocks for synthetic biology with Archaea, a territory almost unexplored. The rele-

vance of non-monotonic regulation is broader than the Ss-LrpB system and is of importance

for instance for toxin-antitoxin systems [7, 8].

Ss-LrpB is a protein forming dimers that regulates positively or negatively its own produc-

tion via binding to three sites in front of the promoter. This system can be considered as a one

gene mixed feedback loop: at low concentrations the protein activates itself, and at high con-

centrations it represses its own production [9]. We wonder what could be the role of such a

complicated gene architecture, and under which circumstances this non-monotonic auto-reg-

ulation generates oscillations, bistability, bursting behavior or simply leads to a steady state.

Since the Ss-LrpB protein has a metabolic regulatory function and binds to a ligand, we formu-

lated two hypothetic dynamical behaviors relevant for sensing. Oscillations can provide a sens-

ing mechanism which measures the input signal at regular time intervals. Alternatively,

bistability of this protein could provide a switch to maintain a high concentration of Ss-LrpB

when the ligand is present (absent) and low concentration of the protein otherwise.

It is well known that bistability can be obtained through auto-activation, while auto-repres-

sion is known to speed up the reaction time [10]. We hypothesize that the dual feedback can

result in a faster switch, see Fig 1B. In order to go from one steady state to the other an external

trigger needs to decrease/increase the concentration past the intermediate unstable state.

Although this switch is reversible, the main advantage of the mixed feedback is the time gain

to switch from the intermediate state to the high steady state. Fast switching provides increased

fitness at the individual level, contrarily to the bet-hedging strategy operating at the population

level. Notice that bet-hedging also relies on a bistable switch, however the switching is stochas-

tic [11]. Another hypothesis for the Ss-LrpB dynamics is related to the possibility that the

threshold concentration of the protein needed to sense the presence of the ligand is too high to

be maintained in steady-state. Oscillatory dynamics or irregular spiking can produce a high

enough concentration only at certain time intervals, thereby possibly reducing the burden on

the cell. Noise could also be useful to facilitate the evolution of gene regulation [12]. Like nega-

tive feedback, non-monotonic mixed feedback can give rise to oscillations when combined

with implicit delay (Fig 1A).

The broader question we addressed in this work is: what are the possible dynamical behav-

iors for single gene circuits? More specifically, we considered deterministic models consisting

of ordinary differential equations (ODEs) based on mass-action kinetics and without explicit

time delays, similarly to [13] where slow DNA unbinding kinetics promotes oscillations. Intro-

ducing explicit time delays can lead to oscillations or even chaotic behavior, as is the case for

Mackey-Glass systems [14]. However they are not considered here because we are mainly

interested in prokaryotes. For these organisms, time delays necessary to generate oscillations

are typically 5 to 20 minutes which is considerably longer than the time to transcribe and

translate a gene, even if in some cases delay-induced degrade-and-fire oscillations can be

obtained for delays as short as 3 to 5 minutes [15]. The Ss-LrpB protein which inspired this

work is a small protein and is expected to be produced rapidly (more details in Section

Dynamics of the Ss-LrpB natural system). Implicit time delays can be provided by positive

feedback [16].

Non-monotonic auto-regulation in single gene circuits
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In order to produce nonlinearities and negative feedback, which are crucial for oscillations

without explicit time delays and to obtain interesting dynamics in general, we only allowed for

dimerization and multiple binding sites. We did not include phenomenologically high Hill

coefficients to obtain oscillations such as in the famous Goodwin model. This single gene oscil-

lator without explicit time delay describes oscillatory dynamics with only three variables and

only one source of nonlinearity, a Hill function. The Hill coefficient needs to be considerably

high (n> 8) in order to obtain sustained oscillations through a Hopf bifurcation [17]. Similar

limit-cycle oscillations can be obtained by fast phosphorylation and dephosphorylation of the

protein [18].

To seek for minimal requirements to generate oscillations or a fast bistable switch based on

a single gene with multiple binding sites and dimerization only, we considered toy models of

increasing complexity. We first considered a single binding site. In that case, a monomer is

known to be insufficient to generate oscillations without explicit delay, we therefore allowed

for dimerization. The protein can bind to the binding site in both its monomeric and dimeric

form and the binding site occupancy determines the up- or down-regulation of the transcrip-

tion rate. We call this system the monomer dimer system (MDS). This network was based on

the theoretical monomer dimer oscillator of which van Dorp discovered its oscillatory poten-

tial [19]. He considered the case of transcriptional repression by the dimer and activation by

the monomer, which is a simple conceptual analog of the complete Ss-LrpB system as it is

based on positive and negative feedback provided by a single gene. To our knowledge, this

Fig 1. Conceptual representation of the two hypotheses. (A) Oscillations: a non-monotonic response curve, together

with implicit delay can give rise to oscillatory behavior. A non-monotonic response, i.e. the mRNA production is non-

monotonic with respect to the protein concentration (m), results in a non-monotonic nullcline (dmRNA/dt = 0). With

sufficient delay (implicit or explicit), the steady state which is the intersection of both nullclines (dm/dt = 0 and

dmRNA/dt = 0) becomes unstable and the time series becomes a clockwise oscillation in the phase plane. The grey

arrows denote local velocities under the assumption of quasi steady state for the remaining variables, i.e. the DNA

states and dimer concentration. (B) A fast bistable switch: Steady state is obtained when the production rate (feedback)

and removal rate (degradation/dilution) are equal. For concentrations where the feedback is bigger than the

degradation/dilution, the concentration will increase, for concentrations where the feedback is smaller than the

degradation/dilution, the concentration will decrease. Positive feedback can lead to bistability, i.e. there is a low (L) and

high stable steady state (H), the intermediate state (I) is unstable. Because the instantaneous speed of the reaction is the

difference of the response function and the degradation/dilution, the induction time to the steady state (H) will be

smaller for systems with negative feedback than for systems with no feedback. Similarly, mixed feedback can speed up

the induction time of a bistable switch, i.e. the time it takes to go from the unstable intermediate state I to the stable

high steady stateH.

https://doi.org/10.1371/journal.pone.0216089.g001
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monomer dimer oscillator has not yet been observed in nature. We explored next the two-

dimer (2DS) model which can be regulated only in dimeric form but by binding to two sepa-

rate binding sites. If auto-activation occurs when one dimer is bound and auto-repression

when two dimers are bound, we again obtain a simplification of the three binding site Ss-LrpB

system. For prokaryotic transcription factors, dimers are generally more stable than their

respective monomers. Therefore we expect that a synthetic implementation of this regulatory

network in prokaryotes will be easier than an implementation of the monomer dimer system.

Finally, we turned to systems with three binding sites with regulations inspired by the Ss-LrpB

system (3DS) and analyzed their ability to generate oscillations, bursty behavior, or function as

bistable switches. Fig 2 illustrates the questions we addressed together with our strategy to

tackle them.

The paper is organized as follows, we first present our toys models, the MDS, 2DS and 3DS.

We then explain our search strategy for oscillators and bistable switches. The results of these

explorations in high dimensional parameter spaces are presented for each toy model, first on

the oscillatory dynamics and then on the ability to serve as a fast bistable switch. We conclude

by a discussion about the natural Ss-LrpB system, both at the deterministic and stochastic

level.

Materials and methods

Toy models

We considered three families of toy models of increasing complexity which are based on mass-

action kinetics. A set of ODEs describes the time derivatives of the concentrations of the differ-

ent variables (DNA, mRNA and proteins). These concentrations are expressed in number per

cell (instead of mol per liter), but can be fractional, for example a concentration of 1 nM in a

cell of 4 fL corresponds to 2.4 molecules per cell. Expression in number per cell facilitates the

comparison of deterministic and stochastic simulations. An overview of the physiological

ranges of the parameters we selected based on literature for our models is provided in Table B

in S1 Appendix. All python codes used in this work are available on github.

Fig 2. Theory, dynamics and implementation of non-monotonic response curves. Non-monotonic response curves

with a maximum can lead to different types of dynamics such as bistability and oscillations. The most simple one gene

implementations for such a non-monotonic response are the monomer dimer system (MDS) and multi dimer systems

(details in Materials and methods).

https://doi.org/10.1371/journal.pone.0216089.g002
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Monomer dimer system (MDS). The MDS is a single gene system consisting of a protein

that can regulate its production via one binding site in the regulatory region, both in its mono-

meric and dimeric versions. When the transcriptional fold changes fi (either activating, fi> 1,

or repressing fi< 1) of DNA bound by a monomer or dimer(s) are suitably chosen, a non-

monotonic response curve can be obtained. Using mass-action kinetics, this system can be

described by a deterministic model of five ODEs and 13 parameters (we refer to S1 Appendix

for details, and a list of parameters is given in Table 1). It was first discovered by van Dorp that

the MDS can oscillate [19]. However no wide search for oscillating parameter regions had

been performed.

Two dimer system (2DS). The two dimer system (2DS) we propose is again a self-regula-

tory gene, i.e. the gene transcribes for a protein which in dimer-form is the transcription factor

of this gene. The regulatory region of the gene contains two binding sites for the transcription

factor. When choosing adequately the activation/repression folds for all DNA configurations,

non-monotonic curves can be obtained. A possible design to implement a promoter with a

non-monotonic response synthetically is the following: when placing the first binding site for

an activating transcription factor before and one binding site after the initiation site for tran-

scription the former will activate transcription and the latter will repress transcription by steric

hindrance. The deterministic model of the 2DS is slightly larger than the MDS model and has

six ODEs and 16 parameters (details in Section A.2 of S1 Appendix).

Three dimer system (3DS). The last system we considered is the three dimer system

(3DS), a three binding site version of the 2DS. This system can describe Ss-LrpB auto-regula-

tion without modeling the DNA loop. It is described by ten ODEs and 28 parameters (details

in Section A.3 of S1 Appendix).

Table 1. Overview of all variables and all parameters of the different models.

variable dimension

DNAi number per

cell

concentration of DNA with no bound proteins (i = 0), one bound monomer (i =m), one

bound dimer (i = d) or dimers bound to site(s) i (i 2 {1, 2, 3})

mRNA number per

cell

mRNA concentration

m number per

cell

monomer concentration

d number per

cell

dimer concentration

kbi min−1 binding rate of monomer (i =m), dimer (i = d) or dimer to site i (i 2 {1, 2, 3})

kui min−1 unbinding rate of monomer (i =m), dimer (i = d) or dimer to site i (i 2 1, 2, 3)

Ki min−1 binding constant of monomer (i =m), dimer (i = d) or dimer to site i (i 2 1, 2, 3), Ki =

kbi/kui
ϕ0 min−1 transcription rate

fi n.a. transcriptional fold change when monomer (i =m) or dimer (i = d) is bound or dimers

are bound to site(s) i (i 2 {1, 2, 3}) with respect to no protein bound to the DNA

β min−1 translation rate

γi min−1 degradation rate of monomer (i =m), dimer (i = d) or mRNA (i = mRNA)

αass min−1 association rate of monomers to dimers

αdiss min−1 dissociation rate of dimers to monomers

cob,uij(k) n.a. cooperativity factor for binding (b) or unbinding (u) between sites i and j (and k) (i, j, k 2
{1, 2, 3})

ωij(k) n.a. cooperativity factor between sites i and j (and k) (i, j, k 2 {1, 2, 3}) ωij(k) = cobij(k)/couij(k)

https://doi.org/10.1371/journal.pone.0216089.t001
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(Non-)monotonicity types

To analyze our results we made a division between different types of (non-)monotonicity.

Response curves can be classified into monotonic and non-monotonic curves. We further-

more divided the non-monotic class in curves with one maximum (type 1), curves with one

minimum (type 2) and curves with both a minimum and a maximum (type 3), see Fig 3.

Search for single gene oscillators

To generate oscillations, the following four requirements need to be met: negative feedback,

nonlinearity, proper balance of timescales and time delay [20]. The latter can be inserted

explicitly in the model to account for instance for the time of transcription, translation, splic-

ing, transportation between nucleus and cytoplasm or implicitly by modeling intermediate

states such as phosphorylation processes or via positive feedback. Although explicit transcrip-

tional delay can transform stable gene networks into oscillators [21–24], we focused as men-

tioned above on single gene oscillators that generate oscillations in the absence of explicit time
delay.

Given the large number of parameters in all our models, we performed a random search

through parameter space to seek for oscillations. We focused on oscillations that arise through

aHopf bifurcation. In practice, we look for systems which have one fixed point whose eigenval-

ues have a nonzero imaginary part and a positive real part while all other fixed points have

eigenvalues with negative real parts. We do not consider more complex solutions with multiple

fixed points whose eigenvalues have a positive real part, which results in the coexistence of

both a locally stable steady state and locally stable oscillations. Subsequently, we imposed phys-

ical selection criteria. Given the maximum value max(x) and the amplitude A(x) = max(x) −
min(x) of the oscillation of variable x (mRNA for the mRNA copy number, m for the mono-

mer copy number and d for the dimer copy number), we require that

max ðmRNAÞ < 20; AðmRNAÞ > 1; AðmRNAÞ > max ðmRNAÞ=3;

max ðmÞ < 5000; AðmÞ > 1; AðmÞ > max ðmÞ=3;

max ðdÞ < 5000; AðdÞ > 10 and AðdÞ > max ðdÞ=3:

ð1Þ

The criteria on the maxima ensure that the copy number of mRNA remains low enough

and that the copy numbers of the protein stay within their physiological bounds. For determin-

istic oscillations to be robust against molecular noise, we suspect that the changes in copy

number of the mRNA and proteins in the deterministic model must be at least comparable to

one copy number. We even set the lower limit on the amplitude to 10 for the dimer count, to

obtain significant oscillations. The last criterion forces the oscillation amplitudes to be high

enough with respect to the maximum values in order to distinguish the oscillation from the

stochastic noise.

Fig 3. Classification of (non-)monotonic curves.

https://doi.org/10.1371/journal.pone.0216089.g003
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For every solution we performed a bifurcation analysis to assess the stability of the oscil-

latory behavior against parameter changes. We defined a logarithmic parameter volume V of a

solution s,

VðsÞ ¼
Y

p

log 10

prðsÞ
plðsÞ

� �

; ð2Þ

where the product is over all p parameters, and pl(s) and pr(s) are the left and right bifurcation

points of this parameter for solution s (the latter are set equal to the borders of the physiologi-

cal ranges when the bifurcation point exceeds these). This volume is used to estimate the cov-

erage of parameter space of our random scan, and the relative volume taken by oscillatory

solutions. The logarithm of the values is chosen over the values themselves as fold differences

are more important in biology than absolute differences.

Search for single gene bistable switches

To find bistable switches, we seek for dynamical systems with three fixed points: a low concen-

tration stable fixed point L, an intermediate unstable fixed point I and a high concentration

steady stateH. The dynamics of a dimeric protein is regulated by four key processes: produc-

tion, degradation/dilution, dimerization and dimer dissociation. In our three toy models, the

time evolution of the monomer concentration is given by the following ODE, with aforemen-

tioned processes in order:

dm
dt
¼
bDNAtot�0f ðm; dÞ

gmRNA
� gmm � 2aassm

2 þ 2adissd: ð3Þ

This equation is obtained by assuming quasi steady state for the DNA configurations, a

more elaborate derivation of this equation can be found in Section D of S1 Appendix.

Using the quasi-steady state approximation for the dimer concentration, d ¼ aass
adissþgd

m2 and

assuming the dissociation rate of the dimer is much faster than degradation rate of the dimer

(γd� αdiss), the last two terms of Eq 3 cancel out and the time derivative of the monomer con-

centration is proportional to the difference of the transcription and degradation term,

dm
dt
/ f d mð Þð Þ � gm; ð4Þ

with g ¼ gmgmRNAb
� 1DNA� 1

tot�
� 1

0
. Bistability arises when three positive values exist form such

that dm/dt vanishes (dm/dt = 0), i.e. the feedback term f(d(m)) and the degradation term γm
are equal (Fig 1B). The shape of the transcription function f and number of parameters

involved depend on the specific system considered. Those functions are given here under

together with the ranges of the grid over which we performed a parameter scan. More details

can be found in Section D of S1 Appendix.

MDS. In the quasi-steady state approximation, the transcription function can be written as

fMDSðmÞ ¼
fdKd

�m2 þ fmKmmþ 1

K�dm2 þ Kmmþ 1
ð5Þ

with K�d ¼ Kd
aass

adissþgd
. There are only four parameters in this equation. We performed a

Non-monotonic auto-regulation in single gene circuits
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scan over these parameters in the following ranges:

fd : 10� 3 ! 102; K�d : 10� 10 ! 103;

fm : 10� 3 ! 102 and Km : 10� 7 ! 103

with 30 values logarithmically spaced for every range.

2DS. For a two dimer model the transcription function can be written as

f2DSðdÞ ¼
Ad2 þ Bdþ 1

Cd2 þ Ddþ 1
ð6Þ

with

C ¼ Kd1Kd2o; A ¼ f12C;

D ¼ Kd1 þ Kd2 and B ¼ f1Kd1 þ f2Kd2:

We perform a scan over parameter space analogously to the MDS case but adapting

ranges to the combined variables:

D : 2 � 10� 4 ! 2 � 104; B : 10� 3D! 102D;

C : 0:05=2010� 4ðD � 10� 4Þ ! 20=0:05ðD=2Þ
2 and A : 10� 3C! 102C

with 20 values logarithmically spaced for every range.

3DS. For a system with three binding sites, the transcription function can be written as

f3DSðdÞ ¼
Ad3 þ Bd2 þ Cdþ 1

Dd3 þ Ed2 þ Fdþ 1
ð7Þ

with

D ¼ Kd1Kd2Kd3o12o13o23o123 A ¼ f123D;

E ¼ Kd1Kd2o12 þ Kd1Kd3o13 þ Kd2Kd3o23 B ¼ f12Kd1Kd2o12 þ f13Kd1Kd3o13

F ¼ Kd1 þ Kd2 þ Kd3 þ f23Kd2Kd3o23;

C ¼ f1Kd1 þ f2Kd2 þ f3Kd3:

and an analogous scan was performed with 8 values logarithmically spaced for every

range.

When performing the scan on the grids defined above, we imposed physical constraints:

ðaÞ I � L � 10;

ðbÞ 500 < H < 600 and

ðcÞ I < 100

ð8Þ

where constraint (a) prohibits the lower state L and the intermediate state I from lying too

close together to avoid stochastic noise to switch constantly between these states, constraint

(b) fixes an interval for the high steady stateH because the induction time depends on the level

of this state, and constraint (c) prohibits the intermediate state I from being too high.

If the system is bistable, we can calculate the time to reach the high steady state when start-

ing from the intermediate one. In the reduced system (Eq 4), the time it takes for the system to

go from the unstable intermediate I to the stable high steady stateH is proportional to the

Non-monotonic auto-regulation in single gene circuits
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following expression

~Dt /
Z H

I

dm
f ðdðmÞÞ � gm

: ð9Þ

Although this is the time obtained for the reduced system using the quasi-steady state

assumption for the dimer and DNA concentrations, it provides a good estimate for the time

obtained from the complete system. For every set of parameters that dictate the response curve

f in the scan, we choose the last remaining free parameter γ such that the approximated induc-

tion time ~Dt is minimized. Then we compute the induction time by doing a deterministic sim-

ulation (details in Section D.2 of S1 Appendix).

Results

Single gene oscillators

For the MDS very few oscillating solutions were found. Out of 2.4 � 108 searched parameter

sets, only 18 met the conditions for a Hopf bifurcation. Moreover, parameters of these oscil-

latory solutions need to be finely tuned, which is consistent with the fact that we found only

very few solutions. The mean and mean logarithmic range for the different parameters are rep-

resented in Fig 4A. More detailed figures of the distribution of the ranges for the different

parameters can be found in S1 Appendix. Oscillators with finely tuned parameters are not

expected to be realistic due to the unavoidable noise in cellular processes. Moreover, when the

system oscillates, the amplitudes of oscillations are typically very small. Amplitudes of oscilla-

tions of the monomer versus dimer are represented in Fig 5. We conclude therefore that the

MDS cannot provide a realistic genetic oscillator. For the 2DS more oscillating solutions can

be found. However they are still very rare. Out of the 2.4 � 108 examined sets 1894 were oscillat-

ing and only 170 meet the selection criteria (Eq 1). Around 58% of the solutions are non-

monotonic. Oscillatory parameter ranges are considerably wider than in the MDS case, as

illustrated in Fig 4.

Even more solutions can be found for the 3DS: 2999 out of 0.8 � 108 parameter sets have a

Hopf bifurcation. 291 solutions remain after imposing the selection criteria. 56% of the solu-

tions are non-monotonic. For oscillating solutions the monomer copy number is most often

higher than the dimer copy number, this is the case for all toy models (Fig 5).

The results of our random scans are summarized in Table 2. To quantify the likelihood of a

model to provide oscillatory solutions, we computed the logarithmic parameter volume of the

scanned parameter space (definition by Eq 2), the mean volume of the found oscillatory solu-

tions and the estimated relative volume of the found oscillatory solutions as a proxy for the

capacity of the model to generate oscillations. It needs to be mentioned that the distribution of

the logarithmic volumes of the different found oscillatory solutions is non-Gaussian (more

details in Fig E of S1 Appendix). The ratio of the total logarithmic volume of parameter space

to the mean logarithmic parameter volume of an oscillating region gives an estimate of the

number of parameter sets that needs to be studied. Except for the MDS, where the amount is

orders of magnitude higher than what is computationally manageable, the number of studied

sets is in the same order of magnitude as this ratio. Considering the relative oscillating vol-

umes, we conclude that it is 5 times more likely to find an oscillatory solution in the 3DS

model than in the 2DS model, and 100 times more like to find an oscillatory solution in the

2DS model than in the MDS model.
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Bistable switches

Our results show that the typical bistable switches are monotonically increasing or non-mono-

tonic of type 2 for the MDS and 2DS, while for the 3DS all types of (non-)monotonicity are

possible (Table 2). In Fig G in S1 Appendix the regions within parameter space providing bis-

table switches for the different systems are represented. For 2DS and 3DS, a large proportion

of parameter space leads to bistability while the MDS needs to be finely tuned to provide

this dynamical property. To assess the potential of the different models to provide bistable

switches, we represented the relative logarithmic parameter volume in parameter space which

they occupy (Table 2). The proportion of parameter space occupied by bistable switches clearly

increases considerably from MDS to 2DS and from 2DS to 3DS. The complexity of the model

increases its ability to provide switches. We also investigated the type of non-monotonicity

Fig 4. Oscillatory solutions for the different toy models. The shaded region represents the physiological range. The

black and gray lines represent the mean oscillatory ranges for the different parameters. The axis is logarithmically

scaled, the length of the lines thus represent fold ratios. The line for each parameter is scaled according to the

physiological range of this parameter. Ranges are very small for the MDS and become wider for the 2DS and 3DS.

https://doi.org/10.1371/journal.pone.0216089.g004
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favoring bistability. For the simpler MDS and 2DS, bistability can be obtained more easily with

a monotonic or non-monotonic type 2 response curve, for the more complex 3DS, other non-

monotonic types can also lead to bistability. Performing bifurcation analysis also shows that

the parameter ranges providing bistability becomes larger for 3DS with respect to 2DS and

MDS (details in Section D.3 of S1 Appendix). The fastest responses are found for non-mono-

tonic type 1 curves as expected (Fig 6D), but only a small selection of the solutions is faster

than any monotonic curve. The speed advantage of the non-monotonicity is thus only effective

when in the most optimized case. For most of the non-monotonic solutions, a monotonic

solution can be found that is as fast as the considered non-monotonic one (Fig 6C).

Discussion about the dynamics of the Ss-LrpB natural system

We conclude by a discussion on the possible dynamical behavior of the leucine responsive pro-

tein B of the archaeon Sulfolobus solfataricus (Ss-LrpB). This protein regulates itself in a unique

way. The regulation site of this protein contains three binding sites to which the protein can

bind in dimeric form. The outer sites of this regulation site have the highest affinity and will be

occupied before the middle site [25]. Experimental results suggest that transcription is acti-

vated when one or both outer sites are occupied. Due to cooperativity the middle site gets

bound when the outer sites are occupied and subsequently, DNA undergoes a conformational

change and loops on itself. In this configuration the transcription is repressed [9]. The mecha-

nism of unlooping is unknown. Possible manners include unlooping when the proteins in the

loop are degraded [26] or via faster direct unlooping [27]. Both paths are denoted by dashed

arrows in Fig 7. The temporal evolution of this system has not yet been observed experimen-

tally, and most parameters have not been measured. As mentioned above, one hypothesis is

that the Ss-LrpB system is a (possibly bursty) oscillator.

This system contains all necessary elements for oscillations: (1) negative feedback loop by

the auto-repression in the state where all dimers are bound, (2) nonlinearities are provided by

dimerization, cooperative binding [28], and (3) delay by modeling the intermediate states of

Fig 5. Amplitudes of oscillation in the monomer (m)—dimer (d) plane for the different toy models. The dashed

line represents same copy number of monomer and dimer. Oscillations for the MDS are small: the dimer copy number

does not exceed 50. The copy number of the monomer is higher than the copy number of the dimer for the majority of

the solutions for all systems, contrarily to what is observed in prokaryotic systems in nature.

https://doi.org/10.1371/journal.pone.0216089.g005
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the DNA. The sequence of gene Ss-LrpB is only 468nt long (data from KEGG library [29–31])

and with a transcription rate of minimum 40-80nt/s [32], the transcriptional delay would only

be in the order of a couple of seconds. Translation goes equally fast at a rate of at least 20aa/s

[32]. Because the Ss-LrpB protein only contains 155aa (data from KEGG library [29–31]) and

transcription and translation are coupled in prokaryotes, the total delay due to transcription

and translation remains in the order of several seconds. This motivated us to not include an

explicit time delay. Furthermore, it was put forward by Novak and Tyson [20] that positive

feedback can be used to add implicit delay to a negative-feedback system. The fourth element

–balanced time-scales– can be obtained by fine tuning the parameters.

To find oscillatory behavior, we performed the same analysis for the Ss-LrpB system as for

the 3DSs but with parameters fixed to their experimental values when known (see Section E of

S1 Appendix). Furthermore it is imposed that the response is non-monotonic of type 1 and

that the maximum of the response curve is at least twice the basal response and the minimum

at most half the basal rate in accordance to the experimental response curve [9]. We found that

some parameters, such as the degradation rates γm and γmRNA, need to be finely tuned for

oscillations. The sensitivity of each parameter is represented in Fig 4. And, as for general 3DS,

Table 2. Summary of the search for oscillations and the scan for bistability.

Type MDS 2DS 3DS SsLrpB

Number of parameters 13 16 28 21

Logarithmic volume of parameter space 2 � 107 2 � 109 1016 3 � 1011

Oscillations

Number of random sets 2.4 � 108 2.4 � 108 0.8 � 108 0.8 � 108

Hopf solutions (meeting selection criteria) M 16 (2) 789 (9) 1322 (36) -

N1 0 (0) 1103

(161)

973 (171) 2294

(1158)

N2 2 (0) 2 (0) 379 (19) -

N3 0 (0) 0 (0) 325 (65) -

T 18 (2) 1894

(170)

2999

(291)

2294

(1158)

Mean logarithmic volume of oscillating region (Eq 2) M 5.4 � 10−9 4.4 � 100 4.8 � 107 -

N1 - 3.1 � 100 4.8 � 106 8.4 � 102

N2 3.4 �

10−10
1.8 � 10−3 2.6 � 107 -

N3 - - 2.4 � 106 -

T 4.8 � 10−9 3.6 � 100 2.3 � 107 8.4 � 102

Ratio of the total logarithmic volume of parameter space to the mean logarithmic volume of an

oscillating region

5 � 1015 6 � 108 4 � 108 4 � 108

Total relative oscillating volume 7.5 � 10−8 7.9 � 10−6 3.7 � 10−5 2.8 � 10−5

Bistability

Number of sets 8.1 � 105 1.6 � 105 2.6 � 105 2.6 � 106

Bistable solutions M 4474 2334 6101 -

N1 0 0 789 0

N2 76 1195 2336 -

N3 0 0 434 -

T 4550 3529 9660 0

Total relative bistable volume 5.6 � 10−3 2.2 � 10−2 3.7 � 10−2 0

M: monotonic, N1: non-monotonic type 1, N2: non-monotonic type 2, N3: non-monotonic type 3, T: total (M + N1 + N2 + N3)

https://doi.org/10.1371/journal.pone.0216089.t002
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many solutions have higher monomer copy numbers than dimer copy numbers (Fig 5). We

conclude that the relative volume in parameter space leading to an oscillatory behavior is very

small, 2.8 10−5. It is therefore highly unlikely that the natural Ss-LrpB system shows oscillatory

behavior.

To assess the role of noise in oscillatory systems, we selected two solutions which are com-

patible with the measured response curve of Ss-LrpB and performed stochastic simulations.

Fig 6. Distribution of induction times for the different toy models. For the MDS and 2DS no bistable non-

monotonic type 1 solutions were found. For the 3DS many bistable solutions are found and the lowest inductions

times are found for non-monotonic type 1 as we expected (panel D). Non-monotonic responses are not in general

faster than monotonic responses (panel C): the induction time depends on the actual shape of the response curve and

therefore on the parameters.

https://doi.org/10.1371/journal.pone.0216089.g006

Fig 7. Schematic of the Ss-LrpB system. Ss-LrpB is a dimeric auto-regulative transcription factor. The control region

of its own gene contains three binding sites of which the first and third one have a high affinity. Due to cooperativity

the middle site will get bound and the DNA subsequently loops on itself. The system of unbinding is unknown and two

hypotheses, either through direct unlooping or either by first unbinding the protein of the middle site, are denoted by

dashed arrows. All DNA configurations have their own transcription rates, which lead to a non-monotonic response

curve. mRNA will be translated to monomers which can dimerize. The model also takes into account degradation/

dilution of all proteins (mRNA, monomers and dimers).

https://doi.org/10.1371/journal.pone.0216089.g007
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Time series for different copy numbers of the DNA are shown in Fig 8. Stochastic models can

differ much from the deterministic behavior, especially when considering a wild type Sulfolo-
bus solfataricus cell which only contains at most two copies of the genome. In synthetic biol-

ogy, target genes can be inserted in vector plasmids which can be injected in the cell in higher

numbers. This would reduce the stochasticity in mRNA and protein concentrations (Fig 8).

We next envisaged the possibility to have a bistable switch. We undertook the same analysis

as for the 3DS bistable switch analysis but again with fewer free parameters. For the Ss-LrpB

system, seven parameters have been measured and we estimated two more based on literature,

as detailed in Section E of S1 Appendix. Five free parameters remain: f1, f2, f3, f12, f23 over

which we performed a scan with the different f ranging from 10−3 to 102. The bistable region

in the f13-f123-plane is shown in yellow and green in Fig 9. Outside this region, no bistable sys-

tems were found. The color represents the induction time of the fastest solution found for each

f13-f123-combination. The smallest induction times can be found when both the DNA13 and

the DNA123 are activating (f13 > 1 and f123 > 1) and the response curve is monotonically

increasing. In red the percentages of Ss-LrpB compatible solutions are given, i.e. solutions with

response curves of non-monotonicity type 1 and a maximal transcription rate of at least twice

the basal rate and a minimal rate lower than half the basal rate. Such response curves are found

when DNA123 is repressing (f123 < 1) and DNA13 either somewhat activating or repressing.

The regions of bistable systems (yellow-green) and Ss-LrpB compatible solutions (red) are

not overlapping, we can therefore conclude that the natural Ss-LrpB system cannot exhibit

bistability.

We conclude that it is difficult to obtain deterministic solutions other than a stable steady

state with the architecture and parameters of Ss-LrpB. Since a stable steady state can be

obtained by the simplest self-regulations, we speculate that the choice for the complicated

Fig 8. Stochastic time series. Time series of two examples of Ss-LrpB compatible systems are shown (A and B), in a

deterministic and stochastic models from 1 to 20 DNA copy numbers. The oscillations become more regular for higher

copy numbers. Note that the frequency is higher in the stochastic models with respect to the deterministic model for

the example on the right.

https://doi.org/10.1371/journal.pone.0216089.g008
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architecture of the natural Ss-LrpB system maybe roots in its stochastic properties. To test

whether the natural system has evolved toward parameters leading to a noisier, and more

spiky behavior, we ran stochastic timeseries for random 3DS configurations as well as for ran-

dom Ss-LrpB compatible solutions. After comparison of the Fano factors, a measure of sto-

chastic spiking, of the different sets, we concluded that the distribution of Fano factors is

similar for the Ss-LrpB system and the 3DS, as illustrated in Fig 10. Since the shape of the Fano

factor histograms will be affected by fixing additional values for the parameters, we cannot

conclude on our hypothesis. Without extra experimental measurements, it would be time

intensive to obtain a better comparison of the 3DS and the SsLrpB compatible systems. We

hypothesize that the function of spiky dynamics, besides the ones proposed in [33], could be a

sensing mechanism with a reduced burden on the cell. The idea is that the time averaged mean

concentration of the protein is lower than the threshold concentration for sensing. Although it

is slightly more frequent to exhibit rich dynamical behavior for systems with three binding

sites than with two, two and three binding sites systems essentially allow for similar dynamical

Fig 9. Bistable region with induction times in the f123-f13-plane. The bistable region is shown in yellow and green

where the color represents the induction time of the fastest solution found for every f13-f123-combination. In red the

percentages of Ss-LrpB compatible solutions are given. The regions of bistable systems (yellow-green) and Ss-LrpB

compatible solutions (red) are not overlapping, we can therefore conclude that the natural Ss-LrpB system cannot

exhibit bistability.

https://doi.org/10.1371/journal.pone.0216089.g009

Fig 10. Bursting behavior of the 3DS systems. (A) 15 time traces compatible with the Ss-LrpB system (B) Histogram of Fano

factors distributions for 3DS and 3DS systems compatible with Ss-LrpB systems.

https://doi.org/10.1371/journal.pone.0216089.g010
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behaviors. We therefore expect that additional properties of systems with three binding sites,

such as looping of DNA when three dimers are bound, should explain their functional role.

However, without experimental evidences for a specific property, we did not elaborate more

on this possibility.

Conclusion

The question we addressed is the function of non-monotonic auto-regulation. A system with

such auto-regulation exists in nature and we therefore assume it should have an advantage

over other gene regulatory networks. We seek whether the non-monotonicity could result

in dynamics other than a stable steady state, in particular oscillations and bistability. We stud-

ied three different single gene networks with increasing complexity that can exhibit non-

monotonicity.

Despite the fact that oscillations through Hopf bifurcations become more abundant when

the number of binding sites increases, they stay very scarce in parameter space. Moreover the

oscillating range is finely tuned for multiple parameters. We also found that the amplitudes of

monomers often exceed the amplitudes of the dimers even though the dimer is typically the

active form of the protein. Because of the counterintuitive amplitudes and the finely tuned

parameters, we conclude that it is highly unlikely that a natural system with a non-monotonic

self response would be oscillating.

Besides oscillations, a non-monotonic type 1 response can, just as a monotonically increas-

ing response, give rise to bistability. Repression for high concentrations can theoretically

shorten the induction time to go from the unstable intermediate state to the high steady state.

If the high steady state is a response on external stress, the fast reaction would give an advan-

tage for survival for each individual cell in contrast to the stochastic switching of the bet-hedg-

ing strategy which assures survival on population level. We find indeed that the fastest

solutions have a non-monotonic response type 1 curve, but only a small fraction of the non-

monotonic curves is faster than monotonic implementations. The parameters dictating the

response curve need to be adjusted carefully in order to be faster than monotonic responses.

For synthetic circuits, we would advise to build a fast bistable switch out of the two or three

binding sites models. To build an oscillator, our sensitivity analysis provides a list of parame-

ters that should be finely tuned and should be screened over to find a working system, however

we expect it to be challenging to succeed in that enterprise.

The question of the function of the natural Ss-LrpB system is discussed in the previous sec-

tion. To sum up, a scan over parameter space revealed that the response curves compatible

with the natural Ss-LrpB system cannot give rise to bistability. Oscillations would need finely

tuned parameters. Ruling out switches and oscillators, we consider simply steady states and

fluctuations due to intrinsic noise around these steady states. We concluded by proposing that

the natural Ss-LrpB system dynamics has spiking behavior around a steady state. A possible

explanation for such behavior is that the concentration of Ss-LrpB needed for sensing is too

high to be maintained at steady state.
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