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Abstract

1/f fluctuations have been described in numerous physical and biological processes. This

noise structure describes an inverse relationship between the intensity and frequency of

events in a time series (for example reflected in power spectra), and is believed to indicate

long-range dependence, whereby events at one time point influence events many observa-

tions later. 1/f has been identified in rhythmic behaviors, such as music, and is typically

attributed to long-range correlations. However short-range dependence in musical perfor-

mance is a well-established finding and past research has suggested that 1/f can arise from

multiple continuing short-range processes. We tested this possibility using simulations and

time-series modeling, complemented by traditional analyses using power spectra and

detrended fluctuation analysis (as often adopted more recently). Our results show that 1/f-

type fluctuations in musical contexts may be explained by short-range models involving mul-

tiple time lags, and the temporal ranges in which rhythmic hierarchies are expressed are apt

to create these fluctuations through such short-range autocorrelations. We also analyzed

gait, heartbeat, and resting-state EEG data, demonstrating the coexistence of multiple

short-range processes and 1/f fluctuation in a variety of phenomena. This suggests that 1/f

fluctuation might not indicate long-range correlations, and points to its likely origins in musi-

cal rhythm and related structures.

Introduction

1/f-type correlations have been identified in numerous physical and biological systems, often

being described as ‘ubiquitous’ [1, 2]. This phenomenon refers to a pattern of noise over time

that exhibits a roughly 1:-1 relationship between power and frequency in a log-log plot of a

time series that has been converted to the frequency domain [3]. 1/f can also be thought of as a

1:1 relationship between the amount of fluctuation within a window of observations, and the

size of the window as the window is incremented [4]. 1/f is often conceptualized as the center
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of a continuum of noise color that includes white noise or random fluctuations at one end,

and red noise (also called Brownian motion) or deterministic fluctuations at the other end. 1/f,
or pink noise, therefore represents a flexible system that fluctuates within a set of constraints

[5]. Systems exhibiting 1/f-type noise are stable but adaptable, and thus have been suggested as

indicative of a healthily functioning biological system [4, 6–14]. However, their widespread

occurrence both in physical and biological systems somewhat undermines this proposed inter-

pretation, suggesting rather that 1/f is simply compatible with normal function.

As indicated, the type of noise color is usually quantified using a scaling exponent, which

represents the slope relating log-power to log-frequency in a power-spectral density (PSD)

plot. White noise has a slope of 0, red or Brownian noise has a slope of -2, and pink or 1/f
noise has an intermediate slope of -1. These slopes are typically represented as absolute values

by the scaling exponent β. As such, β values between 0 and 2 are considered indicative of a 1/f-
type process. We note that such simple log-power characterizations are by no means definitive

fulfilments of the mathematically more stringent requirements for identifying a true 1/f pro-

cess [1, 15], which we will not elaborate here: an in depth book on LRD time series analysis is

available [16]. Our concern is with the origins of 1/f in musical performance, and for this pur-

pose the simpler broader circumscription of 1/f is appropriate. Beran also reveals some of the

complexities of 1/f behavior in pianists and composers in a book focused on musicology [17];

cf pp 158–160), and has more recently discussed the application of statistical and algebraic

ideas to music composition [18].

Studies of human behavior more broadly have shown 1/f fluctuation in tasks such as grip

force [19], self-paced tapping/time estimation [20–22], simultaneous force and time estimation

[23], stride interval [24], synchronization tapping [25, 26], word naming [27], reaction times

[28], other cognitive processes [3, 29], and also in brain activity during image observation [30].

1/f fluctuations are also seen in routine stable standing balance [31, 32], suggesting that this

pattern of noise may be a fundamental aspect of the human cognitive and motor system, and

compatible with healthy behavior.

Given that many of these 1/f systems involve repeated time estimation, the presence of 1/f-
type fluctuations has been identified in many complex behaviors as well, especially musical con-

texts, since music is a quintessentially temporal art. This was originally done by recording a

radio broadcast for 12 hours and identifying 1/f in the amplitude of the signal [33]. Although

this particular study was challenged [34], the spectral properties of music it reported have

become widely accepted. More recently, postural sway in trombonists has been shown to exhibit

1/f [35], as has pulse-interval timing in piano performance [36, 37], and synchronization tap-

ping over very long sequences [38]. Perceptually, music listeners tend to prefer “humanized”

rhythms with 1/f-like noise added to remove perfect regularity [38], but ‘humanizing’ is also

practiced in music production by other statistical means. There have been numerous other

examples of 1/f in music since the 1970’s [39–44]. One compelling case of 1/f in music perfor-

mance is an analysis of a performance by a professional drummer [45]. In this paper, the

researchers found 1/f correlations in both the timing and amplitude of a hi-hat recording.

They, along with many other research teams [32, 36, 37, 46–49], attribute this and similar

findings mechanistically to long-range dependence (LRD; often also termed long-range correla-

tions) in the temporal structure of human behavior, meaning events at one time point have

influence on events dozens, or even hundreds of observations later. However, consistent with

a wide range of other literature concerning 1/f in physical, internet [50], and biological pro-

cesses [1, 15] we show here that this may not be an appropriate interpretation of 1/f-type fluc-

tuations in music performance, or in other processes.

Putting aside in depth discussion of what constitutes stringent LRD, we note that it has

been known since at least 1980 that LRD can arise from the continuing co-existence of
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multiple short range processes (short range dependence, SRD), even for example from multi-

ple 1st order autoregressive components of different scale [51]. In a more recent discussion of

mechanisms for generation of 1/f noise [15] such superposition of short range processes, as

well as instabilities in attention are considered as possible alternates, leading to the suggestion

that it is the kinetic nature of the short-range processes (whether attentional fluctuations or

otherwise) that are important in determining whether 1/f-type noise emerges.

Returning to music, in early preliminary work, one researcher made the case that 1/f could

indeed arise from certain short-range, autoregressive processes (SRD) when they occur over

multiple time lags [19]. In this interesting report, a series of simulations showed that by apply-

ing moving average filters of varying window sizes—where the window sizes represent differ-

ent time lags—to a white noise signal, the resulting series will show very clear 1/f properties

when analyzed using PSD plots. Importantly, these two conditions (short range processes and

multiple time lags) are analogous to most genres of music performance, in which short range

corrective processes operating repeatedly over multiple constant time lags are a well-estab-

lished finding [52–56], and movement timing is structured hierarchically into timescales (e.g.

beat or pulse sequences become bars, which become phrases; [57]. This prompted us to extend

work on short-range 1/f simulations [19] and apply the concept to observed music perfor-

mance by re-analyzing in-depth the aforementioned hi-hat drumming data [45], and running

a series of short-range auto-regressive moving average (ARMA) simulations. We show that a

parsimonious, SRD interpretation of 1/f in human rhythmic performance—which is consistent

with the short-range models of movement timing in the sensorimotor synchronization litera-

ture [54–56, 58]—may be preferable to the more nebulous LRD interpretation. We consider

this issue further in the Discussion and Conclusions section. For a more thorough tutorial on

analytical differences between SRD and LRD, see work by Stadnitski [59].

Our initial assessment of the hi-hat drumming dataset suggested that the time series is

indeed operating over multiple short-range time lags, which again, makes sense intuitively

given the different levels of metrical structure that underlie musical rhythms. This is evidenced

in the partial autocorrelation function of the amplitudes of the data set, which shows signifi-

cant lag coefficients at orders 1–8, then 16 and 24 (Fig 1), suggesting a strong influence up to

and slightly beyond the timescale of the musical bar (which is equivalent to sixteen 16th notes/

semiquavers, or 16 lags), in addition to the obvious importance of lag-1 (the previous pulse).

Thus, we considered further whether the 1/f correlations identified in this recording and other

types of rhythmic performance may not actually reflect long-range processes, but instead arise

from relatively short-range correlated autoregressive processes. From here on, we will focus

our analysis on temporal intervals (inter-pulse intervals of the drum hits, specifically), rather

than amplitudes, as this pertains more directly to our interest—as well as the interests of other

research teams—in correlational structures in musical timing.

Although addressing this specific concern is the primary motivation for our study, our use

of time series simulations is also exploratory as we hope to identify a variety of short-range

structures that can lead to 1/f-like noise. To do this, we used two measures of time series noise:

PSD plots, and the more modern detrended fluctuation analysis (DFA). DFA has become very

popular for fractal time series analysis [4, 7–9, 13, 59, 60] and so we wanted to test if it is sensi-

tive to the same short-range conditions as PSD.

Our specific questions are addressed as follows: 1) Will ARMA (autoregressive moving

average) simulations of the recorded hi-hat time series produce 1/f correlations? If so, 1/f in

this context may not reflect long-range processes, but instead be a product of autoregressive

processes operating over multiple time lags and over a short-range of influence. 2) Can appar-

ent long-range structure, detectable in both spectral (PSD) and fractal (DFA) analysis, result

from a fairly wide range of auto-regressive (AR) structures? Specifically, can AR structures in
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which the involved lags are separated by several gaps, and in which the coefficients differ sig-

nificantly lead to 1/f-like noise? This could readily arise in music because of its hierarchical

structure, such that the occurrence of beats (also called pulses) are grouped into sequences of

1:2:4:8, or 1:3:6:9, or less commonly 1:5:10:15. 3). Will 1/f-type noise in a range of non-musical

human activities also co-exist with short-range features that might again be explanatory? To

test this, we analyzed several publicly available datasets (from physionet.org and elsewhere) of

other time series where 1/f noise might be found, specifically heart beat intervals, stride inter-

vals, and a resting state EEG recording.

Understanding our simulations and modeling procedures is crucial for understanding the

results. Thus in what follows we describe the methods for each research question alongside the

results, with a general Methods section following at the end.

Results

Before investigating the hi-hat data and running related simulations, we wanted to compare

PSD and DFA to see if they would yield consistent results on a dataset known to produce 1/f
noise. To do this, we replicated past 1/f simulations [19] and analyzed the series using both

PSD and DFA. The simulation involved three steps. First we generated a white noise series,

WN, of length 1,024 and with arbitrary time units. Second, we made three copies of the white

noise series, each with a different moving average, MA, filter applied. The MA filters differed

in their window size, q. In other words, q is the number of successive events in the WN series

Fig 1. The partial autocorrelation function of the amplitude measurements of the hi-hat drum series. Values outside the

dotted lines are significant. The non-sequential significant lags up to lag-24 show that drummer is structuring the force of his

drum hits according to metrically relevant events.

https://doi.org/10.1371/journal.pone.0216088.g001
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that were averaged by the MA filter. Third, we summed all four series with different weights, θ,

given to the each series, where θ represents the influence of each timescale/MA window size.

As a formula, the process is:

WNþy1MAðq1Þþy2MAðq2Þþy3MAðq3Þ

In summary, the simulation starts with an uncorrelated process (white noise), and then

adds repetitive influence at different lags (the moving average filters). We expanded on this by

testing a variety of simulations in which we adjusted q and θ according to the following crite-

ria: 1) all θ weights the same (simulation number 1) to simulate equal influence from multiple

window sizes/temporal processes; 2) window sizes of small values representing a small range

of influence with y weights increasing with window size; 3) window sizes increasing exponen-

tially to produce a wider range of influence and y weights increasing with window size; 4) the

same window sizes as points 2 and 3, but with large y weights paired with small window sizes,

in order to test an unusual condition where a process with more frequent influence (i.e. a

shorter timescale) produces more extreme events; normally, heavily weighted events are less

frequent in LRD signals. In all cases, we chose to use small integer θ weights for each MA series

to test whether a 1/f-type shape would emerge from relatively weak influence from each simu-

lated timescale.

The simulations (56 in total) were iterated 1,000 times each, and all iterations were analyzed

using PSD and DFA. Given the large number of simulations, we have listed all formulae along-

side the corresponding mean and standard deviation for DFA α and PSD β in S1 Table in the

supporting information. A summary of these simulations is depicted in Fig 2, which shows the

mean DFA α and mean PSD β values for all 1,000 iterations of each simulation. While some of

the simulations were closer to white noise or Brownian noise, many of the simulations showed

1/f-like shape, even though any serial influence was relatively short-range.

For the hi-hat data, we first fit the series to ARMA and ARIMAX models using the R func-

tion auto.arima from the ‘forecast’ package, in order to determine the autoregressive compo-

nents of the drumming performance. Here the covariate X is an essentially isochronic

Fig 2. Alpha and beta values from simulations derived from white noise. There were 1,000 iterations of each simulation, each containing 1,024

observations of arbitrary time units. Each simulation iteration was analyzed with PSD and DFA, with the corresponding mean exponents plotted on

the y-axis. Error bars are standard deviation. S1 Table in the supporting information lists the specific formulae used for each simulation.

https://doi.org/10.1371/journal.pone.0216088.g002
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representation of the drummer’s realized rhythmic structure. Rests, being periods of inactivity,

were included so that the complete data series was used unchanged. In other words we looked

at the onset times of drum hits regardless of intentional silences (“rests”), and the whole auto-

correlation context was thus considered. The ARIMA part of the models represents the autore-

gressive inter-pulse interval error correction of the drum hits. The models showed extremely

good fit (RMSE < 0.01, in relation to a mean inter-pulse interval of c. 156 ms), and (4, 0, 1) or

(5, 0, 0) structures were amongst the optimal models, as judged also by the Bayesian Informa-

tion Criterion (which penalizes model complexity). Here the (p, d, q) description defines the

number of autoregressive (AR) lags, the degree of differencing (I), and the number of moving

average (MA) lags. For simplicity of interpretation and subsequent simulation, we forced the

model to exclude differencing, so they were effectively ARMA and ARMAX models.

We pursued the ARIMA(4,01) structure, which was a slightly better model than ARIMA

(5,0,0). Using the coefficients associated with these lags (Fig 3), and the distribution of the

inter-pulse intervals from the drum data (which provided the error variance), we simulated

the hi-hat series using the R function arima.sim. This allowed us to see if 1/f-type fluctuations

—typically interpreted as LRD—would appear in a series that modeled highly expert human

performance using short-range influence (just four lags). In theory this simulation should not

show LRD since the largest significant lag is within a window of only four observations (or

four metrical divisions in this case), which is a relatively short-range of influence. However,

this structure actually produced moderately LRD 1/f-type fluctuations. Across the 100 itera-

tions, the mean α was .78, and the mean β was .70 (see Fig 3).

We also ran simulations using the same number of AR and MA lags (1–4 and 1 respec-

tively), but with different coefficients. We preserved the general structure of the ARIMA

model that had been fitted to the hi-hat series such that the AR1 coefficient was the largest AR

magnitude and negative (auto-corrective), and the remaining coefficients were proportional to

AR1 (e.g. AR2 was always of similar magnitude to AR1, but positive). Model 1 set all coeffi-

cients to zero, which is white noise (α = .5, β = 0). After that, AR1 was incremented by .1 for

Fig 3. Scaling exponents from short-range ARMA simulations. Each simulation used 1,024 observations and was analyzed using DFA and PSD,

with mean scaling exponents plotted along the y-axis. Error bars are standard deviation. For comparison, we also plotted the DFA and PSD results of

the human drum performance from which the simulations were derived. The ARMA structure was AR(-.5, .48, .19, .03) MA(.93).

https://doi.org/10.1371/journal.pone.0216088.g003
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each model. Most of the simulations after model 1 were suggestive of 1/f when analyzed with

PSD and DFA (see Fig 4).

Next, we tested whether 1/f-like structures would show up in ARMA models with non-sig-

nificant AR lags in between significant lags. This is unusual for an ARIMA model, which typi-

cally has sequential lags of decreasing coefficients until a lag is not significant. However, the

use of non-sequential lags is analogous to human rhythmic performance, wherein some beats

fit into levels of a hierarchy of pulses, bars, and phrases, making intermediary pulses less

important as already noted by the metrical influence shown in the amplitude time series of the

hi-hat performance. Thus, influence from these metrically significant points in a rhythmic

series could occasionally produce 1/f-like effects, despite the unusual ARMA structure. In

these simulations, the largest lag used was 15, which presents an interesting mid-range of influ-

ence. Whereas our previous ARIMA simulations have only been 4th order, and long-range cor-

relations reflect influence from dozens or even hundreds of observations back, these gapped

simulations are testing for LRD with a model order that goes just beyond a typical ARIMA

range for rhythmic performance. The results of these simulations (100 iterations each) are

listed in Table 1. We included a significant AR1 for all simulations, as this reflects influence

from the immediately preceding event, which is expected in most performance. The next sig-

nificant lag was of order 3, 4, or 5 depending on the musical meter being simulated (3/4, 4/4,

or 5/4 respectively). These lags represent influence from a pulse/rhythmic event that is 3, 4, or

5 observations in the past. Any later significant lags represent influence from pulses further

back in a rhythmic series. The MA1 component for all simulations was kept at .5.

The main finding from these simulations is that the sign of the coefficients matters most in

producing 1/f-like effects, and the number of intervening, non-significant lags (i.e. coeffi-

cient = 0) does not change much. Specifically, when all AR lags are positive, the resulting expo-

nents from DFA and PSD show 1/f. This makes sense as it introduces small positive

correlations at different timescales, meaning the series will drift similarly both at small scales

(AR1) and larger scales (e.g. AR5, AR10, AR15), which is the characteristic shape of 1/f. Most

simulations containing negative coefficients produced stationary series close to white noise, or

Fig 4. The horizontal dotted lines represent white noise values. Any of the alpha values above 0.5 and any beta values above 0 suggest a long-range

correlated structure, given all the data are in the range (0–1]. The ARMA coefficients are listed along the x-axis for each simulation.

https://doi.org/10.1371/journal.pone.0216088.g004
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anti-correlated (exponents less than white noise values) series. This also makes sense as nega-

tive lagged correlations represent corrective processes that keep the series bounded and pre-

vent drift. One curious condition is when AR1 is positive, but all following significant lags are

negative (3rd row from the bottom of each meter box in Table 1). Here the DFA and PSD

Table 1. Scaling exponents from simulations lag gaps.

Simulated Meter AR Structure α β

-.5 0 0 .4 .57 .56

.5 0 0 -.4 .42 1.12

-.5 0 0 -.4 .40 -.07

.5 0 0 .4 1.01 1.39

-.4 0 0 .3 0 0 0 .2 .60 .17

4/4 .5 0 0 -.4 0 0 0 -.3 .45 1.08

-.5 0 0 -.4 0 0 0 -.3 .35 -.15

.4 0 0 .3 0 0 0 .2 1.07 1.32

-.4 0 0 .3 0 0 0 .2 0 0 0 .1 .37 .08

.4 0 0 -.3 0 0 0 -.2 0 0 0 -.1 .5 .98

-.4 0 0 -.3 0 0 0 -.2 0 0 0 -.1 .33 -.13

.4 0 0 .3 0 0 0.2 0 0 0 .1 1.11 1.36

-.5 0 .4 .58 .19

.5 0 -.4 .54 1.11

-.5 0 -.4 .37 -.15

.5 0 .4 1.15 1.56

-.5 0 .4 0 0 .3 .56 .13

.5 0 -.4 0 0 -.3 .42 1.00

3/4 -.5 0 -.4 0 0 -.3 .42 -.19

.5 0 .4 0 0 .3 1.13 1.37

-.4 0 .3 0 0 .2 0 0 .1 .65 .25

.4 0 -.3 0 0 -.2 0 0 -.1 .44 .83

-.4 0 -.3 0 0 -.2 0 0 -.1 .43 -.04

.4 0 .3 0 0.2 0 0 .1 1.37 1.47

-.5 0 0 0 .4 .56 -.07

.5 0 0 0 -.4 .48 1.07

-.5 0 0 0 -.4 .43 -.02

.5 0 0 0 .4 1.09 1.34

-.5 0 0 0 .4 0 0 0 0 0 .3 .55 .19

.5 0 0 0 -.4 0 0 0 0 -.3 .48 .96

5/4 -.5 0 0 0 -.4 0 0 0 0 -.3 .40 -.07

.5 0 0 0 .4 0 0 0 0 .3 1.00 1.24

-.4 0 0 0 .3 0 0 0 0 .2 0 0 0 0 .1 .54 .25

.4 0 0 0 -.3 0 0 0 0 -.2 0 0 0 0 -.1 .49 .98

-.4 0 0 0 -.3 0 0 0 0 -.2 0 0 0 0 -.1 .42 .12

.4 0 0 0 .3 0 0 0 0 .2 0 0 0 0 .1 1.13 1.36

These simulations include non-significant lags (represented by zeros) in order to represent the possible influence of

different time scales in musical meters. We simulated three meters (4/4, 3/4, and 5/4) and adjusted the sign of the

coefficients to see the combined effect of negative and positive correlations at different lags. The magnitude of

coefficients had to be reduced for the larger AR structures in order to keep the simulations stable. MA1 was fixed at

.5 for all simulations.

https://doi.org/10.1371/journal.pone.0216088.t001
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results diverged, such that PSD showed 1/f, but DFA showed white noise. These simulations

are exploratory and ARIMA structures like these may not appear often in experimental tests,

but it is worth noting that the two methods of analysis are not always consistent.

Next we ran similarly exploratory simulations using ARMA structures with just one or two

lags to test if 1/f-type fluctuations might be observed in a time series with an extremely short

range of influence. More specifically, we wanted to assess purely AR process descriptions to

eliminate the possibility that the MA (error description) term is a critical feature. We expected

to be able to show this since an MA model can always be represented instead as an AR one. As

a preliminary, we noted that the hi-hat drumming series was well modeled as AR (5, 0, 0), and

we confirmed that even simulating from AR (1, 0, 0) and (2, 0, 0) models generates 1/f provid-

ing the first AR coefficient is positive. This observation is consistent with an earlier simulation

study [59]. We then considered the following criteria to test a further variety of short-range

conditions: 1) only one or two coefficients were used, and these were associated with two AR

lags, two MA lags, or one of each; 2) the signs of the coefficients were both positive, both nega-

tive, positive followed by negative, or negative followed by positive; 3) the magnitude of the

coefficients was held at .5 for the first one, and .4 for the second one. We again ran 1,000 itera-

tions of each simulation, and the results are listed in Table 2. Consistent with the previous

round of simulations, conditions in which the coefficients are positive seem to produce scaling

exponents that are suggestive of 1/f-type fluctuations.

Finally, we wanted to consider whether the range of ARMA structures we have found so far

that are capable of generating 1/f features, co-exist with 1/f in a small but diverse set of other

human processes, and hence might possibly be explanatory in a wide range of contexts. This

could be anticipated from the earlier mathematical and statistical work [1, 15]. Specifically, we

analyzed movement (walking gait time intervals), physiology (heart beat intervals), and cogni-

tion (a resting EEG recording). We describe both the AR structure using AR models, and the

apparent long-range structure using DFA and PSD. These summaries are listed in Table 3.

Our argument in this paper is that rather than necessarily involving long-range correlations,

1/f features may sometimes be consequent simply of short range autocorrelations that involve

multiple time-lags. In Table 3—together with the drumming data discussed in the body of this

Table 2. Scaling exponents from simulations with only two lag components.

ARMA Structure Mean DFA α Mean PSD β

AR2 = 0.5, 0.4 1.02 1.08

AR2 = 0.5, -0.4 .52 .48

AR2 = -0.5, 0.4 .34 -.56

AR2 = -0.5, -0.4 -.29 -.62

MA2 = 0.5, 0.4 .66 .69

MA2 = 0.5, -0.4 .49 .46

MA2 = -0.5, 0.4 .47 -.44

MA2 = -0.5, -0.4 .11 -1.02

AR1 = 0.5 MA1 = 0.4 .73 1.15

AR1 = 0.5 MA1 = -0.4 .57 .15

AR1 = -0.5 MA1 = 0.4 .50 -.13

AR1 = -0.5 MA1 = -.04 .21 -.62

These simulations were made with just two lags and different combinations of positive or negative coefficients. Even

in these very short-range structures, the shape of a time series can show 1/f-type fluctuations if the coefficients

involved are positive.

https://doi.org/10.1371/journal.pone.0216088.t002
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paper—we summarize the analyses we undertook on available non-musical time series datasets

concerning unconstrained gait, relaxed heart beats, and relaxed cognition, each in the case of

healthy human participants. These processes are chosen because of their diversity and oft-found

1/f characteristics. Table 3 therefore asks whether it is commonly the case that time series

involving 1/f can be described in terms of autoregressive models of the multi-lag kind we have

demonstrated above (where relatively low AR orders are required and can readily generate 1/f
given appropriate ranges of AR coefficients). Indeed, the table suggests that a wide variety of 1/f
processes can be interpreted as short-range autoregressive series with several orders, and hence

our argument potentially has considerable generality beyond musical timing.

Conclusions and discussion

To summarize, first we will revisit our opening questions. 1) ARIMA (short-range) simula-

tions of the hi-hat series (with multiple time lags) did produce moderate-strong 1/f structures.

2) “Long-range” structures can result from a variety of short-range, ARIMA structures, and

this is detectable by both PSD and DFA. This was even seen in the unusual case of large AR

models with non-significant lags (that is, lags with zero-value coefficients in the model)

between significant ones. We have also demonstrated some AR structures that reliably produce

1/f, namely those with positive coefficients at AR1. 3) The coexistence of low order AR and 1/f
in a small but diverse set of human processes suggests that the short-range correlations deserve

broader consideration as an explanation for 1/f processes, and specifically, those involving

multiple lags.

DFA does seem to be a useful and generally reliable method of assessing fluctuation pat-

terns in time series. However, one must consider the nature of the data to choose the proper

parameters such as order of detrending [61], minimum and maximum window size, and

regression range (which can greatly affect alpha). Particularly in musical contexts, the observa-

tions under consideration should be sampled regularly and unbroken series used; intentional

irregularities in pulse such as different rhythmic values and expressive timing need to be

treated with caution.

Table 3. Coexistence of 1/f and SRC in time series data for diverse human processes.

Process AR features (coefficients) 1/f features Data source (see

Methods for details)

Comments

Movement:

Unconstrained Gait p = 9 (.30, .19, .10, .06, .04,

.01, .06, .01, .07)

α = .91 β =

.62

Physionet DFA α strongly suggests 1/f; PSD shows moderate 1/f-type shape. The AR

model includes a mean of 1.04 seconds.

Drumming p = 5 α = .78 β =

.70

Räsänen et al (2015) Analyzed in the present paper. Such data together with tapping data are

often considered ‘time estimation’.

Physiology:

Control Heart Beat p = 3 (1.06, .58, .34) α = .96 β =

1.23

Physionet Data were differenced to provide beat intervals. 1/f noise suggested by

both DFA and PSD. The AR model includes a mean of 964.6 ms.

Psychology/

Neuroscience:

Relaxed Cognition

(Resting EEG)

p = 7 (-.84, -.65, -.33, -.26,

-.15, -.13, -.04)

α = .25 β =

-1.18

Texas Data Repository EEG Data were down-sampled to 8Hz (original was 256Hz) and

differenced to provide EEG voltage change measures. The AR model

includes a mean of -.28 microvolts. DFA and PSD suggest a hyper-

corrective process, but not 1/f.

1/f properties were determined as described in the body of the paper (α refers to the DFA exponent; and β to the PSD); autoregressive models were constrained such

that (p,d,q) were (p< = 10, 0,0) where p is the autoregressive order, d, the degree of differencing, and q the MA order (auto.arima from the R forecast library was used).

The data used are from publicly available datasets, and are described in more detail in the Methods section.

https://doi.org/10.1371/journal.pone.0216088.t003
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Many issues remain unresolved in relation to 1/f processes. As mentioned at the outset, the

most stringent definitions of 1/f are often not fulfilled, and the PSD and DFA approaches both

assume than an estimated linear gradient in the appropriate range is an adequate assessment,

when it is not [1, 15]: genuine stringent 1/f processes are clearly a subset of those currently

studied under the umbrella of 1/f. It has been investigated whether a reasonable basis for

assessing stringent LRD might be to compare ARFIMA (fractionally differenced) models, with

a nested AR1 model [15]. However even that work showed by simulation that a 1/f process

generated by superposition of 3 AR1 systems was generally judged as LRD in that the ARFIMA

model was stronger (as judged by the Aikake Information Criterion) than the AR1, yet the

judgement was clearly misleading given the known origins.

In relation to both the stringent and the more loosely defined set of 1/f processes, the most

important remaining issue for music and cognition is the nature of the processes which create

the short-term temporal correlations that appear as 1/f. Our study does not directly address

this, but we have pointed out that hierarchies of rhythmic structure contain the appropriate

multiple time-scales. Thus as illustrated by the analysis of sequential hit intensities by the

expert drummer, a 4/4 bar contains 4 beats each commonly divided into 4 semiquavers (16th

notes), and there is generally graded accentuation of semiquavers 1 and 9> 3, 5, 7, 11, 13,

15> the remainder. There are also correlations at the bar length. These involve motor and

cognitive control patterns operating distinctively over these several different lags. Indeed,

some evidence points to the most accentuated positions as being positions of peak attention

on the part of a performer. Additionally, musical phrasing (operating commonly over several

bars), and higher-level structures, such as 32 bar song pattern repetitions, provide other short

to moderate time scales over which correlations contributing to an appearance of 1/f may be

important. These considerations suggest several ways forward towards unravelling the origins

of the 1/f property.

To conclude, we encourage rhythm and timing researchers, as well as those concerned with

a broad range of other human activities within movement, physiology and neuroscience to

consider interpretations of observed fractal and spectral structures other than LRD. The nature

of time series with which they work (e.g. music) may be better explained by short-range influ-

ence. As such, researchers might consider using ARMA modeling to see if observed time series

phenomena could possibly be attributed to repetitive activity with a small temporal range of

influence. It is worth questioning if participants in a given experimental task might truly have

“long memory” for the activity being measured, or if the activity could reasonably be influ-

enced by the immediately preceding events or conditions. In many cases of human perfor-

mance, the latter seems more likely.

Thinking beyond analytical methods, the occurrence and psychoacoustic impact of 1/f may

be traced back to pre-musical physical activities such as vocalization [62]. Given these neces-

sarily involved generation by SRD, they may have entrained preferential perception and cogni-

tion over evolutionary time scales. The selective value of this might be in facilitating

localization and identification of different entities and physical processes in the environment.

The utility of 1/f temporal processes in musical expression, like that of musical pitch relation-

ships [49], may flow from these evolutionary considerations. Indeed computational creativity

approaches to generating keyboard music from multi-lag SRD models have been developed

[63]. Even electroacoustic music composers may be intuitively driven to include such features

(in humanizing drum rhythms, and in spectral choices for example) and this forms an interest-

ing path for future studies linking creativity and its effects to psychoacoustics and physical pro-

cesses. Thus, 1/f structures may certainly be relevant to music composition and to many other

human processes, but may often be best explained by processes that are short in time scale.
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Materials and methods

We used various time series analysis functions in R Studio to fit models and simulate data.

These included auto.arima in the forecast library, various functions in the tseries library, dfa in

the nonlinearTseries library, and arima.sim in the stats package. The R functions are men-

tioned as the models and simulations are described in the Results.

Our use of DFA required us to select two parameters: the window size range, and the

regression range, the latter of which can greatly affect the alpha value. This is because the slope

relating window size to fluctuation tends to flatten at larger window sizes, and can decrease

alpha. All simulations were 1,024 observations, all window size ranges were 4 to N/2 (i.e. 512),

and our regression range was 1–200. This range covered the linear region of the regression (i.e.

before the slope flattens).

Much of our analysis was based on the inter-pulse time intervals and amplitudes from a hi-

hat drum recording [45], which is included in the supporting information as S1 Dataset. How-

ever, for our initial ARIMA(X) models, the hi-hat data series required gap-filling due to miss-

ing pulses in the recording. While the original analysis of the hi-hat recording removed gaps in

the pulse series and stitched together the fragments, we used an interpolation to fill missing

parts of the recording. To do this we assumed an equal division of each interval into 16th notes

(i.e. the fastest rate of attack in the performance) and filled in missing pulses with that value.

However, for the remaining simulations which were intended to reflect the original treatment

of these data, we based our simulations on models that used the same data cleaning as the first

paper that analyzed this drum performance [45].

We also used three non-music-related datasets from data repositories. Those were resting

EEG, heart beat peak times, and walking gait time intervals. The resting EEG data are from

Logan Trujillo 2017 in the Texas Data Repository (https://dataverse.tdl.org/dataset.xhtml?

persistentId=doi:10.18738/T8/EG0LJI). Specifically we analyzed the Cz electrode, sampled at

256Hz from Study 4, Resting Subject S1. We down-sampled to 8Hz to bring the time intervals

to roughly the same order of magnitude as those for the other processes we considered. The

heart beat peak times were from Physionet [64], the PTB Diagnostic ECG Database, subject

104 control (https://physionet.org/physiobank/database/ptbdb/patient104/). Cumulative beat

times were extracted using Physionet’s gqrs algorithm. The data were differenced to provide

successive beat durations. The gait interval data came from subject 01 from data set ‘umwdb’,

the Unconstrained and Metronomic Walking database of Physionet (https://physionet.org/

physiobank/database/umwdb/si01.norm). The raw data represent spontaneous normal cumu-

lative stride times, in seconds. The successive stride durations were obtained by differencing

the data [65].

Supporting information

S1 Table. The various moving average (MA) filters represent influences of different coeffi-

cients and time lags (e.g. every 2, 4, and 6 observations; time lags in brackets) on the time

series.

(DOCX)

S1 Dataset. The hi-hat drum recording [45] presented as 1) a cumulative time series of pulse

intervals and 2) the amplitude of each drum hit.

(CSV)
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25. Madison G, Delignéres D. Auditory feedback affects the long-range correlation of isochronous serial

interval production: Support for a closed-loop or memory model of timing. Experimental Brain Research.

2008; 193(4):519–27. https://doi.org/10.1007/s00221-008-1652-x PMID: 19039581

26. Torre K, Varlet M, Marmelat V. Predicting the biological variability of environmental rhythms: Weak or

strong anticipation for sensorimotor synchronization. Brain Cognition. 2013; 83(3):342–50. https://doi.

org/10.1016/j.bandc.2013.10.002 PMID: 24212115

27. Kello CT, Anderson GG, Holden JG, Van Orden GC. The pervasiveness of 1/f scaling in speech reflects

the metastable basis of cognition. Cognitive Science. 2008; 32:1217–32. https://doi.org/10.1080/

03640210801944898 PMID: 21585450

28. Van Orden GC, Holden JG, Turvey MT. Self-organization of cognitive performance. Journal of Experi-

mental Psychology: General. 2003; 132:331–50.

29. Gilden DL, Thornton T, Mallon MW. 1/f noise in human cognition. Science. 1995; 267:1837–9. PMID:

7892611

30. Isherwood ZJ, Schira MM, Spehar B. The tuning of human visual cortex to variations in the 1/fα ampli-

tude spectra and fractal properties of synthetic noise images. Neuroimage. 2017; 146:642–57. https://

doi.org/10.1016/j.neuroimage.2016.10.013 PMID: 27742601

31. Blázquez MT, Anguiano M, Saavedra FA, Lallena AM, Carpena P. Study of human postural control sys-

tem during quiet standing using detrended fluctuation analysis. Physica A. 2009; 388:1857–66. https://

doi.org/10.1016/j.physa.2009.01.001

32. Duarte M, Zatsiorsky VM. Long-range correlations in human standing. Physica Letters A. 2001;

283:124–8.

33. Voss RF, Clarke J. 1/f noise in music: Music from 1/f noise. The Journal of the Acoustical Society of

America. 1978; 63:258–63.

34. Nettheim N. On the spectral analysis of melody. Interface. 1992; 21:135–48.

35. Demos AP, Chaffin R, Kant V. Toward a dynamical theory of body movement in musical performance.

Frontiers in Psychology. 2014; 5:477. https://doi.org/10.3389/fpsyg.2014.00477 PMID: 24904490;

PubMed Central PMCID: PMCPMC4033247.

36. Rankin SK, Large EW, Fink PW. Fractal Tempo Fluctuation and Pulse Prediction. Music Percept. 2009;

26(5):401–13. https://doi.org/10.1525/mp.2009.26.5.401 PMID: 25190901; PubMed Central PMCID:

PMCPMC4151502.

37. Ruiz MH, Hong SB, Hennig H, Altenmuller E, Kuhn AA. Long-range correlation properties in timing of

skilled piano performance: the influence of auditory feedback and deep brain stimulation. Front Psychol.

2014; 5:1030. https://doi.org/10.3389/fpsyg.2014.01030 PMID: 25309487; PubMed Central PMCID:

PMCPMC4174744.

38. Hennig H, Fleischmann R, Fredebohm A, Hagmayer Y, Nagler J, Witt A, et al. The nature and percep-

tion of fluctuations in human musical rhythms. PLoS One. 2011; 6. Epub e26457. https://doi.org/10.

1371/journal.pone.0026457.g001

39. Voss RF, Clarke J. 1/f noise in speech and music. Nature. 1975; 258:317–8.
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