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Abstract

Air temperature data retrieved from global atmospheric models may show a systematic bias

with respect to measurements from weather stations. This is a common concern in local cli-

mate studies. The current study presents two methods based upon copulas and Conditional

Probability (CP) to predict bias-corrected mean air temperature in a data-scarce environ-

ment: CP-I offers a single conditional probability as a predictor, CP-II is a pixel-wise version

of CP-I and offers spatially varying predictors. The methods were applied on daily air tem-

perature in the Qazvin Plain, Iran that were collected at 24 weather stations and 150

ECMWF ERA-interim grid cells from a single month (June) over 11 years. We compared the

methods with the commonly applied conditional expectation and conditional median meth-

ods. Leave-k-out cross-validation and correlation scores show that the new methods

reduced the bias with 44–68% for the full data set and with 34–74% on a homogeneous sub-

area. We conclude that the two methods are able to locally improve ECMWF air tempera-

tures in a data-scarce area.

Introduction

Assessment of the impact of climate change in agricultural areas is primarily based upon

changes in weather data such as air temperature [1]. In a data-scarce environment, i.e., where

weather stations are sparse, additional data are required. The European Centre for Medium-

range Weather Forecasts (ECMWF) provides gridded ERA-interim reanalysis weather data

that are being used increasingly [2]. They are prone to uncertainty because of the coarse reso-

lution of models and variability of model parameters in space and time [3,4]. When compared

with the measurements from weather stations, their bias is often considerable [5], in particular,

if those measurements serve as benchmarks from which any measurement errors are ignored.

In this study we use copulas. A copula is a joint distribution function, describing the depen-

dence structure between two or more variables [6]. The joint distribution function is estimated

using any distribution family that can be different from the marginal distribution family of the

involved variables [7]. Copula-based methods have been developed to correct bias in depen-

dent variables [8,9]. Recently, copula-based methods are applied for deriving bias-corrected
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weather data [10–12]. Mao et al. [12] investigated bias correction methods of daily precipita-

tion data and showed that a copula-based bias correction performs better than quantile map-

ping. After estimating the joint distribution, several methods are available to obtain bias

corrected values. Examples are the conditional median (CM) [13], the conditional expectation

(CE) [13,14], and the simulation method [7, 15].

So far, copula-based methods have been applied mainly to precipitation time series, where

bias-corrected values are obtained using the simulation method [10–12]. Little attention, how-

ever, has been given to bias correction of air temperature data in a data-scarce area. Our main

focus of bias correction is based upon the construction of the dependence structure between

measurements and ECMWF reanalysis data using a joint distribution. The distribution is ini-

tially estimated using copulas and is then used to reduce bias of ECMWF air temperatures at

grid cells that are often lacking a measurement from a weather station in a data-scarce area. To

reduce bias in ECMWF air temperatures at those grid cells, an important aspect is the spatial

variation of the data.

This study aims to introduce two copula-based predictors based upon Conditional Proba-

bilities (CP) taking care of the spatial variation of daily air temperatures in a data-scarce area.

The definition of the predictors and their application in a data-scarce environment is the main

novelty of our study. We evaluate the performance of the predictors comparing to conven-

tional methods like CE and CM in an agricultural area in Iran.

The structure of the paper is as follows. Copula-based bias correction methods are intro-

duced in the second section. Our application is introduced in the third section and the results

are shown in the fourth section. This is followed by the discussion and conclusion in the last

sections.

Copula-based bias correction methods

The structural, one sided difference between a measured value from a weather station x, and

an ECMWF reanalysis value y is defined as the bias in ECMWF reanalysis values. We assume

that the data are observed from two spatio-temporal random variables X and Y. In our study,

the basis of the copula-based bias correction is a distribution function that allows for modeling

the dependence structure between X and Y. The purpose of bias correction is to obtain x̂0 that

denotes a predicted value at an unvisited location. An unvisited location is an ECMWF grid

point without a measurement.

We focus on a bivariate distribution F(x,y); it can be extended to higher dimensions if more

than two variables are available. The bivariate case is useful if ancillary information is unavail-

able. Regarding our main objective, we aim to introduce copula-based predictors to obtain x̂0.

We first, illustrate both the commonly applied predictors and introduces the new predictors

and next, present the estimation of marginals and copulas.

Prediction

The conditional expectation (CE), the conditional median (CM) and the simulation method

are commonly applied methods to obtain x̂0. CE and CM are both optimal predictors, mini-

mizing the mean squared prediction error and the mean absolute prediction error, respectively

[16–17]. They obtain the bias-corrected value x̂0 as:

CE : x̂0 ¼ E½XjY ¼ y0� ¼
R

xx � f ðxjy0Þdx; ð1Þ

CM : x̂0 ¼ F� 1ðpjy0Þ; p ¼ 0:5; ð2Þ

where f(.|.) is conditional density distribution function, F−1 denotes the inverse transformation

The use of bivariate copulas for bias correction
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of the conditional distribution F(.|.), and p is the conditional probability that determines the

median. Both CE and CM are either an increasing or a decreasing function of the conditioning

variable Y depending upon the sign of the dependence between X and Y (cf. S1 appendix).

Therefore, the variation of bias-corrected values follows the variation of ECMWF reanalysis

values rather than those of the measurements; this will be further illustrated in Results section.

The third method is the simulation method. It obtains m bias-corrected values by generat-

ing m conditional probabilities p on [0, 1] as:

x̂0;k ¼ F� 1ðpkjy0Þ; k ¼ 1; . . . ;m: ð3Þ

Note that the mean of fx̂0;1; . . . ; x̂0;mg provides a single value x̂0 and that both the value of m
and the simulations themselves influence the results. For a large m, the results of this method

are equal to the results of CE [12]. In case of choosing the median of fx̂0;1; . . . ; x̂0;mg, this also

applies to CM.

For CE, the mean value of the distribution F(x|y0) is selected as x̂0, whereas for CM, this is

the median value of the distribution. We may question whether mean and median values best

suit bias-corrected air temperatures. In the following, two new methods are introduced to

obtain a conditional probability which serves as a predictor.

CP-I and CP-II are the predictors, minimizing mean absolute bias (MAB) as:

MAB ¼
1

n
Pi¼n

i¼1
jxi � F� 1ðpjyiÞj; ð4Þ

where for CP-I, n = N and equals the total number of observations, whereas for CP-II, n = M
� N and equals the number of observations at the nearest M locations to x0. The conditional

probability p is iteratively estimated based upon minimizing MAB in (4) resulting in the opti-

mal p� value. The bias-corrected value x̂0 then equals:

x̂0 ¼ F� 1ðpjy0Þ; p ¼ p�: ð5Þ

For CP-I, the conditional probability p� is constant for all unvisited locations, e.g. F(x0|y0) = p�.
Therefore, similar to CE and CM, CP-I is either an increasing or a decreasing function of the

conditioning variable, depending upon the sign of the dependence (cf. S1 appendix). For

CP-II, the optimal conditional probability depends upon unvisited location and is denoted

now by p�
0
, e.g. Fðx0jy0Þ ¼ p�

0
.

Next we formulate the equations using copulas and investigate the use of copulas for the

construction of distribution functions. A good description of copulas is available from [7].

According to Sklar’s theorem, F(x,y) is equal to a copula C(u,v) of two uniformly distributed

variables u = FX(x) and v = FY(y), where FX and FY are marginal distributions. It can be shown

that F(x|y) = C(u|v) and the predictors are rewritten as:

CE : x̂0 ¼
R 1

0
F� 1

X ðuÞ � cðujV ¼ v0Þdu;

CM : x̂0 ¼ F� 1

X ðC
� 1ðpjV ¼ v0ÞÞ; p ¼ 0:5;

CP : MAB ¼
1

n
Pi¼n

i¼1
jxi � F� 1

X ðC
� 1ðpjV ¼ viÞÞj; x̂0 ¼ F� 1

X ðC
� 1ðpjV ¼ v0ÞÞ; p ¼ p�:

where F� 1
X denotes the inverse transformation of the marginal cumulative distribution function

FX, v is marginal probability i.e. v = FY(y), c(.|.) is the conditional density copula, and C(.|.) is

the conditional cumulative copula (cf. appendix 2).
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Before introducing estimation of the distribution functions, we now explain the implemen-

tation of CP-I and CP-II to identify the optimal conditional probability. Initially, a probability

p = 0.01 is chosen and MAB is obtained from Eq (4). Then the probability p increases with

steps of 0.01 until p = 1. We select the probability p� that results into the lowest MAB. Finally,

the bias-corrected value x̂s0
is obtained from Eq (5). The choice for the initial probability and

for a step value equal to 0.01 are based upon our experience on the variable of interest and

uncertainty sources. We compare this value using a sensitivity analysis on the mean absolute

prediction error to assess the effect of choosing larger or smaller increment values i.e. 0.1 or

0.001; the assessments are reported in the Results section below. Note that CP-I is imple-

mented only once, whereas CP-II is implemented at each unvisited location separately and

therefore has a higher computational cost.

Estimation

In practice, finite samples on X and Y are observed in space and time without replication.

Therefore, the joint distribution F(x,y) is estimated using the assumption of stationarity (in

space or time), i.e. marginal distributions and dependence structure between X and Y are irre-

spective of location or time. In the literature, reviewed in introduction, the current bias correc-

tion methods have been applied to climate time series assuming temporal stationarity. Hence,

removing autocorrelation and heteroscedasticity that may exist in any climate time series, is

necessary for any estimation procedure [10]. To achieve our main objective, we apply a bias

correction to predict x̂0 at an unvisited location in space, separately at each day of time series.

Estimation of theoretical marginal distributions may affect the estimation of the copula

parameter and consequently the selection of the copula family. Therefore, we use empirical

marginal distributions. By means of kernel density estimation, a continuous approximation of

the marginal distribution are obtained under the assumption of stationary [18]. We evaluate

this assumption using a regression analysis and the auto-correlation function (See S3 Appen-

dix). The choice of the method to estimate empirical marginal probability is not unique and a

more specific sensitivity analysis might help to show the effects of other marginal distribution

functions on the results. This, however, is outside the scope of the study.

The bivariate copula C can be determined using several copula families. We assume spatial

stationarity and evaluate the assumption using a co-correlation function (See S3 Appendix).

We consider the Gaussian, Student’s t, Clayton, Gumbel and Frank families [19–22]. Other

copula families like the Farlie-Gumbel-Morgenstern and Joe families [7] were not considered

as obtaining the inverse of the conditional copula distribution and the implementation of par-

tial derivatives may lead to computational problems [13]. The p value of the null hypothesis of

bivariate independence is obtained based upon the statistical test for independence developed

by [23]. The parameter of the bivariate copula is related to correlation between variables

(Table 1).

We estimate the parameter for each family using maximum likelihood and a starting value

obtained by Kendall’s τ correlation [7, 24]. Then the best family for C is the one that minimizes

Akaike’s Information Criteria (AIC) [25]. The p values of the null hypothesis that the depen-

dence structure is well represented by this family are obtained using 100 bootstrap runs based

upon the Cramér–von Mises statistic SðBÞn for the Gaussian, Clayton, Gumbel and Frank fami-

lies [26], and based upon the White statistic for the Student’s t family [27]. This number of

bootstrap runs is relatively small, but a larger number would substantially increase the compu-

tational cost.

The use of bivariate copulas for bias correction
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Evaluation

We evaluate the performance of the proposed predictors using errors and correlations between

measured and bias-corrected values. To obtain errors, we apply the leave-k-out cross-valida-

tion [28]. The bias-corrected value x̂s;t at day t and location s is obtained by leaving k observa-

tions out for the same day of the year in k successive years and using the reminder of the

observations. The mean absolute error MAEs,t is defined as:

MAEs;t ¼
1

k
Pk

i¼1
jxs;t;i � x̂s;t;ij: ð6Þ

We define three criteria based upon the mean absolute errors to compare the presented meth-

ods at N weather stations and T days:

MAE ¼
1

T
PT

t¼1
ð
1

N
PN

s¼1
MAEs;tÞ: ð7Þ

SES ¼
PN

s¼1
ðrankð

1

T
PT

t¼1
MAEs;tÞÞ; ð8Þ

TES ¼
PT

t¼1
ðrankð

1

N
PN

s¼1
MAEs;tÞÞ: ð9Þ

where the MAE is the overall mean absolute error, SES and TES are spatial and temporal error

scores [4], 1

T

PT
t¼1

MAEs;t and 1

N

PN
s¼1

MAEs;t are spatial and temporal mean absolute errors,

respectively. A low value of a criterion indicates a good performance.

To obtain correlations, the bias-corrected value x̂s;t at day t and location s is obtained using

all observations. The temporal correlations rs at location s and the spatial correlations rt at day

Table 1. Five families of copulas estimated on each day in this study. The best fitting family is selected according to the lowest value of Akaike Information Criteria

(AIC).

Index Name Cθ(u,v) Property index

1 Gaussian
;Rð;

� 1
ðuÞ; ;� 1

ðvÞÞ;R ¼
1 y

y 1

" #
1, 2, 6

2 Student’s t
tR;Wðt� 1

W
ðuÞ; t� 1

W
ðvÞÞ; R ¼

1 y

y 1

" #

; W ¼ degree of freedom
1, 2, 6

3 Clayton ½maxfðuy þ vy � 1Þ; 0g�
� 1
y 1, 2,4,5,6

4 Gumbel exp � ½ð� lnuÞy þ ð� lnvÞy�
1
y

� �
1,2,3,6

5 Frank � 1

y
lnð1þ ðe

� yu � 1Þðe� yv � 1Þ

e� y � 1
Þ 1,2,6

1 Property Permutation symmetry

2 Symmetry about medians

3 Extreme value copula

4 Lower tail dependence

5 Upper tail dependence

6 Extendibility to multivariate copula

https://doi.org/10.1371/journal.pone.0216059.t001
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t are used to evaluate the temporal and spatial variations of the bias corrected values:

rs ¼ corrðfx̂s;t; . . . ; x̂s;Tg; fxs;t; . . . ; xs;TgÞ; s ¼ 1; . . . ;N; ð10Þ

rt ¼ corrðfx̂1;t; . . . ; x̂N;tg; fx1;t; . . . ; xN;tgÞ; t ¼ 1; . . . ;T: ð11Þ

We define two criteria to compare the methods based upon the correlations as:

SCS ¼
PN

s¼1
ðrankðrsÞÞ; ð12Þ

TCS ¼
PT

t¼1
ðrankðrtÞÞ; ð13Þ

where rank(.) returns the rank of a number within a set of numbers, SCS and TCS are spatial

and temporal correlation scores, respectively. A high value of SCS and TCS indicates a good

performance.

The study was carried out in R using the packages VineCopula [24], gstat [29], and copula

[30].

Application

The bias correction methods are compared in an actual study on air temperature data in the

Qazvin irrigation network, Iran (Fig 1). The study area extends from 35.44˚ to 36.68˚ latitudes

(N) and from 49.09˚ to 50.92˚ longitudes (E) and it includes 24 weather stations (Fig 1). The

Qazvin area is one of the oldest agricultural areas in the world where maize, wheat, barley and

orchards are the dominating crops. Besides it contains urban areas and natural vegetation. The

European Centre for Medium-Range Weather Forecasts (ECMWF) provides reanalysis data at

a wide range of spatial resolutions, e.g. regular and rotated lat/lon grids, and reduced Gaussian

grid. For the dissemination, air temperature is bi-linearly interpolated to a 0.125˚ lat/lon grid

at three hourly intervals. A grid of 10 × 15 cells covers the study area (Fig 1). ERA-Interim pro-

vides widely used global atmospheric reanalysis data [3]. The reanalysis air temperatures are

retrieved for 150 grid cells at a 0.125˚ lat/lon resolution from the ERA-Interim data assimila-

tion system.

The NASA Land Processes Distributed Active Archive Centre (LPDAAC) provides the

Moderate Resolution Imaging Spectroradiometer (MODIS) products. The MOD03 product

provides per-pixel digital elevation model values in a sequence of swath-based products at

5-minute increments. This resulted in elevations at a 1km spatial resolution (Fig 2). The

dependence structure between air temperature and elevation does not follow the lapse-rate law

(cf. S4 Fig). To extend the bivariate joint distribution to higher dimensions by including eleva-

tion, we investigate whether considering elevation improves the results of the bias correction

methods (cf. Evaluation and comparison section). In our study, the dependence structures

between the reanalysis values and measured values are studied in a relatively small and homog-

enous area and are thus likely to change spatially in a stationary way. An exception concerns

the mountains in North-Eastern part of the study area (Fig 2). To evaluate the potential effect

of spatial non-stationarity, we applied the presented methods both on a complete set of 24

weather stations and on a subset of ten stations where the spatial variation of elevation is more

homogenous (Fig 2).

Daily mean air temperatures in June from 2004 to 2014 are selected (Fig 3) as June is an

important month in the crop calendar [31]. The copula we consider in our paper is the daily

bivariate distribution function of the measurements from a weather station and the reanalysis

data from ECMWF. We pool air temperatures for the same days across 11 years. This results

The use of bivariate copulas for bias correction
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into 150 grid cells×11 years = 1650 reanalysis values on each day in June. In addition, there are

24 stations×11 years = 264 measured values. This number of measured values can differ

between the different weather stations due to a varying number of missing values (cf. Table 2).

The bias-corrected daily air temperature is obtained at unvisited locations in June 2014,

applied on each day, separately. In this way, the methods are tested 30 times. We realize that in

doing so, effects of non-stationarity may exist due to climate change. For this time series of 11

years, however, we felt safe to ignore those effects.

The weather stations are categorized into three types based upon the instrument and tem-

poral frequency of the measurements (cf. S1 Table). Air temperature is measured by a

Fig 1. The irrigation network in Qazvin Plain, Iran. The area includes 24 weather stations and a sample subset of 10 × 15 grid cells of ECMWF dataset. The

background image is obtained by Landsat 8 RGB bands.

https://doi.org/10.1371/journal.pone.0216059.g001
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thermometer in the synoptic and climatology type1 stations and it is measured by a thermo-

graph in the climatology type2 stations. The time series of the air temperature at the climatol-

ogy type2 stations e.g. stations 11, 13 and 21 (cf. S1–S3 Figs) reveals that the quality of the

measurements is low. The synoptic stations are supposed to provide more precise measure-

ments. In the next section, we report to which degree the results of the presented methods are

affected by different qualities of the measurements at the three types of the stations.

Fig 2. Elevations (m) are covariates for air temperature in the CP-II including covariate. It is obtained by MODIS product at a 1km spatial resolution.

Location and index of the weather stations are shown in this figure. We applied the presented methods on a complete set of 24 weather stations as well as a

subset of ten stations where the spatial variation of elevation is more homogenous i.e. the area indicated by circle.

https://doi.org/10.1371/journal.pone.0216059.g002
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To compare reanalysis values with measured values, each station is assigned to its nearest

grid cell. Overestimation and underestimation of reanalysis data has been observed in June

2014 (S1–S3 Figs). Correlations rt between reanalysis values and measured values in space are

low at most days in June 2014 (Fig 4A). In addition, correlations rs at the weather stations 13

and 21 are rather weak (Fig 4B).

Fig 3. The data frame. Daily air temperatures in June are available at 24 stations and 150 grid cells of ECMWF during 11 years. We apply the presented

methods separately on each day. A copula is the daily bivariate distribution function between measurements from a weather station and the reanalysis

data from ECMWF.

https://doi.org/10.1371/journal.pone.0216059.g003
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Results

Marginal distributions and copulas

Fig 5 shows the fits of marginal distribution functions assuming spatial stationarity. S3 appen-

dix presents the evaluation of this assumption on each day in June 2014.

The parameters of five copula families are estimated on each day of June assuming spatial

stationarity. Appendix 3 further contains the evaluation of this assumption for copulas.

Table 2 shows the number of data used for fitting. The p value of the null hypothesis of bivari-

ate independence is zero, thus rejecting the null hypothesis (Table 2, third column). The best

fitting family based upon the lowest AIC value turned out to be Gumbel family for 17 days in

June. The p values of the Cramér–von Mises statistic SðBÞn were larger than 0.2 for all days

(Table 2, last column), hence not rejecting the null hypothesis. We could safely assume that the

best fitting family well describes the dependence structure.

Table 2. The p values and selected family on each day in June. Number of data denotes number of available data for

fitting purposes and equals to the number of measurements from weather stations during years 2004 to 2014 on each

day in June. The p value-1 is obtained under the null hypothesis of bivariate independence. The copula families are:

N = Gaussian, T = Student’s t, C = Clayton, G = Gumbel and F = Frank. The p values-2 are obtained by the Cramér–

von Mises statistic SðBÞn .

Day Number of data p value-1 Selected family p value-2

1 226 0.00 G 0.42

2 224 0.00 N 0.62

3 226 0.00 G 0.48

4 226 0.00 G 0.58

5 226 0.00 T 1.00

6 226 0.00 G 0.40

7 226 0.00 N 0.44

8 225 0.00 T 1.00

9 226 0.00 G 0.34

10 226 0.00 G 0.26

11 226 0.00 G 0.36

12 226 0.00 N 0.62

13 226 0.00 N 0.44

14 226 0.00 N 0.64

15 226 0.00 G 0.44

16 226 0.00 G 0.52

17 226 0.00 G 0.46

18 226 0.00 G 0.44

19 226 0.00 F 0.25

20 226 0.00 G 0.34

21 226 0.00 G 0.30

22 226 0.00 G 0.79

23 225 0.00 G 0.36

24 226 0.00 G 0.54

25 226 0.00 G 0.75

26 226 0.00 G 0.68

27 226 0.00 N 0.50

28 226 0.00 F 0.44

29 226 0.00 F 0.60

30 225 0.00 G 0.54

https://doi.org/10.1371/journal.pone.0216059.t002
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Fig 4. The correlation coefficient r between reanalysis data and measurements from weather stations a) on each day in June 2014, b) at each weather station.

The numbers on the second figure denote the weather stations’ number.

https://doi.org/10.1371/journal.pone.0216059.g004
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Evaluation and comparison

The optimal conditional probability obtained using CP-I, and the minimum and maximum of

the optimal conditional probabilities obtained using CP-II on each day are given in Table 3.

The conditional probability using CP-I clearly changes in time in the range of [0.30, 0.95]. For

CP-II, the optimal conditional probability changes in time and space in the range of [0.02,

0.99], using M= 4. Influence of the choice of the increment value in CP-I is assessed using sen-

sitivity analysis (cf. S5 Fig). It revealed that the uncertainty is higher using an increment value

of 0.1, whereas for 0.001 no improvements were achieved.

Two time series of the bias-corrected values obtained by CP-I and CP-II (Figs 6A and 5B)

at the first station are compared with those of CE and CM (Fig 6C and 6D). The spatial mean

absolute errors at this station for CP-II and CP-I were equal to 1.56˚C and 1.66˚C, whereas for

CM and CE, they were equal to 2.72˚C and 2.95˚C, respectively. Bias-corrected values at June

1st 2014 are shown in Fig 7. For CP-II and CP-I, the temporal mean absolute errors were equal

to 2.17˚C and 2.23˚C at this day, whereas for CM and CE, they were equal to 2.41˚C and

2.49˚C, respectively.

We note that CP-I fails to predict spatial variation and extremes in space (Fig 7C) but that

CP-II is successful (Fig 7D) as compared to spatial variation of the measurements at this day

(Fig 7A). Spatial variation of the bias-corrected values obtained by CP-I (Fig 7C), CE (Fig 7E)

and CM (Fig 7F) is similar to spatial variation of the reanalysis air temperatures (Fig 7B). Spa-

tial variation of the bias-corrected values obtained by CP-II differs from spatial variation of the

reanalysis air temperatures (Fig 7B) because the optimal conditional probability obtained by

this method changes in space. Bias and prediction errors at June 1st 2014 are shown in Fig 8.

The mean absolute bias is 2.84˚C at this day, whereas the mean absolute prediction errors for

Fig 5. Empirical marginal probabilities at June 1st. Marginal probabilities are obtained using kernel density estimation on each day of June using eleven years

series from 2004 to 2014 at 24 weather stations.

https://doi.org/10.1371/journal.pone.0216059.g005
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CP-II and CP-I were equal to 1.13˚C and 1.66˚C, and for CE and CM to 2.46˚C and 2.31˚C,

respectively.

As noted above, we applied a leave-k-out cross-validation where k indicates the number of

the observations in 11 successive years at one day and one station. MAE obtained for two

experiments (Table 4) shows that CP-II performed best, followed by CP-I, CM and CE. The

MAE is slightly above 2˚C for all methods whereas the average of absolute bias is 3.6˚C. The

horizontal distances, different height and differences in land cover between the location of a

station and the grid cell center might affect the MAE. Investigating the CP-II including eleva-

tion, we noticed a large improvement in the results: the MAE for CP-II including elevation

was equal to 1.92˚C whereas for CP-II it was equal to 2.17˚C (Table 4).

We used SES and SCS to compare the presented methods based upon errors and correla-

tions in time, i.e. 30 days in June (as shown in S1–S3 Figs). For the comparison in space, TES

and TCS were used with N = 24 (as shown in S6–S8 Figs). Table 4 shows that CP-I resulted

Table 3. Optimal conditional probabilities. A single optimal conditional probability is obtained using CP-I for all

unvisited locations on each day whereas using CP-II, it is obtained at each unvisited location and each day. The mini-

mum and maximum of the optimal conditional probabilities obtained by CP-II are mentioned here.

Day Optimal conditional probability in CP-I Minimum and maximum optimal

conditional probabilities in CP-II

1 0.79 0.13 0.90

2 0.60 0.08 0.97

3 0.30 0.04 0.92

4 0.36 0.08 0.93

5 0.50 0.02 0.90

6 0.61 0.08 0.93

7 0.71 0.12 0.96

8 0.66 0.21 0.92

9 0.64 0.25 0.90

10 0.82 0.23 0.99

11 0.87 0.28 0.98

12 0.68 0.09 0.95

13 0.58 0.06 0.84

14 0.57 0.05 0.88

15 0.65 0.10 0.86

16 0.65 0.09 0.94

17 0.76 0.07 0.84

18 0.55 0.10 0.74

19 0.73 0.07 0.88

20 0.69 0.19 0.91

21 0.50 0.13 0.95

22 0.83 0.19 0.98

23 0.91 0.23 0.99

24 0.64 0.14 0.96

25 0.65 0.09 0.94

26 0.79 0.17 0.92

27 0.74 0.13 0.98

28 0.83 0.10 0.95

29 0.92 0.21 0.98

30 0.79 0.16 0.99

https://doi.org/10.1371/journal.pone.0216059.t003
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into the lowest errors in time whereas CP-II resulted into the lowest errors in space and highest

correlations in space and time. The correlations rt show that CP-II performed better in repro-

ducing the spatial variation of the daily air temperatures in the study area (see S9A Fig). The

correlations rt obtained by CP-I, CE and CM are similar to the correlations between the reanal-

ysis values and the measured values (cf. S9A Fig). This is as expected, because the predictor is

the same for all locations in space. The correlations rs denote that CP-I performed better in

reproducing the temporal variation of the daily air temperatures in June (cf. S9B Fig).

Investigating the differences in quality of the measurements at the weather stations, we

compared the spatial mean absolute prediction error (see Eq 8) with the spatial mean absolute

bias. In this way, we assessed the performance of the bias correction methods at three types of

the weather stations (cf. S10 Fig). This investigation showed that the predictions at two synop-

tic stations i.e. stations 6 and 19 are influenced by different sources of uncertainties in the mea-

surements derived from three types of the weather stations. In addition, CP-II performed

better than CE and CM.

Fig 6. Time series of the mean air temperatures at first station in June 2014 obtained by the measurements, the reanalysis data, and the results of a) CP-I, b)

CP-II, c) CE and d) CM. The vertical axis is daily mean air temperature in ˚C. The horizontal axis is days in June 2014.

https://doi.org/10.1371/journal.pone.0216059.g006

The use of bivariate copulas for bias correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0216059 May 8, 2019 14 / 22

https://doi.org/10.1371/journal.pone.0216059.g006
https://doi.org/10.1371/journal.pone.0216059


The use of bivariate copulas for bias correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0216059 May 8, 2019 15 / 22

https://doi.org/10.1371/journal.pone.0216059


The previous comparisons showed the performance of the methods based upon an individ-

ual criterion. To evaluate the performance based upon all criteria, we ranked the methods in

each column of Table 4 where the lowest rank value denotes the best method. Table 5 shows

the score of each method based upon the criteria mentioned in Table 4. We obtained an overall

score using the sum of the scores. This overall score shows that CP-II reduced the bias with

63–68% for the full data set and with 69–74% on a homogeneous subarea whereas CP-I

reduced the bias with 44–53% for the full data set and with 34–47% on a homogeneous subarea

(Table 5, last column).

Discussion

In this paper, we presented and evaluated two new bias correction methods for air temperature

that take temporal and spatial variations into account. The CE and CM methods produce

smooth maps, assuming spatial stationarity when estimating the dependence structures

between the measured and the reanalysis weather data. We proposed to use different condi-

tional probabilities minimizing the bias in space to improve spatial variation of the bias-cor-

rected values. In addition, we described the dependence structure between the measured and

the reanalysis weather data using the flexibility of selecting best fitting family among five cop-

ula families.

A Copula is a joint distribution function. Initially, the joint distribution is fitted to the data,

and the goodness of fit is tested using statistical tests. Next, a predictor is selected to predict the

variable of interest. The choice of the predictor is governed by the loss functions. This paper

highlights the difference between estimation and prediction [32]. For instance, the mean and

the median are predictors that minimize both the squared error loss and absolute error loss.

These predictors produce smooth maps where spatial stationarity is assumed in estimating

bivariate joint distributions. The predictors, CP-I and CP-II, were defined based upon varying

conditional probabilities to improve spatial predictions. This flexibility is a practical advantage

of implementing copulas when estimating distributions.

In our application, a bivariate copula was fitted to daily observations of the involved vari-

ables assuming spatial stationarity, and the bias correction was applied separately on each day.

The results showed that the our methods performed better to correct time series of the air tem-

peratures i.e. temporal variation of the daily air temperatures in June 2014. Therefore, a practi-

cal advantage of the new methods is that they are not any longer restricted to remove

autocorrelation and heteroscedasticity in time series. A novel aspect is the potential and the

use of the new methods for other copula-based methods such as interpolation and downscal-

ing where the variable of interest needs to be predicted.

By means of the comparison of the methods based upon error scores and correlation scores,

we demonstrated that CP-I performed best in time, whereas CP-II performed best in space. As

the copulas are generally able to describe spatio-temporal dependences, the use of the spatio-

temporal information in CP-II might help to improve its performance in time as well. We

selected the number of neighbours based upon our experience. A more generally applicable

sensitivity analysis is necessary to show the effects of the number of nearest neighbours on per-

formance of CP-II.

We identified several routes for future research. First, we treated the measurements from

weather stations as the benchmarks in the identification of bias and in the cross-validation. To

Fig 7. The mean air temperatures from a) weather stations, b) reanalysis data, and results of c) CP-I, d) CP-II, e) CE and f) CM, for all

locations at June 1st 2014. For experimentation in this study, a sample subset of 10 × 15 grid cells of ECMWF dataset is selected at 0.125˚ lat/

lon distances. The study area extends from 35.44˚ to 36.68˚ latitudes (N) and from 49.09˚ to 50.92˚ longitudes (E).

https://doi.org/10.1371/journal.pone.0216059.g007
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address the uncertainty of the measurements and its impact on the results of the proposed

methods, the proposed methods should be extended towards other datasets. In addition, fur-

ther applications of the new copula-based methods in other case studies including simulation-

based information should provide more insight on these methods. Second, we used the AIC to

select the best fitting family. The bivariate Gaussian, Clayton, Gumbel and Frank families have

a single parameter related to correlation, whereas the Student’s t family has one parameter for

correlation and one parameter for the degrees of freedom. If the Bayesian Information Criteria

(BIC) is chosen, the penalty for two parameter family, here Student’s t family, is larger than

when using the AIC. We found that the best fitting families selected by AIC and BIC were the

same for all days except for day 8 when Student’s t family was selected by the AIC and Frank

family by the BIC. We realized though that the suitability of a copula also depends on the num-

ber of data used for fitting and the probabilistic nature of the bias. Further cross validations

need to be carried out using random samples of the measurements to choose the copula family.

Third, spatially varying conditional probabilities needs to be further applied in other methods

e.g. Bayes’ classifier and possibly in a machine learning environment. Fourth, to extend the

current study, the use of multivariate copula describing the dependence between more vari-

ables e.g. air temperature, elevation and land cover might help to improve the performance of

the presented methods. The bivariate case of the proposed methods in this paper is useful if

such a covariate is unavailable. Finally, a comparison to other bias correction methods e.g.

quantile mapping might be included in further studies.

Conclusions

We proposed to use conditional probabilities to correct for bias in the gridded reanalysis

weather data provided by ECMWF as compared to the measurements from weather stations

taken as the benchmarks. Cross-validation results and correlation scores showed that the new

Fig 8. Bias (a) and prediction errors. Prediction errors are differences between the mean air temperatures from weather stations and the

predictions obtained by b) CP-I, c) CP-II, d) CE and e) CM at June 1st 2014. For experimentation in this study, a sample subset of 10 × 15 grid

cells of ECMWF dataset is selected at 0.125˚ lat/lon distances. The study area extends from 35.44˚ to 36.68˚ latitudes (N) and from 49.09˚ to

50.92˚ longitudes (E).

https://doi.org/10.1371/journal.pone.0216059.g008

Table 4. Comparison of the bias correction methods for two experiments. The methods are applied on 24 weather

stations in the first experiment whereas they are applied on a subset of ten stations in the second experiments. Total

mean absolute error (MAE), spatial error scores (SES), temporal error scores (TES), spatial correlation scores (SCS),

and temporal correlation scores (TCS), obtained by the conditional probabilities (CP-I, CP-II and CP-II including ele-

vation), conditional expectation (CE) and conditional median (CM). The underlined values denote the best method.

Only MAE is obtained for CP-II including elevation.

Method MAE SES TES SCS TCS

Results of the 1st experiment

CP-I 2.28 52 59 71 80

CP-II 2.17 55 34 86 120

CP-II including elevation 1.92 - - - -

CE 2.45 71 116 54 49

CM 2.41 62 91 29 51

Results of the 2nd experiment

CP-I 1.44 27 70 32 80

CP-II 1.36 19 47 37 102

CE 1.50 28 92 20 56

CM 1.50 26 91 11 62

https://doi.org/10.1371/journal.pone.0216059.t004
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methods perform better than commonly applied methods and are able to account for spatial

and temporal variation of air temperatures at unvisited locations.

Supporting information

S1 Appendix. Properties of the conditional expectation.

(DOCX)

S2 Appendix. Conditional copula density.

(DOCX)

S3 Appendix. Evaluating the stationarity assumption.

(DOCX)

S1 Table. 24 weather stations in the study area. The quality of measurements and number of

missing values differ at each station.

(DOCX)

S2 Table. The values of co-correlogram and best fitting family at five spatial lags. Kendall’s

τ correlations are obtained using the measured and reanalysis values on each day in June

from 24 weather stations between 2004 to 2014. The copula families are: N = Gaussian,

T = Student’s t, C = Clayton, G = Gumbel and F = Frank.

(DOCX)

S1 Fig.

(TIF)

S2 Fig.

(TIF)

S3 Fig. The vertical axis is daily mean air temperature in ˚C. The number on each graph

denotes the weather station number. Time series of the measurements from weather stations,

reanalysis data and bias corrected values obtained by the bias correction methods at each sta-

tion in June 2014.

(TIF)

S4 Fig. Variation of the mean air temperature on 1st day of June 2014 comparing with var-

iation of the elevation in the study area. The mean air temperature in ˚C are derived from

Table 5. Overall score based upon Table 3 for two experiments. The methods are applied on 24 weather stations in the first experiment whereas they are applied on a

subset of ten stations in the second experiments. The scores are obtained for each method based upon each criterion i.e. each column of Table 3 where the lowest score

denotes the best method. Overall score is the sum of the scores. The underlined values denote the best method.

Method Score based on MAE Score based on SES Score based on TES Score based on SCS Score based on TCS Overall score

Results of the 1st experiment

CP-I 2 1 2 2 2 9

CP-II 1 2 1 1 1 6

CE 4 4 4 3 4 19

CM 3 3 3 4 3 16

Results of the 2nd experiment

CP-I 2 2 2 2 2 10

CP-II 1 1 1 1 1 5

CE 4 4 4 3 4 19

CM 3 3 3 4 3 16

https://doi.org/10.1371/journal.pone.0216059.t005
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the synoptic and climatology type 1 weather stations.

(TIF)

S5 Fig. Influence of the choice of the increment value (IV) on a) the optimal conditional prob-

ability in CP-I and b) the mean absolute prediction errors. Three IVs 0.1, 0.01 and 0.001 are

chosen.

(TIF)

S6 Fig.

(TIF)

S7 Fig.

(TIF)

S8 Fig. The daily mean air temperatures from weather stations, reanalysis data and bias

corrected values obtained by the bias correction methods for all locations on each day in

June 2014. The number on each graph denotes the day in June 2014.

(TIF)

S9 Fig. The correlation coefficients r: a) in space on each day in June 2014, b) in time at each

weather station. The numbers on the figures denote correlations.

(TIF)

S10 Fig. Comparing mean absolute prediction error with mean absolute bias at three types

of the weather stations. The vertical axis is error/bias in ˚C. The synoptic stations are sup-

posed to provide more precise measurements.

(TIF)

S11 Fig. p values of the regression parameters in trend analysis obtained by F test. Based

upon its results, spatial stationarity is assumed in estimating the marginal distribution.

(TIF)

S12 Fig. The values of correlogram at five spatial lags. The vertical axis is Kendall’s τ correla-

tions obtained using the measurements on each day in June between 2004 to 2014. The hori-

zontal axis is spatial lags in meter.

(TIF)
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