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Abstract

Oxidative stress plays a key role in steatohepatitis induced by both xenobiotic agents and

high fat diet (HFD). The present study aimed to evaluate hepatic oxidative stress and anti-

oxidant systems response in rats exposed to HFD and/or non-toxic dose of dichlorodiphe-

nyldichloroethylene (DDE), the first metabolite of dichlorodiphenyltrichloroethane. Groups

of 8 rats were so treated for 4 weeks: 1- standard diet (N group); 2- standard diet plus DDE

(10 mg/kg b.w.) (N+DDE group); 3- HFD (D group); 4- HFD plus DDE (D+DDE group). Oxi-

dative stress was analyzed by determining malondialdehyde as lipid peroxidation product,

while the anti-oxidant systems were evaluating by measuring the levels of the principal cyto-

solic and mitochondrial antioxidant proteins and enzymes, namely superoxide dismutase 1

and 2 (SOD1, SOD2), glutathione peroxidase 1 (GPx1) and uncoupling protein 2 (UCP2)

involved in the control of hepatic reactive oxygens species (ROS) accumulation. The results

showed malondialdehyde accumulation in livers of all groups, confirming the pro-oxidant

effects of both HFD and DDE, but with a greater effect of DDE in absence of HFD. In addi-

tion, we found different levels of the analyzed anti-oxidant systems in the different groups.

DDE mainly induced UCP2 and SOD2, while HFD mainly induced GPx1. Noteworthy, in the

condition of simultaneous exposure to DDE and HFD, the anti-oxidant response was more

similar to the one induced by HFD than to the response induced by DDE. Present findings

confirmed that both HFD and xenobiotic exposure induced hepatic oxidative stress and

showed that the anti-oxidant defense response was not the same in the diverse groups, sug-

gesting that UCP2 induction could be an adaptive response to limit excessive ROS damage,

mainly in condition of xenobiotic exposure.
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Introduction

The liver is the main organ involved in xenobiotic detoxification as well as in dietary lipid

metabolism, and hepatic steatosis is the most common pathologic liver responses to both high

fat diet (HFD) and chemical exposures [1]. The metabolism disrupting chemical (MDC)

hypothesis suggested by Heindel et al., (2017) [2] postulates that environmental chemicals

have the ability to promote metabolic changes that can result in obesity, diabetes and/or fatty

liver disease. MDC hypothesis provides a framework for the integration of different aetiology

of steatohepatitis: alcoholic, non-alcoholic and toxicant-associated steatohepatitis (ASH,

NASH, and TASH, respectively). A common mechanism for the etiologically different liver

diseases may be found in inflammation and oxidative stress. It is well known that HFD

induced hepatic mitochondrial dysfunction and oxidative stress [3,4,5,6]. On the other hand,

liver xenobiotic metabolism may increase oxidative stress [7]. Little is known on the effect of

simultaneous exposure to xenobiotics and HFD on liver oxidative stress and metabolic disor-

ders. Under physiological conditions, low levels of ROS are essential in many biochemical pro-

cesses, including intracellular signalling, defence against microorganisms, and cell function.

On the contrary, the excessive production of ROS modifies the balance between the oxidants /

prooxidants and antioxidants agents, leading to lipid peroxidation and depleting the antioxi-

dant cellular reserves (both enzymatic and non-enzymatic), causing tissue injury and, in many

cases, apoptosis. Among xenobiotic agents, the pesticide dichlorodiphenylethylene (DDE) is

the most persistent metabolite of the insecticide dichlorodiphenyltrichloroethane (DDT) and

causes hepatoxicity, nephrotoxicity and hormonal disorders [8,9]. Moreover, it produces mito-

chondrial dysfunction [10] and oxidative stress in different organisms, such as marine species

[11], terrestrial vertebrates [12] and cell culture [13]. Today, DDT utilization against the prin-

cipal disease vectors is restricted to equatorial countries, where malaria is still endemic [14].

Nevertheless, residues of DDT and DDE are still observed in soils of many occidental coun-

tries, and in mother’s milk [15], in maternal blood serum [16] and in grapes [17]. DDT was

listed by the Convention on Persistent Organic Pollutants in the “Dirty Dozen” substances in

2001. However, apart from the tropical countries where DDT is still currently used, several

other countries are considering the possibility to reintroduce it [18]. In literature it was

reported that DDE toxicity is due mostly to ROS production [19]. In the hepatocytes, the first

line of defense from free radicals is represented by the superoxide dismutase (SODs) that cata-

lyze the dismutation of superoxide in H2O2 and oxygen. Three isoforms of SODs have been

identified, each expression of a different gene and with distinct subcellular localizations. Cu/

ZnSOD (SOD1) is a cytosolic enzyme, MnSOD (SOD2) has a mitochondrial localization, and

EC-SOD (SOD3) is localized in the extracellular matrix, being secreted from cells [20]. SOD1

is constitutively expressed, but can be induced by redox-active metals, superoxide, and xenobi-

otics. SOD2 is the most inducible form, raising its levels up to10-fold in presence of drugs and

cytokines. Defects in SOD2 expression cause oxidative damage in liver, while the overexpres-

sion generally plays a protective role [21]. SOD3 does not have a significant role in superoxide

detoxification in hepatocytes [22]. Another class of intracellular antioxidant enzyme are

known as glutathione peroxidase (GPx). GPx are tetrameric enzymes containing a seleno-cys-

teine in their active site [23]. These enzymes occur in different isoforms (eight in humans), all

able to degrade hydroperoxides, alkyl peroxide, and fatty acid hydroperoxides to lipid alcohols

and oxygen. In particular, GPx1 seems to be the major isoform that converts hydrogen perox-

ide to water and oxygen and catalyzes the reduction of peroxide radicals to alcohols and oxy-

gen; mainly cytosolic, a small fraction is also present within the mitochondrial matrix [24].

GPx1 exerts its action via oxidation of reduced GSH into its disulfide form [25]. It is known

that the mitochondrial respiratory chain is the major site of intracellular ROS generation and,
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at the same time, an important target for the ROS damaging effects. The superoxide anion pro-

duced in the matrix side of inner mitochondrial membrane has been proposed to activate the

uncoupling proteins (UCPs) that in turn might reduce the generation of further superoxide

anions [26]. UCPs are a family of mitochondrial proteins formed by six trans-membrane seg-

ments into the phospholipid matrix of the inner mitochondrial membrane [27], present in ani-

mal and plant in five isoforms, from UCP1 to UCP5 [28]. UCPs isoforms are expressed in

different tissues and may have different functions. The isoform1 is present in brown adipose

tissue (BAT), isoform 2 is expressed almost ubiquitously, isoform 3 in BAT and in skeletal

muscle, isoforms 4 and 5 are present predominantly in the central nervous system [29]. More-

over, in mitochondria, UCPs functional structure is constituted by a dimer stabilized with a

disulfide bridge between the cysteines present in the hydrophilic C-terminal segment [30].

These proteins are mitochondrial anion carriers [31] whose function was initially associated to

uncoupling respiration from ATP synthesis performed by UCP1, the first isoform to be discov-

ered by Nicholls and coworkers (1978) [32], that determines releasing of heat from the oxida-

tion of substrates in brown adipocytes. Besides the adaptive thermogenesis [33], UCPs may

regulate a lot of biological processes, such as the ATP synthesis and all the mechanisms directly

or indirectly linked to ATP utilization, for example the inhibition of insulin secretion by UCP2

from the pancreatic beta cells [34]. The ubiquitously UCP2 is described as mitochondrial scav-

enger of ROS produced by mitochondria [35, 36]. The antioxidant effect of UCP2 has been

reported by in vitro and in vivo studies using UCP2 overexpression, genetic ablation and phar-

macological inhibition [37, 38, 39]. Moreover, different research works suggest that UCP2

could be involved in lipid metabolism: it could stimulate fatty acids oxidation and/or prevent

the oxidative damage due to high lipid levels [40]. In many tissues it has been found a modula-

tion of UCP2 expression, with both a basal and stimulated synthesis of the protein [41]. In

liver, under physiological conditions, UCP2 is essentially localized in the immunocompetent

cells [42], while in conditions of oxidative stress with mitochondrial ROS accumulation, the

protein is up-regulated and expressed in hepatocytes [43], suggesting that UCP2 plays an

important role as a negative regulator of mitochondrial ROS production [35]. To clarify if

DDE toxicity on liver is due predominantly to the oxidative stress caused by this pesticide, we

administered male Wistar rats with a daily dose of DDE comparable to human daily absorp-

tion or blood concentration [44, 45]. We also compared the effect of DDE to the effect of HFD

treatment on hepatic oxidative stress onset. Finally, we analyzed the effect of the simultaneous

exposure to both HFD and DDE on the same markers of oxidative stress. To this end, we

determined the activation of the antioxidant enzymatic systems (SOD1-SOD2) and GPx1

response and we tested the hypothesis of mitochondrial uncoupling involvement to prevent

ROS production in terms of UCP2 gene expression and protein synthesis in rat livers. Our

findings showed, together with the activation of the antioxidant enzymatic systems, a differ-

ence in UCP2 modulation according to the treatments used, with the highest induction of

UCP2 in the hepatocytes of DDE-treated animals. From these data we assumed that UCP2

plays a protective role to limit cell damage and liver injury mitigating mitochondrial ROS pro-

duction with an increasing functional impact at increasing levels of oxidative stress.

Materials and methods

Ethics statement

This study was performed in accordance with recommendations in the EU Directive p2010/

63/ for the Care and Use of Laboratory Animals. The protocol was approved by the Committee

on the Ethics of Animal Experiments of the University of Naples Federico II (Permit Number:

2012/0024690).
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Experimental model

As experimental model 32 male Wistar rats (Charles River Italia, Calco, Como, Italy) were

used. Since the environmental exposure to DDE is in general the result of the introduction of

low doses through the food, in this study we decided to administer DDE at low doses (10 mg/

kg b.w.) orally. It has been reported that the oral administration of this DDE dose does not

influenced physical development, sexual maturation, and serum metabolic parameters in male

pubertal or older rats when is administered for 6 or 4 weeks, respectively [46]. At the start of

the study, the rats were divided into the following four groups (including eight rats each) with

a similar mean body weight (approximately 300 g) and with the body weights normally distrib-

uted within each group: N group (standard control diet PF1915 from Mucedola, Milano, Italy,

0.6% fat J/J, 15.47 KJ/g,); N+ DDE group (standard control diet, +10mg/kg b.w. of DDE); D

group (high fat diet, PF1916 from Mucedola, Milano, Italy, 45% fat J/J, 19.88KJ/g) and D

+DDE group (high fat diet, +10mg/kg b.w. of DDE). All rats were housed individually, accli-

matized in a temperature-controlled room (24˚ C) and subjected to a circadian light-dark

cycle (12 hours light / 12 hours dark). At the end of the experimental period of 4 weeks, the

rats were anesthetized by an intraperitoneal injection of Zoletil (40 mg/Kg body weight) and

euthanized by decapitation. Retroperitoneal and epididymal white adipose tissue (WAT) pads

and liver were immediately removed and weighted. Liver slices were either immediately pro-

cessed for morphological analysis and mitochondria isolation, or frozen in liquid nitrogen and

stored at -80˚C for later processing.

Determination of serum parameters

Serum levels of triglycerides and cholesterol levels were determined by colorimetric assay kit

(Cayman Chemical Company, No.10010303) and fluorometric assay kit (Cayman Chemical

Company, No. 10007640), respectively. Serum alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) levels were determined by standard procedures (colorimetric kit by

Cayman Chemical Company (No. 700260) for ALT and ELISA kit by Fine Test Biotech Com-

pany (No. ER0748) for AST).

Hepatic lipid content

Hepatic lipid content was determined gravimetrically after extraction in chloroform–methanol

and evaporation to constant weight with a rotating evaporator (Heidolh, Germany) according

to the method described by Folch et al., (1956) [47].

Morphological analysis

Liver slices were washed in cold ice NaCl 0.9% for few seconds and fixed in Bouin’fluid for 12

hours. Then, each liver fragment was dehydrated, embedded in paraplast and cut at 5 μm. The

histological sections were processed by Hematoxylin & Eosin stain.

Oxidative stress parameters

Thiobarbituric acid reactive substances–TBARS assay. To evaluate the effect of the

treatments on the lipid peroxidation was used TBARS assay kit, (Cayman Chemical Company,

No.10009055). 25 mg of fresh liver tissue for each animal were washed in cold ice PBS (1.4

mM KH2PO4, 8 mM Na2HPO4, 140 mM NaCl, 2.7 mM KCl, pH 7.4) and homogenated in

250μL of RIPA Buffer (150mM NaCl, 50mM Tris pH 7.4, 1% NP-40, 0.5% sodium deoxycho-

late, 0.1% SDS) plus a cocktail of protease inhibitors (Sigma Aldrich Chemicals). The homoge-

nate was centrifuged at 1600xg for 15 minutes and the resulting supernatant was used for the
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analysis. All solutions were prepared as indicated by the manufacturer. The Malondialdehyde-

Thiobarbituric acid adducts (MDA-TBA) in the samples were measured spectrophotometri-

cally at 532nm. An additional spectrophotometric measure was made at 600nm to detract the

non-specific TBA adducts with other aldehydes formed during the peroxidation events. The

amount of MDA in each sample, expressed as nmol of MDA per mg of proteins, was calculated

by using MDA standard curve and the MDA molar extinction coefficient. The results were

reported as fold change of MDA content in all treated groups vs. N group.

Hepatic oxidized glutathione (GSSG) and antioxidant enzymes levels. The hepatic lev-

els of GSSG were obtained by using a colorimetric kit (Cayman Chemical Company, No.

703002).

Total SODs (Cu/Zn-SOD and Mn-SOD) activity and specific Mn-SOD (SOD2) activity

were monitored on total liver homogenate by using a colorimetric kit (Cayman Chemical

Company, No.706002). For SOD2 activity detection, potassium cyanide 3mM was added to

inhibit SOD1 and SOD3 according to the manufacturer.

Total GPx activity was obtained by using a colorimetric kit (Cayman Chemical Company,

No. 703002).

Preparation of mitochondrial fraction

Mitochondria isolation was performed as described by Lionetti et al. (2004) [48]. Liver frag-

ments were washed and homogenized in 220mM Mannitol, 70mM sucrose, 20mM HEPES,

1mM EDTA and 0.1% fatty acid-free BSA, pH 7.4 (1:10, w/v) with a Potter Elvehjem homoge-

nizer (Heidolph, Kelheim, Germany) set to 500 rpm (4 strokes/min). The homogenate was fil-

trated and centrifuged at 1000g for 10 minutes. The pellet was discarded and the supernatant,

containing mitochondria, was rapidly centrifuged at 3000g for 15 min. The final pellet was

made of a subcellular fraction essentially constituted by mitochondria [49]. Mitochondrial sus-

pension was washed for three times and resuspended in 80mM LiCl, 50mM HEPES, 5mM

Tris phosphate buffer pH 7.4, 1mM EGTA, and 0.1% fatty acid-free BSA, containing a cocktail

of protease inhibitors (Sigma Aldrich Chemicals). Finally, mitochondrial suspension was lysed

(1:1 v/v) in RIPA buffer solution (150 mM NaCl, 50 mM Tris, 1% NP-40, 0.25% sodium deox-

ycholate, 0.1% SDS, pH 7.4) by 10 steps in insulin syringe with thin needle. The resulting mito-

chondrial homogenate was centrifuged at 12,000g for 10 minutes. The pellet was discarded,

and the supernatant was used for analysis.

Mitochondrial fatty acid oxidation rate and carnitine palmitoyl-transferase

system (CPT) activity assay

The rate of mitochondrial fatty acid oxidation was assessed in the presence of palmitoyl-l-car-

nitine (40 μM) by using a Clark-type electrode as previously reported [5]. CPT system (CPT1

plus CPT2) activity was measured spectrophotometrically (at 412 nm) as described by Alexson

et al., (1988) [50].

Preparation of total homogenate

Total proteins from liver were obtained using RIPA buffer solution (150 mM NaCl, 50 mM

Tris, 1% NP-40, 0.25% sodium deoxycholate, 0.1% SDS, pH 7.4) containing a cocktail of prote-

ase inhibitors (Sigma Aldrich Chemicals). Liver fragments were homogenates using a polytron

(KINEMATICA Polytron Model PT10-35 GT/PT 3100D Homogenizer, Fisher Scientific) and

centrifuged at 12,000g for 10 minutes. The pellet was discarded, and the supernatant was used

for analysis.
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RNA isolation and cDNA synthesis

Total RNA was extracted from liver fragments according to the Tri-Reagent (Sigma-Aldrich)

protocol. The quality of each total RNA was checked by electrophoresis on 2% agarose gel

stained with ethidium bromide and measuring the optical density at 260/280 nm. A ratio of

1.8–2.0 was accepted for further reverse transcription. QuantiTect Reverse Transcription Kit

(Qiagen) was used for the removal of genomic DNA contamination and for the subsequent

cDNA synthesis. Approximately 1μg of total RNA was used, according to the kit’s protocol.

UCP2 cDNA sequencing

The cDNA corresponding to a fragment of the UCP2 coding sequence was cloned starting

from reverse-transcribed RNA from liver of a control rat (N group). Conventional PCR reac-

tions were carried out on 2 μl of first-strand cDNA, using the forward primer 5’-AGCAGTT
CTACACCAAGGGC-3’ and the reverse primer 5’-AGAGGTCCCTTTCCAGAGGC-3’,

designed on the exon junction 532/533 (reverse primer) on template NM019354.2. Primer

sequences were designed using Primer Express software (Applied Biosystems). The analysis

retrieved a single cDNA fragment of 230 bp that was purified and inserted into the pSC-A vec-

tor using the Strataclone PCR Cloning Kit (Agilent Technologies) according to the manufac-

turer’s instructions. The cDNA fragment was sequenced using automated methods on an ABI

PRISM Genetic Analyzer (PE Biosystems), showing 100% homology with the Rattus norvegi-
cus UCP2 gene.

Quantitative real-time PCR analysis

UCP2 mRNA was quantified with qReal-Time PCR. The analyses were carried out on an

Applied Biosystem 7500 Real-Time PCR System, using the Power SYBR Green PCR Master

Mix (Life Technologies), following the procedures recommended by the manufacturer. Each

amplification mixture of 20 μl final volume contained 12 μl of real-time PCR Master Mix, 1 μl

each of UCP2 forward and reverse primers described above, 2 μl of cDNA diluted 1:1 and 4 μl

of nuclease free water. Amplifications were performed with an initial step at 95˚C for 1 minute,

followed by 40 cycles at 95˚C for 15 s and 60˚C for 40 s. A melting curve analysis of PCR prod-

ucts was performed from 60˚C to 95˚C in order to ensure gene specific amplification. For

internal standard control, the expression of β-actin gene was also quantified; β-actin primers

were designed on the exon junction 75/76 (forward primer) on template NM031144.2 [51].

Changes in the UCP2 gene expression in the different samples were obtained in according to

the standard 2−ΔΔCt method described by [52].

In Situ hybridization

After slide preparation, as previously reported, the sections were incubated with Proteinase K

10μg/ml at 37˚C (5 min.) in 1 M Tris/HCl pH 7.0, 0.5 M EDTA pH 7.2, to eliminate the endog-

enous DNAse and RNAse activity. Sections were then treated for 60 min. with a pre-hybrida-

tion mix solution containing 50% formamide, 1X Denhardt’s, 100 μg/ml salmon sperm and

100μg/ml t-RNA in DEPC water at 55˚C. Hybridization was carried out at 42˚C overnight

with the UCP2 digoxigenin-labeled probe in a humid chamber. Slides were then washed three

time with decreasing sodium chloride/sodium citrate solutions (2X SSC, 1X SSC, 0.5X SSC)

containing 50% formamide and blocked in 2% Blocking solution in Maleic acid for 30 min. at

room temperature. Then, the sections were incubated overnight at 4˚C with an alkaline phos-

phatase-conjugated anti-Dig antibody (Roche Diagnostics) diluted 1:2500 in 2% Blocking

solution. Sections were repeatedly washed in 100mM TBS, 1X-Tween-20, and the reaction was
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revelated using BM-purple (Roche, N and N+DDE groups) and BCIP-NBT (Roche, D and D

+DDE groups). Finally, the reaction was blocked in PBS containing 1mM EDTA and the slides

mounted with aqueous mounting medium and coverslips. Dig-labelled UCP2 cDNA probe

was generated by PCR using the DIG High Prime DNA labelling and detection starter kit I

(Roche). In the negative control, the hybridization solution did not contain the labelled probe.

UCP2 immunolocalization

Immunohistochemical reactions were performed using Novolink Polymer Detection Systems

(RE7280-CE, Leica Biosystems). After antigen retrieval and quenching of endogenous peroxi-

dase, sections were incubated overnight at 4˚C with UCP-2 (goat-polyclonal antibody C-20,

sc-6525), diluted 1:200 in PBS, and CD68 (mouse-monoclonal antibody, sc-59103) diluted in

PBS 1:100, to detect Kupffer cells. The sections were then incubated in Novolink polymer 1h at

RT, and immunostaining was performed using 3,30-diaminobenzidine (DAB) as chromogen.

The sections were counterstained with hematoxylin and mounted with a coverslip. To test the

specificity of the reagents, the following controls were performed: (a) omission of the primary

antiserum and incubation of the sections with either non-immune serum (1:10 in PBS) or 1%

bovine serum albumin (BSA; Sigma); (b) absorption of the optimally diluted primary antise-

rum with its specific peptide (10 nmol/ml of optimally diluted antiserum) for 24 h at 4˚C.

When the specific peptide was used, the staining was abolished. Images of sections were

acquired using a Zeiss Axioskop microscope fitted with a TV camera.

Western blotting

Western blotting analyses were performed on total liver homogenate to verify the amount of

SOD1 and GPx1, and on mitochondrial protein extract to measure UCP2 and SOD2 levels in

mitochondria. As loading control, endogenous specific protein markers were used: COXIV, as

mitochondrial control, and β-actin for total protein extract. Western blot for UCP2 is often a

problem for the lack of specificity of commercial UCPs antibodies against the different UCP

isoforms. For this reason, several commercial UCP2 antibodies were validated and the classical

western blot protocol was slightly modified. Indeed, prior to the SDS-PAGE, mitochondrial

protein extract was pre-treated with iodoacetamide (Sigma Chemicals) to alkylate the cyste-

ines, as described Sechi & Chait, (1989) [53]. This procedure avoided the formation of a pro-

teic band of 70 KDa, likely due to the UCP2 dimerization, and allowed us to obtain only the

predicted band at about 34 KDa, corresponding to the molecular mass of the UCP2 monomer.

Among tested antibodies, the goat-polyclonal Antibody (C-20: sc-6525) was chosen for the

subsequent analyses because retrieved a single UCP2 band at about 34KDa in both liver and

spleen, used as positive control tissue. After mitochondrial and total homogenate preparation,

the protein content was determined by the method of Hartree [54] using BSA as the protein

standard. For both mitochondrial and total homogenates, 80μg of denatured proteins were

electrophoresed in a 13% SDS–polyacrylamide gel as described by Laemmli [55], together with

a pre-stained protein marker (ColorBurstElectrophoresis Marker m.w. 8–220 KDa, Sigma

Aldrich). After the run, the proteins were transferred onto nitrocellulose membranes (Immo-

bilon-P, Millipore, Switzerland) at 350mA for 60 minutes. The membranes were blocked in

blocking buffer solution (1×TBS/ 1% Tween-20, 5% milk) for 60 minutes at room temperature

and incubated overnight at 4˚C in milk/TBS-Tween buffer (1×TBS/1% Tween-20, 2% milk)

with the following antibodies: UCP-2, goat-polyclonal antibody (C-20): sc-6525, 1:200; UCP-1,

rabbit-polyclonal antibody, AB1426, 1:1000; UCP-3, rabbit-polyclonal antibody, AB3477,

1:1000; SOD2, rabbit polyclonal antibody, Thermo Scientific PA5-30604, 1:500; GPx-1, rabbit

polyclonal antibody, ThermoFisher scientific PA5-26323, 1:1000; SOD-1, rabbit polyclonal
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antibody, Thermo Scientific PA5-27240, 1:500; COX-IV, mouse-monoclonal antibody: sc-

376731, 1:200; CYP450 2B1+2B2, mouse monoclonal antibody, AB22721, 1:1000; β-Actin,

mouse monoclonal antibody: sc-70319, 1:200; Vinculin, mouse monoclonal antibody, sc-

25336,1:200. Membranes were washed 4×15 min. with TBS-Tween solution and incubated for

1h at room temperature with a secondary antibody labeled with horseradish peroxidase,

diluted in milk/TBS-Tween buffer (1×TBS/1% Tween-20, 5% milk). The secondary antibodies

used were: Anti-mouse: Santa Cruz Biotechnology, goat-anti mouse, IgG-HRP: SC-2005,

1:5000; Anti-rabbit: Santa Cruz Biotechnology, donkey-anti rabbit, IgG-HRP: SC-2313,

1:5000; Anti-goat: Santa Cruz Biotechnology, donkey-anti goat, IgG-HRP: SC-2020, 1:5000.

Membranes were washed 4×15 min with TBS-Tween solution and revealed with a chemilumi-

nescent method, using Luminol solution (final concentration 2.5 mM) in presence of cumaric

acids (final concentration 0.4 mM) and H2O2 (final concentration 100mM). The bands

obtained were quantified using C-DiGit Chemiluminescent Western Blot Scanner (LI-COR).

Statistical analysis

Data analysis was performed by calculating the mean of the values for each individual

group ± standard deviation and shown, graphically, as fold changes of the treated groups vs. N.

Statistical analyses were carried out with Graph pad software. Differences between values

obtained to control and treated groups were analyzed by one-way analysis of variance

(ANOVA) followed by Bonferroni post-test. The differences were considered significant when

P value was inferior to 0.05.

Results

Body weight gain and serum metabolite levels

We first analysed whether the different treatments (HFD, DDE or HFD+DDE) differentially

affected obesity development (body weight gain and weights of visceral fat pads), and serum

levels of metabolites related to lipid metabolism (triglycerides and cholesterol levels) and

hepatic injury (ALT and AST).

As regard obesity development, a significant increase in body weight gain was found in

both D (+39%) and D+DDE group (+36%) vs. N group, whereas no significant change was

found in N+DDE group compared to N (Table 1). In accordance, the weights of epididymal

and retroperitoneal WAT pads were increased in D (+44% and +64%, respectively) and D

+DDE (+60% and +75%, respectively) vs. N group, whereas no changes were found between N

and N+DDE (Table 1).

As regard serum metabolite parameters linked to body lipid metabolism, no changes in tri-

glycerides levels were found between N and N+DDE groups, whereas significant triglycerides

level increases were found in both high-fat fed rats (+70% and +39% in D and D+DDE, respec-

tively) compared to control group (Table 1). Noteworthy, D+DDE group exhibits lower tri-

glycerides levels (-30%) vs. D rats (Table 1).

Moreover, no changes were found in cholesterol level between N and N+DDE group,

whereas increased cholesterol levels were found in both D (+50%) and D+DDE (+31%) vs. N

group (Table 1).

The analyses of ALT activity and AST content were used to evaluate the amount of liver

damage produced by the treatments. Increases in ALT activity were found in all the treated

groups (~3-fold in D and N+DDE and 2.5-fold in D+DDE) vs. N group (Table 1). No signifi-

cant change was detected between D and D+DDE. In accordance, AST serum content

increased in treated groups (3.4-fold in D, 3.2-fold in D+DDE and 3.8-fold in N+DDE) vs. N

group. No significant changes were found between D and D+DDE (Table 1).
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Hepatic morphological alteration, lipid content and oxidation

To investigate hepatic lipid accumulation, we used both histologic observations and lipid

extraction according to the method of Folch [47]. No significant changes in liver weight were

found among the experimental groups, whereas hepatic lipid content was higher in D (+74%)

Table 1. Body weight gain, serum metabolite parameters and hepatic lipid content.

N D D+DDE N+DDE

Body weight gain (g) 88.9±7.5 124.2±22.0��� 121.2±19.8••• 73.1±4.7

WAT weight

Epididymal WAT (g) 9.5±1.4 13.7±1.2��� 15.2±1.1••• 10.6±1.0

Retroperitoneal WAT (g) 9.0±1.1 13.9±1.8��� 15.8±1.2#/••• 10.5±0.9

Hepatic parameters

Liver weight (g) 12.8±0.5 12.9±0.6 14.0±0.9 13.3±1.0

Lipid content (mg/g) 4.2±0.2 7.3±0.8��� 5.8±1.4# #/•• 4.3±0.3

Serum parameters

Triglycerides levels (mg/dL) 139.9±8.6 237.6±3.0��� 193.1±7.1# # # ••• 135.9±5.4# # # ���

Cholesterol levels (mg/dL) 123.4±6.4 184.7±20.9� 162.2±12.2• 124.4±7.7#

ALT activity (U/mL) 52.7±11.7 150.1±24.7 ��� 133.5±7.4 152.0±11.5 ���

AST content (ng/mL) 1.81±0.46 6.15±1.61��� 5.76±1.87 6.93±1.98���

WAT (white adipose tissue); ALT (Alanine Transaminase); AST (Aspartate Transaminase)

Data are reported as means±ES of 8 different rats for each group.

� p<0.05 compared vs. N

# p<0.05 compared vs. D

• p<0.05 vs. N+DDE

��� p<0.001 compared vs. N

### p<0.001 compared vs. D

••• p<0.001 compared vs. N+DDE.

N = rats fed with normal diet; D = rats fed with HFD; D+DDE = rats fed with HFD + 10mg/kg b.w. of DDE; N+DDE = rats fed with normal diet + 10mg/kg b.w. of

DDE.

https://doi.org/10.1371/journal.pone.0215955.t001

Fig 1. Hepatic mitochondrial lipid utilization. Fatty acid utilization capacity was tested measuring both CPT system activity (A) and β-oxidation

rate (B). Data are reported as means±ES of 8 different rats for each group. Significant of differences is shown: �� p<0.01 vs. N; ��� p<0.001 vs. N; ##

p<0.01 vs. D; ### p<0.001 vs. D.

https://doi.org/10.1371/journal.pone.0215955.g001
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and D+DDE (+37%) compared to N group. Hepatic lipid content in N+DDE group was simi-

lar to that found in N group (Table 1).

Moreover, mitochondrial fatty acid utilization was analyzed. A significant fold increase of

CPT system activity was found in both HFD treated groups: 1.15-fold increase in D vs. N and

~1.20-fold increase in D+DDE vs. D. Noteworthy, CPT system activity also increased in N

+DDE vs. N (~1.40-fold) and D (~1.20-fold), (Fig 1A). A similar trend was observed for mito-

chondrial fatty acid β-oxidation. Indeed, significant fold increase was found in D vs. N

(~1.46-fold) and in D+DDE vs D (~1.35-fold). Fatty acid β-oxidation significantly increased

also in N+DDE group vs. N (~2.00-fold) and D (~1.46-fold), similarly to the tendency found

in D+DDE group (Fig 1B).

Morphological analysis showed a variable content of lipid droplets (LD) according to the

different experimental groups. The lower content of LD was present in N and N+DDE groups,

(Fig 2A & 2B) while, the higher content of LD was in D group, with several ballooning hepato-

cytes (Fig 2C). An intermediate accumulation of lipid was evident in D+DDE group (Fig 2D).

In both DDE-treated animals, many LD gave a vacuolated appearance to the cells around ves-

sels (Fig 2B & 2D). The liver of D+DDE and N+DDE groups showed—several cells strongly

eosinophilic. Moreover, anti-CD68 antibody immunostaining analysis to detect Kupffer cells

in the liver showed an increased number of Kupffer cells in all treated groups vs. N (Fig 3).

High fat diet and DDE induce oxidative stress in the liver

Hepatic oxidative stress was confirmed monitoring the effect of the treatments on lipid peroxi-

dation (in terms of MDA content) and GSSG levels in the total homogenate. Our results

showed significant fold increase of MDA in D group vs. N (~1.5-fold), in N+DDE vs. N and

vs. D (~2.4-fold and ~1.5-fold respectively) and in D+DDE vs. D (~1.6-fold). Furthermore, we

did not detect significative differences of MDA accumulation between D+DDE and N+DDE

groups (Fig 4). Regarding GSSG content, an important parameter to evaluate the rate of oxida-

tive stress in the tissue, our data showed slight but significant fold increase in D group, vs. N

(~1.1-fold); in D+DDE group vs. D (~1.2-fold) and in N+DDE vs. N (~1.2-fold). Statistical

analysis indicated no-changing of hepatic GSSG levels between DDE-treated animals (Fig 5).

Changing in content and activity of the main hepatic antioxidant enzymes

To gain insight into the possible mechanisms used in the liver to control, at least in part, the

oxidative stress induced by treatments, we also checked changes in both cytosolic and mito-

chondrial superoxide dismutase (SOD1 and SOD2, respectively) and in GPx1 contents. These

proteins constitute the first line of defense against cellular ROS accumulation.

Regarding SODs, SOD1 protein content (Fig 6A1), showed a significant fold increase in D

group vs. N (~2-fold), in N+DDE vs. N and D (~3-fold and ~1.5-fold respectively) and in D

+DDE vs. D (~1.3-fold). No significative modulation of this enzyme was observed between D

+DDE and N+DDE groups. Moreover, we also evaluated the total SODs activity in liver

homogenates (Fig 6A2). The results indicate increased SODs activity in D group vs. N

(~1.5-fold). No change in enzymatic activity was observed between D, D+DDE and N+DDE.

In fact, SODs activity in DDE-treated animals was found increased similarly to D groups

(~1.6-fold). For SOD2 protein content (Fig 6B1), slight but significant fold increase was

observed in D vs. N (~1.2-fold). The highest fold increase was measured in N+DDE vs. N and

D (~1.6-fold and ~1.4-fold respectively). No appreciable variation of the protein content was

found between D+DDE and D groups. Therefore, in D+DDE group, a lower protein content

was observed when compared with the N+DDE group (~0.7-fold). Regarding SOD2 activity

(Fig 6B2), no significative variations were found in D vs. N, whereas increased SOD2 activity

Xenobiotic and high fat diet effect on hepatic oxidative stress and mitochondrial uncoupling protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0215955 April 25, 2019 10 / 24

https://doi.org/10.1371/journal.pone.0215955


was found in D+DDE vs. D group (~1.3-fold). Moreover, according to western blotting data,

the highest increase in SOD2 activity was found in N+DDE group vs. N and vs. D (~1.5-fold).

Finally, concerning GPx1 (Fig 6C1), we found significant fold increase of the protein con-

tent in all treated groups vs. N, particularly in high fat fed animals. In fact, we observed the

highest GPx1 content in D vs. N (~6-fold). Significant fold increase of GPx1 was also observed

in N+DDE vs. N (~4.6-fold), whereas no difference was found between D+DDE and D groups.

Comparing the DDE-treated animals, GPx1 was slightly abundant in D+DDE than N+DDE

(~1.3-fold). According to GPx1 protein levels, total GPx activity increased in all treated groups

vs. N (~1.65-fold in D, ~1.75-fold in D+DDE and ~1.8-fold in N+DDE), without changes

among treated groups (Fig 6C2).

Fig 2. Liver histology. Sections of liver stained with Hematoxylin and Eosin. A) Control rats (N group). Lipid accumulation in HFD condition (black arrows,

panel C, D group). Perivasal cellular vacuolization in presence of DDE (dashed arrows, panels B (N+DDE) and D (D+DDE). Eosinophilic cells in HFD (panel C)

and in DDE-treated animals (panel B, N+DDE & panel D, D+DDE) were evidenced (arrowheads). Magnification used: 10X; Scale bar 50 μm.

https://doi.org/10.1371/journal.pone.0215955.g002
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UCP2 gene expression and mRNA localization

Once established the quality of the designed primers, able to amplify with a conventional PCR

a single band corresponding to an UCP2 cDNA fragment of 230 bp, we investigated the rela-

tive abundance of UCP2 transcripts in the livers from the different groups of rats. We found a

detectable UCP2 expression in N group, thus indicating that in liver is present a cellular popu-

lation in which this mitochondrial protein is constitutively expressed (Fig 7, N group). A sig-

nificant fold increase of UCP2 mRNA level was observed in D vs. N (~5.8-fold), in N+DDE vs.

N and vs. D (~15-fold and 2.6-fold respectively) and in D+DDE vs. D (~2-fold); in D+DDE

Fig 3. Hepatic Kupffer cells detection. Sections of liver were immunostained with anti-CD68 antibody to detect Kupffer cells in the liver. Panel A, N group;

panel B, N+DDE group; panel C, D group; panel D, D+DDE group. Positive cells were evidenced with black arrows. Magnification used: 10X; scale bar applied:

50 μm.

https://doi.org/10.1371/journal.pone.0215955.g003
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group, a lower content of UCP2 transcript was observed vs. N+DDE (~0.7-fold) (Fig 7, D,

D+DDE and N+DDE) groups, respectively.

In situ hybridization analysis performed by using the same cDNA fragment, showedin N

group the Kupffer cells as the unique site of the basal UCP2 gene expression (Fig 8A), as previ-

ously reported by Larrouy et al., (1997) [42]. On the contrary, in all the other groups (D, N

+DDE, D+DDE) UCP2 transcripts were detected in both Kupffer cells and hepatocytes (Fig

8B, 8C and 8D).

UCP2 protein detection

Different technical approaches were used for the UCP2 detection. Firstly, western blotting

analysis (Fig 9A), indicated a significant fold increase of UCP2 protein content in D vs. N

(~2.3-fold), in N+DDE vs. N and vs. D (~5.3-fold and 2.3-fold respectively) and in D+DDE vs.

D (~1.6-fold). In according to the UCP2 mRNA levels previously described, a lower UCP2

Fig 4. Hepatic lipid peroxidation. Analysis of the hepatic lipid peroxidation measured as MDA content in rat liver

homogenate. Significance of differences is shown: �p<0.05 vs. N; �� p<0.01 vs. N; #p<0.05 vs. D.

https://doi.org/10.1371/journal.pone.0215955.g004

Fig 5. GSSG hepatic content. The level of GSSG was evaluated on total liver homogenate. Significant of differences is

shown: ���p<0.001 vs. N; ## p<0,01 vs. D; ### p<0.001 vs. D.

https://doi.org/10.1371/journal.pone.0215955.g005
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protein content was detected in D+DDE group vs. N+DDE (~1.4-fold). Regarding UCP1 and

UCP3, western blotting analyses were done on total tissue homogenate. The results did not

show protein bands in the liver but showed antibody reactivity only in the tissues used as posi-

tive control: brown adipose tissue for UCP1 and skeletal muscle for UCP3 (Fig 9B and 9C).

Moreover, immunohistochemical analysis for UCP2 demonstrated a low positivity in N ani-

mals (Fig 10A), limited to the Kupffer cells. In D group, the immunostaining for UCP2

appeared in the mitochondria of hepatocytes (Fig 10C) and increased sharply in mitochondria

of DDE-treated groups (Fig 10B–10D). To confirm that, in N rats, UCP2 localizes principally

in the Kupffer cells, adjacent sections on the slide were immunostained with CD68 (marker of

macrophages, Fig 11A) and UCP2 antibody (Fig 11B). Data showed that same cells are posi-

tives to both antibodies analyzed.

DDE stimulates cytochrome P450 2B

Western blotting analyses showed induction of cytochrome P450 2B (CYP2B) protein levels in

N+DDE vs. N (1.70-fold) and vs. D (1.50-fold) and in D+DDE vs. D (1.45-fold). No significa-

tive differences were found between DDE-treated animal groups (Fig 12).

Fig 6. Western blotting and enzymatic activity of antioxidant enzymes. (A1) Hepatic cytosolic SOD1 content; (A2) Total SOD activity; (B1) Hepatic

mitochondrial SOD2 content; (B2) SOD2 activity; (C1) Hepatic GPx1 content; (C2) Total GPx Activity. WB intensity of the bands were normalized to that of

β-actin (in A1 and C1) or COX4 (in B1). Lines legend: 1, N; 2, D; 3, D+DDE; 4, N+DDE. Significance of differences is shown. �p<0.05 vs. N; ��p<0.01 vs. N;
���p<0.001 vs. N; #p<0.05 vs. D; ##p<0.01 vs. D; ###p<0.001 vs. D; •p<0.05 vs. N+DDE.

https://doi.org/10.1371/journal.pone.0215955.g006
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Discussion

This work was carried out to study the cellular response, if any, to the toxic actions of the pesti-

cide DDE in rat liver following a treatment of four weeks, in which DDE was administered

alone or in combination with hyperlipidic diet to compare the effects of single exposure (xeno-

biotic or HFD) and simultaneous exposure to both environmental stimuli. Our findings

revealed the presence of a different degree of oxidative stress for the different experimental

groups used, together with the modulation of gene expression and protein synthesis of UCP2,

the uncoupling protein that seemed to be involved in the regulation of oxidative damage as

adaptive cellular response, so supporting the endogenous antioxidant system of hepatocytes.

Moreover, our research confirmed that UCP2 in the hepatocytes under oxidative stress condi-

tions was mainly induced by DDE.

Starting from analysis of obesity development and lipid profile, body weight gain and vis-

ceral WAT pad weight as well as serum triglycerides and cholesterol levels, and hepatic lipid

content were found significantly increased only in HFD-treated animals confirming that high

fat diet induces obesity and alters serum lipid profile and fatty acids deposition in the organs.

Particularly for triglycerides, in D rats we found the highest serum triglycerides and cholesterol

levels compared to the other groups. These data agree with our previous results obtained in

rats, that showed altered serum lipid profile in HFD-feed animals after a treatment period of 6

weeks [5]. Moreover, mitochondrial fatty acids β-oxidation and CPT system activity were

found increased in D vs. N confirming previous finding [5] and suggesting that the increased

capacity of mitochondria to oxidize fatty acids in HFD fed rats might serve as a compensatory

mechanism for the elevated hepatic fatty acids uptake that occurs during high fat feeding [5].

However, the increased fatty acid oxidation was not able to completely counteract the

increased load of hepatic free fatty acids, resulting in hepatic lipid accumulation in D group, as

confirmed by hepatic lipid content and histological analysis. Noteworthy, the increased mito-

chondrial fatty acid oxidation might play a crucial role in enhancing ROS production [56]. In

accordance, D group showed an increased content of MDA, a product of lipid peroxidation

acting as a marker of oxidative stress. Increased oxidative stress may in turn lead to activation

Fig 7. UCP2 gene expression in rat liver. UCP2 mRNA levels were determined by using real-time PCR analysis. The

amount of UCP2 transcripts was normalized to that of β-actin mRNA and converted in fold change, compared with

rats fed with a standard diet (N group). Significance of differences is shown. ��p<0.01 vs. N; ���p<0.001 vs. N;

##p<0.01 vs. D; ###p<0.001 vs. D; ••p<0.01 vs. N+DDE.

https://doi.org/10.1371/journal.pone.0215955.g007
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of endogenous antioxidant defense system. Indeed, the SODs protein levels showed that both

isoforms (cytosolic and mitochondrial) were increased in D group. As regard SODs activity,

total SODs activity increased in D group, whereas no significant difference was found in SOD2

activity suggesting that the increased in total activity may be due to the other SOD isoforms.

SODs up-regulation could indirectly suggest that this enzymatic system serve to control the

oxidative damage produced by the lipid surplus. It is known that saturated fatty acids lead to

an increase of ROS and oxidative stress in terms of superoxide anion, H2O2 and hydroxyl radi-

cals [57]. Furthermore, the increased levels of SODs ensured the conversion of a large part of

the superoxide anion in H2O2 that can be eliminated through peroxidase enzymes. In accor-

dance, GPx1 protein expression was higher in D groups than in the other two groups, presum-

ably elicited to the excessive hydrogen peroxide accumulation and fatty acid hydroperoxides.

Total GPx activity also increased in D animals, confirming the data also reported in our previ-

ous work [58]. In addition, UCP2 increase on mitochondrial inner membrane providing a

Fig 8. UCP2 mRNA localization in rat liver. Section of liver from rats fed with a standard diet (N, panel A): transcripts are localized only in Kupffer cells (black

arrow), hepatocytes are unlabeled (arrowhead). In all the other groups (N+DDE, D, D+DDE, panels B, C and D respectively) transcripts are localized in both

Kupffer cells and hepatocytes. Magnification used: 20X; Scale bar: 20 μm.

https://doi.org/10.1371/journal.pone.0215955.g008
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further mechanism to regulate ROS production at mitochondrial level. However, the summary

of these anti-oxidant effects did not completely counteract stress induced by lipid oversupply

and hepatic cell damage occurred as suggested by increased ALT and AST serum levels.

As concern the DDE-treated groups, hepatic detoxification pathways were stimulated by

DDE, as suggested by the increase in CYP450 2B content. Indeed, it is known from literature

data that DDE can interacts with the constitutive androstane receptor (CAR) and pregnane X

receptor (PXR), activating CYP450 genes family stimulating CYP450 2B and 3A [59]. We also

found a significant increase in mitochondrial fatty acid oxidation and CPT system activity in

both DDE-treated groups. This increase was higher than the one found in D group, suggesting

that it could be useful to support energy requirements for detoxification processes induced by

DDE [59]. In D+DDE group, the increase in fatty acid utilization was associated with a lower

hepatic lipid content and serum triglycerides level vs. D group. Beside this, the analysis of ALT

and AST described a similar entity of liver damage in D and DDE-treated groups, where

serum transaminase levels were found equally increased. Histological liver analysis confirmed

hepatic alteration in all treated groups, but it showed features of hepatic steatosis and

Fig 9. UCP2 Western blotting. (A) Western blotting for the mitochondrial protein UCP2. The amount of UCP2 protein content was normalized to COX4

and converted in fold change, compared with rats fed with a standard diet (N group). (B) Western blotting for UCP1; (C) Western blotting for UCP3.

Significance of differences for UCP2 protein levels are shown: �p<0.05 vs. N; ��p<0.01 vs. N; #p<0.05 vs. D; ##p<0.01 vs. D; •p<0.05 vs. N+DDE. Lines

legend: 1, N; 2, D; 3, D+DDE; 4, N+DDE.

https://doi.org/10.1371/journal.pone.0215955.g009
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macrophages infiltration worsened in DDE-treated rats, as confirmed by CD68 immunostain-

ing. According to the histological changes, the levels of MDA was increased in all the experi-

mental groups compared to the control, indicating the pro-oxidant role of both saturated fatty

acids and DDE in our experimental conditions, but DDE-treated groups showed the highest

content of MDA suggesting a more severe DDE induced oxidative stress. The increase in both

mitochondrial fatty acid oxidation and CYP2B reaction cycle in DDE-treated groups, contrib-

uted to elevate ROS production that in part was controlled by hepatic antioxidant activity. The

levels of the main antioxidant enzymatic systems were also raised in all the treated groups,

with some differences, sometimes apparently contradictory, among the groups.

Examining the antioxidant enzymatic systems, we observed the same protein levels of

SOD1 in DDE-treated groups as well as total SOD activity, whereas, particularly for SOD2, the

protein levels and the enzymatic activity depended on the type of diet to which the pesticide

was associated and/or on the subcellular compartment considered. Indeed, the N+DDE group

Fig 10. UCP2 Immunolocalization. (A) Under normal diet condition (N group), only phagocytic cells were marked with primary antibody (black arrows),

whilst no positivity was detected in the hepatocytes (arrowhead). (C) Immunoreactive hepatocytes (black arrows) were evident following HFD condition and in

DDE-treated groups (panel B, D group; panel D, D+DDE group). Notice mitochondria labeled by anti-UCP2 antibody, thus confirming the reliability of the

immunostaining. Magnification used: 100X; Scale bar 5μm.

https://doi.org/10.1371/journal.pone.0215955.g010
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showed the highest levels of SOD2 protein levels among the treated groups. On the contrary,

in the D+DDE group, SOD2 protein levels were the same of group D, i.e. significantly lower

than N+DDE, but their activity no change significantly vs. N+DDE. Finally, the protein levels

of GPx1 found in liver of N+DDE rats was intermediate between N and both D and D+DDE

groups, while, total GPx activity was the same of HFD-treated rats. The different responses

detected in the two DDE-treated groups might be arisen by different causes, the first was that

the pesticide could act variously depending on the diet which it is associated, as stated above.

Fig 11. CD68 and UCP2 localization in N rats. Immunostaining for CD68 (A) and UCP2 (B) reelevates colocalization of the two antigens. Different arrows were

used to compare the same cells positives to the both antibodies used (big arrow, thin arrow, dashed arrow). Magnification used: 40X; Scale bar 50μm.

https://doi.org/10.1371/journal.pone.0215955.g011

Fig 12. CYP450 2B protein levels. Western blotting analysis of CYP450 2B. Data were obtained as media ± standard

deviation and graphically represented as fold change vs. N. Significant of difference between groups is shown:
���p<0.001 vs. N; ##p<0.01 vs. D.

https://doi.org/10.1371/journal.pone.0215955.g012
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Being DDE a hydrophobic molecule, it tends to be retained in the lipid matrix of adipose tissue

or in the lipid droplets observed in the hepatocytes, probably in a partially inert form. In the D

+DDE group, total SODs and GPxs protein activities were the same measured in D group,

thus suggesting that the cellular responses of the antioxidant system in this group are gener-

ated by the increased amount of fatty acids, rather than DDE presence. These findings allow us

to hypothesize that the most of DDE administered together with the hyperlipidic diet had been

trapped inside fat, in line with the found increases in both WAT weight and hepatic ectopic

lipid accumulation. Conversely, when the pesticide is administered combined with a standard

diet, the anti-oxidant responses recorded in the liver cells came from properly by the pesticide.

The results also demonstrate that there was no synergistic effects of fatty acids and DDE on

antioxidant enzymes synthesis and activity. Indeed, the analysis on the total GSSG accumu-

lated in the liver reelevates that D rats accumulate GSSG compared to controls, whereas DDE-

treated animals exhibited a similar further increase in GSSG content vs. N and D group. The

data correlates with the levels of hepatic MDA suggesting that DDE may play a predominant

pro-oxidative role when it is not associated to fats.

As already described, the highest expression and activity of the mitochondrial SOD2 were

detected in the hepatocytes of N+DDE rats. SOD2 is a critical protein that acts against super-

oxide produced by mitochondrial respiration. Homozygous SOD2 knockout mice faced to

early postnatal death [60]. Heterozygous SOD2 knockout mice exhibited numerous alterations

in mitochondrial function [61] and ultrastructural abnormalities (mitochondrial swelling),

increased susceptibility for induction of permeability transition [62] and enhanced lipid perox-

idation [63]. Instead, SOD2 overexpression protects mitochondrial respiratory function [64]

and attenuates mitochondrial ROS generation, intracellular lipid peroxidation and cell death

[65]. SOD2 is located within the mitochondrial matrix, in the site of free radical production

from the electron transport chain (ETC). The highest SOD2 expression in N+DDE animals

suggested that oxidative stress was at first generated in mitochondria and the highest superox-

ide production was due to DDE. Hence, this pesticide was reported to damage some compo-

nents of ETC. In addition, it has been demonstrated that an impairment of ETC gives rise to

increased levels of mitochondrial ROS [66]. The excess of superoxide could be controlled by

ensuring that a significant proportion of protons may bypass the ATP synthase pathway and

leak back to the mitochondrial matrix, namely by a mitochondrial uncoupling [67]. UCPs sup-

ported this function, representing the first line of antioxidant defense aimed at resolving mis-

matched outward and inward proton fluxes [68,69]. For this reason, our attention focused on

UCP2 and our findings showed that UCP2 in liver of control rats was expressed only in immu-

nocompetent cells, while the oxidative stress, produced by the different treatments, induced

mRNA synthesis and protein translation in hepatocytes too. These data agree with those of

Chavin and coworkers [43], who found UCP2 upregulation in hepatocytes of obese rats. The

levels of mRNA and protein increased in all the treated groups, but the highest level was

recorded in N+DDE group, confirming our hypothesis of the highest pesticide pro-oxidative

activity in association with the normal diet regimen. According to Echtay et al., (2002) [70]

and Brand et al. (2004) [71], UCP2-mediated proton leak requires activation by superoxide

and lipid peroxidation derivatives such as 4-hydroxynonenal and other reactive alkenals. In N

+DDE, as described above, the highest SOD2 and UCP2 expression was found, accompanied

with elevated levels of MDA. We assumed that SOD2 and UCP2 co-operate to limit the pro-

duction of mitochondrial superoxide anion in response to oxidative damage induced by the

pesticide. Therefore, the similar MDA levels measured in the two DDE treated experimental

groups, can be explained according to a different hypothesis. In particular, in N+DDE group

mitochondrial ROS production is limited by the high expression of SOD2 and UCP2, while in

D+DDE, the major content of fat could cause a minor activity of the pesticide, but it could
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supply a great amount of lipid to peroxidation process. In fact, this situation generates cellular

responses partly regulated by saturated fats.

From our findings we conclude that, in our experimental conditions, both saturated fatty

acids and DDE induce oxidative stress in the liver. Hepatocytes activate the endogenous anti-

oxidant system to protect themselves from the oxidative damage predominantly generated in

DDE-treated animals. In this system, the induction of UCP2 in the hepatocytes can be used as

adaptive cellular response to limit the damage produced by an excessive mitochondrial super-

oxide generation, mainly caused by DDE. Therefore, UCP2 may have a primary role as a sen-

sor and suppressor of mitochondrial ROS, with increasing expression and functions at

increasing levels of oxidative stress [72]. With the limitation that further studies are needed to

gain insight in the mechanisms involved in DDE effect, the results of the present study suggest

that hepatic oxidative stress is induced by both HFD and xenobiotics exposure, but the anti-

oxidant defense responses are differently modulated, with a possible role of UCP2 mainly in

the response to xenobiotics.
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