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Abstract

The massive reach of social networks (SNs) has hidden their potential concerns, primarily

those related to information privacy. Users increasingly rely on social networks for more

than merely interactions and self-representation. However, social networking environments

are not free of risks. Users are often threatened by privacy breaches, unauthorized access

to personal information, and leakage of sensitive data. In this paper, we propose a privacy-

preserving model that sanitizes the collection of user information from a social network utiliz-

ing restricted local differential privacy (LDP) to save synthetic copies of collected data. This

model further uses reconstructed data to classify user activity and detect abnormal network

behavior. Our experimental results demonstrate that the proposed method achieves high

data utility on the basis of improved privacy preservation. Moreover, LDP sanitized data are

suitable for use in subsequent analyses, such as anomaly detection. Anomaly detection on

the proposed method’s reconstructed data achieves a detection accuracy similar to that on

the original data.

Introduction

Information sharing platforms, such as online social networks (OSNs), have experienced

remarkable growth and recognition in recent years. Notably, OSN platforms have direct access

to the public and private data of their users [1]. In some cases, these data are shared with other

parties to carry out analytical and social research. Although the release of social network data

is considered a severe breach of privacy, OSN platforms reassure their users by anonymizing

their data before sharing it. Unfortunately, data mining techniques can be used to infer sensi-

tive information from released data. Therefore, it is necessary to sanitize network data before

releasing it [2].

Moreover, an increasing number of attacks target personal user information on OSNs [3].

Thus, there is an urgent need for radical improvements in OSN security and privacy measures.

Most previous studies on the preserved privacy of published data deal only with relational data

and cannot be applied to social network data [4].
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Therefore, we have taken the initiative toward preserving privacy in social network data.

For each user, we use an activity profile to represent his/her sequence of data. With our model,

we aim to investigate the application of LDP to user activity logs. In this model, a data collec-

tion server uses a specific partitioning of privacy levels to create Laplacian random noise. How-

ever, not all user data are stored in SN repositories; only a predetermined set is selected

amongst the salient points representing the data sequence. On the other hand, the data ana-

lyzer sub-model reverses these disrupted points to reconstruct the original stored data received

from the repositories. Moreover, the data analyzer uses the resulting noisy data to detect

anomalous behavior. The data analyzers in the proposed model utilize an extension of the con-

ventional LDP to carry out anomaly detection on reconstructed SN data.

In this paper, our contributions are summarized as follows:

1. We propose a model that protects user privacy in SNs compared with other solutions where

sensitive user information is poorly anonymized and can be inferred using data mining.

We guarantee a stronger degree of privacy and a lower expected error caused by large data

streams. Our privacy preserving model applies Laplace’s probability distribution function

(PDF) to generate random noise. To guarantee privacy for each user, this noise is calculated

using the user’s data. In addition, it protects not only user profiles but also user activity.

2. We achieve an improved estimation error of % 0.15 over direct LDP estimation [5]. In the

direct application of LDP to data, the estimated error is linearly proportional to the size of

the data set. Since SN data are highly scalable, the direct LDP approach results in relatively

high expected error [6].

3. We conduct experiments on real-world datasets, showing that the proposed framework

guarantees privacy and achieves modest overhead performance.

4. We significantly reduce analysis costs. In our algorithm, only selected data are sent to the

detection model, which estimates the data required for classification.

This paper is organized as follows. In Section 2, we review related work in LDP privacy

preservation in social networks. In Section 3, we formulate the problem and demonstrate a

threat model. Section 4 introduces the scientific framework and preliminaries. The proposed

model is explained in Section 5, followed by experimental results and a discussion in Section 6.

We conclude and present our potential future work in Section 7.

Threat model

The data repositories in an SN collect and store everything related to its users. Logs may con-

tain the user profiles, activities, and networks of other users and may also store information

created without user involvement. Sometimes, the SN shares an anonymized version of this

information with other parties for different purposes. Unfortunately, as several recent inci-

dents have demonstrated, releasing even anonymized graphs may lead to the re-identification

of individuals within the network [7] and the disclosure of confidential information, which

has severe consequences for those involved.

Scientific analysis is known to be vulnerable to the identification of individuals and extrac-

tion of private data. However, when a specific breach of privacy was tackled with continuous

research and proposed solutions, it was shown that data for analysis might be safely released

under differential-privacy guarantees [5, 8]. Since privacy preservation in social networks is a

relatively new research area, little work has been produced on the application of LDP to user

profile data and activity logs. Fig 1 shows the motivational scenario of this research. The SN

platform collects a pervasive amount of data and information and immediately stores it in its
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repositories. The data and information are then shared with the governmental sector under

certain agreements. The data may also be shared with analytical parties or even advertising

companies to push specifically tailored digital advertisements.

Related work

Recently, the privacy of social network data has gained increasing attention and concern.

Although these types of data are necessary for generating revenue and conducting social

research, there is no guarantee that the implemented anonymization techniques will protect

users’ private information. In this section, we cover the state of the art application of local dif-

ferential privacy (LDP) in social networks and other fields. LDP in social networks has become

an alternative to simple graph anonymization and data aggregation. In one study, out-link pri-

vacy was implemented to protect information about individuals that is shared by other users.

LDP has even been proposed to solve the non-uniformity problem in two-dimensional multi-

media data [8]. Zhou et al. [9] claimed that calculating a standard deviation circle radius

defines the divergence of a data grid and allows the dynamic allocation of noise. The results of

their proposed model had lower relative errors than similar approaches, such as UG) algo-

rithm. Kim et al. applied LDP to the collection of indoor positioning data and used differenti-

ated data for estimating the density of a specified indoor area [10].

Recently, the application of LDP to crowdsourced data has received substantial attention

[11–13]. In this context, LDP is mainly used to collect and build high dimensional data from

distributed users [11]. These data are randomized using multi-variate joint distribution esti-

mation on clusters of the dataset, and then the marginal distribution of these clusters is calcu-

lated to approximate a new dataset. When the model was tested, the Complexity Reduction

Ratio (CRR) reached 0.512. In [12], an online aggregate monitoring framework was designed

over infinite streams with a w-event privacy guarantee. The model was combined with a neural

network to predict statistical values and test the utility of released data. The resulting mean

absolute error (MAE) [0.2–16] and mean relative error (MRE) [0.2–0.6] indicate that the

model improved the utility of real-time data publishing. The authors in [13] showed that LDP

achieved an %89 assignment success rate in preserving the location of workers in Spatial

Crowdsourcing (SC) through the random generation of 1000 work tasks from a dataset of

6100 users.

Privacy preservation in social networks is considered a relatively new research area. The

work in [14–18] covers models generally dedicated to preserving privacy in social networks

Fig 1. Data collection and sharing in an SN.

https://doi.org/10.1371/journal.pone.0215856.g001
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(SNs). The model in [14] tackles the problems of determining data ownership in an SN and

the vulnerability of SN metrics to changes in network structure. The authors claim it is neces-

sary to develop an algorithm (such as minimal spanning tree, degree distribution, etc.) to

compute results based on differential privacy (DP). Accordingly, modeling the complete

1-neighborhood structure as background knowledge was proven to protect privacy. The

model focused on data that could be inferred from neighboring data and provided accurate

answers to aggregate queries [15]. In addition to content, the correlation of a SN was investi-

gated in [16]. The described algorithm labels vertexes in the dataset, uses dense clusters to pop-

ulate an adjacency matrix, and applies a data partition to the matrix to identify dense regions.

Lastly, DP is applied to obtain a noisy adjacency matrix. However, LDP has not always been

preferred by researchers to preserve the privacy of sensitive attributes in SNs. Cai et al. and

Backstrom et al. [17,18] suggest that, although LDP is generally suitable for inherent data, it is

not the best choice for preventing inference attacks.

Furthermore, in [19], experiments showed that no LDP algorithm could fully preserve the

persistent homology of high dimensional network features or fulfill all network graph metrics.

Some proposed solutions for this issue include using Merging Barrels and Consistency Infer-

ence [20], deep neural networks with %73 accuracy [21] and neighborhood randomization

[22]. An opposing opinion in [23] emphasizes the LDP’s ethical and logistical capacity to pro-

tect organic data. The authors demonstrate that LDP can produce a differentially private syn-

thetic dataset to be publicly distributed when combined with other privacy-protecting

techniques, such as Ullman’s Private Multiplicative Weights.

Local Differential Privacy Obfuscation (LDPO) is a variation of LDP tailored for IoT.

LDPO substitutes homomorphic encryption to distill and aggregate data at edge servers with

decreased computational overhead. The model is distributed over devices and both edge and

cloud servers and provides an accuracy of %90.45 when using 30 features through feature dis-

tillation [24].

In summary, as privacy concerns are being raised ever more frequently, several local differ-

ential privacy models have been suggested and proven in many application areas for protecting

user privacy from untrusted entities.

Preliminaries

Local differential privacy

LDP is a highly reliable and mathematically rigorous privacy standard [25, 26] that injects ran-

domized noise into collected data or query results to hide sensitive details in a dataset. Thus,

regardless of the experience level of an attacker, he/she cannot infer any knowledge from dif-

ferentially elicited data [8, 27].

Definition (1): (ε−differential privacy)
Given two statistical datasets, D and

0D, which satisfy jD � 0Dj ¼ 1 (Hammingdistance), the

randomized function A achieves ε−differential privacy on the condition that

e� ε �
PrðAðDÞ 2 RÞ
PrðAð 0DÞ 2 RÞ

� eε: ð1Þ

Definition (2) laplace mechanism
Using scientific data analysis, Dwork et al. [28] proposed the Laplace mechanism, which

takes as inputs a database (or stream of data) D, function f, and privacy parameter ε (privacy

budget) and returns the true output of f plus some Laplacian noise. This noise is drawn from a
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Laplace distribution with the probability density function

P xjlð Þ ¼
1

2l
e� jxj=l: ð2Þ

where λ is determined by both GS(f) and the desired privacy level ε.

Theorem 1: For any function f: D! Rd, the mechanism A for any dataset D 2 D,

A Dð Þ ¼ f Dð Þ þ hLaplace
Dðf Þ
ε

� �

i
d
; ð3Þ

satisfies ε-differential privacy, where the noise, Lap DðfÞ
ε

� �
; is drawn from a Laplace distribution

with a mean of zero and scale of Δ(f)/ε.

Probability Density Function (PDF)

A random variable has a {\displaystyle {\textrm {Laplace}}(\mu, b)}Laplace(μLaplace(μ,b) dis-

tribution if its probability density function is

f xjm; bð Þ ¼
1

2b
exp �

jx � m
b

� �

: ð4Þ

Static / Uniform division

Involves the division of privacy level ε into smaller levels, (ε1, ε2, ε3,. . .. . .,εr), such that

ε1 ¼ ε2 ¼ ε3 ¼ . . . . . . ¼ εr ¼
ε
r
: ð5Þ

Dynamic / Adaptive division of privacy level

To divide the privacy level, a temporal scale must be introduced. Consider three successive SPs

in ascending order: previous ðtsh� 1
; xsh� 1

Þ; current ðtsh ; xshÞ; and next ðtshþ1
; xshþ1

Þ: Given system

parameter α, we calculate the temporal scale μh as [29, 30]

mh ¼
jtsh � tsh� 1

j þ jtsh � tshþ1
j

2

� �
a; ð6Þ

and, considering that privacy level ε is divided into (ε1, ε2, ε3,. . .. . .,εh)
such that ε = ∑1�h�r εh and μsum = ∑1�h�r μh, we calculate the individual small privacy level

as

εh ¼ ε�
mh
msum

: ð7Þ

Average error rate

The average error rate has been identified as follows.

Given the noisy salient points S ¼ ð 0s1;
0s2; . . . ::;

0srÞ from r users [29], we can estimate the

average values of the original xn at time tn, which requires averaging all the noisy values of xn,
as

AVGest xnð Þ ¼
1

r
�
P

śi2S
0xn: ð8Þ
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Conjugate Bayesian method [31–33]

The Bayesian probability function is given as

P cjxð Þ ¼
PðxjcÞPðcÞ
PðxÞ

; ð9Þ

� where P(c|x) is the posterior probability, and P(c|x) is the likelihood;

� P(c) is the class prior probability;

� P(x) is the prediction prior probability.

A discrete random variable x is said to have a Poisson distribution with parameter λ> 0, if,

for k = 0,1,2,. . ., the probability mass function of X is given by

f k; lð Þ ¼ Pr x ¼ kð Þ ¼
l
ke� l

k!
: ð10Þ

For numerical stability, the Poisson probability mass function should be evaluated as

f ðk; lÞ ¼ expfk ln l � l � ln Gðkþ 1Þg: ð11Þ

Choose Pij = Poisson (λij) for the unknown rate parameter λij>0.

Choose a gamma prior for λij as this ensures that the posterior predictive distribution for a

future period is calculable as a simple ratio of Poisson gamma mass functions.

Applying the Dirichlet process

Given a measurable set S, a base probability distribution H and a positive real number α, the

Dirichlet process DP(H,α) is a stochastic process whose sample path is a probability distribu-

tion over S. For any measurable finite partition of S : ðBiÞ
n
i¼1

, If X~DP(H,α), we have

ðXðB1Þ . . . . . .XðBnÞÞ � DirðaHðB1Þ . . . ::HðBnÞÞ: ð12Þ

The notation X~DP(H,α) indicates that the random variable X is distributed according to

the distribution DP(H,α), i.e., according to a Dirichlet process with parameter base distribu-

tionH and real number α [31, 33].

The Dirichlet distribution of order K� 2 with parameters α1,. . ...,ak> 0 has a probability

density function with respect to the Lebesgue measure on the Euclidean space Rk = 1 given by

f x1 . . . . . . :; xk; a1; . . . . . . :akð Þ ¼
1

BðaÞ
Qk

i¼1
xai � 1

i : ð13Þ

Proposed approach

In this section, we describe the proposed scheme for sanitizing SN user activity logs using

LDP. We then compare the results of applying anomaly detection to the original and recon-

structed data. The model functions on two servers: a data collection server and a data-analyz-

ing server. As shown in Fig 2, the data collection server represents each activity log as a data

sequence. In each sequence, we determine specific salient points. After selecting these points,

we use the user’s data in addition to other parameters to create random noise. This noise is

then added to the data to distort it from its original value. Finally, the data collection server

stores it in data repositories.

Anomaly detection in online social networks
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In contrast, the data-analyzing server retrieves synthetic data from the repositories, recon-

structs the original data streams, and searches the user’s activity for abnormal behavior, as

demonstrated in Fig 3.

The privacy standard model in the first sub-model avoids high error rates when applying

LDP to large datasets. This model essentially groups salient points that represent similar

actions (increasing, decreasing, constant) together, then applies LDP to selected points in

these groups. Thus, a relatively small number of points are processed.

Users spend significant time on SNs performing all kinds of activities, such as sending mes-

sages, posting, liking posts, disliking posts, performing audio or video calling, and so on. If we

consider a user’s activity log per single action, it shows active periods vs. non-active periods. If

we consider the sending and receiving of messages as an activity, the plot for a particular user’s

stream of data increases on days where a greater number of messages are sent and/or received,

decreases on days where fewer messages are sent or received and remains constant on idle

days.

The model operates in the following order:

Step 1: Calculate the salient points (SPs).

To obtain the representative points of a user’s data sequence, we take the first order deriva-

tive of each value in his/her sequence at a specific timestamp. The user’s sequence is repre-

sented as values collected at particular time intervals reflecting increasing, decreasing, or

constant activity. In Fig 4, the user’s calling activity is represented as a curve over a ten day

time period.

Calculating the first order derivative allows us to determine increasing (derivative >0) and

decreasing (derivative <0) periods. We exclude the constant periods where the user’s activity

value is the same. As explained in Algorithm 1, we store the points where the derivative of each

value is not equal to zero.
Algorithm 1: Pseudo-code for calculating salient points
Input: Si = ((t1,x1),(t2,x2),. . ...,(tn,xn)). // Activity stream for a
specific action performed by the ith user.
Output: dSi = ((t1,dx1),(t2,dx2),. . ...,(tn,xdn))
// Calculate first order derivative
n = size (Si)
For i 2: n

dxi  
ðxi � xi� 1Þ

ðti � ti� 1Þ

End For
// Exclude xd = 0;
C_list  NULL;
For i 1: n

IF (dxi ~ = 0)
add dxi to C_list;

End IF
End For

Fig 5 shows the salient points calculated from the data stream of user calls in Fig 4 (when

dxm 6¼ 0). As shown in the Figure, the number of points can be further reduced while main-

taining accurate data representation.

Step 2: Reduce the set of salient points to only those indicating the beginning of an increas-

ing or decreasing period following the rule described in Table 1.

In situations where the data sequence is very long (thousands of values), or the data’s time

intervals are very small (seconds), the set of salient points will be considerably large and in

need of further reduction. To achieve this, any successive points belonging to the same move-

ment can be removed. Therefore, if three successive points belong to an increasing period, we

merge their time interval, retaining only the beginning and end of the interval. We continue

Anomaly detection in online social networks
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this reduction process until no two adjacent time intervals have the same movement. Algo-

rithm 2 depicts these steps in detail.
Algorithm 2: Pseudo code for minimizing the number of salient points
Input: C_list; //First row in C_list is the derivative of the SP.
//The second row is the timestamp.
// Selecting points at the beginning of an ascending or descending
period
[~, n]  size(C_list);
While (TRUE)

interval_min  1;
For h  2: n-1
// Obtaining the Pre-element

Dx_pre  C_list (1, h-1)
T_pre  C_list (2, h-1)

// Obtaining the current element
Dx_cur C_list (1, h)
T_cur C_list (2, h)

// Obtaining the next element
Dx_next C_list (1, h+1)
T_next C_list (2, h+1)

//Applying the selection condition
IF (Dx_pre>0 && Dx_cur>0 &&Dx_next >0) OR

(Dx_pre<0 && Dx_cur<0 &&Dx_next<0)
interval_cur  |T_cur-T_pre|+|T_cur-T_next|;
IF (interval_cur < interval_min)
interval_min  interval_cur;
t_min  h

Fig 2. An overview of applying LDP to collected data.

https://doi.org/10.1371/journal.pone.0215856.g002

Fig 3. An overview of reconstructing the received data and classifying anomalous behavior.

https://doi.org/10.1371/journal.pone.0215856.g003
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End IF
End IF

End For
IF (interval_min  1)

break
End IF

Fig 4. The calling activity of a user.

https://doi.org/10.1371/journal.pone.0215856.g004

Fig 5. The representative salient points computed from the calling activity in Fig 4.

https://doi.org/10.1371/journal.pone.0215856.g005
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Remove element at C_list (1, t_min)
End while

Step 3: Calculate the privacy level in uniform and adaptive distributions.

Given the reduced set of salient points, we now partition the privacy level to generate ran-

dom noise values. This step, uses Algorithm 3. The algorithm divides privacy ε into equal levels

with each level εi satisfying the condition ε1 ¼ ε2 ¼ ε3 ¼ . . . . . . ¼ εr ¼
ε
r.

Algorithm 3: Pseudo code for uniformly dividing the privacy level
Input: n // Length of the data sequence;
Epsilon // Parameter
Output: εi
// Uniform partitioning
For i 1: n

εi (Epsilon / n);
End For

In this step, we calculate a temporal scale for each salient point in the set that controls the

privacy level of each point, thus regulating the amount of noise added to it. We use three time-

stamps representing the current, previous and next SP. We then calculate the temporal sum

for all SPs in the sequence of a specific user. Then, we divide the privacy level based on this

temporal sum. Algorithm 4 shows the steps of this procedure.
Algorithm 4: Pseudo code for the adaptive division of privacy level
Input:
Selected_SP // List of selected salient points
Epsilon // Parameter
Alpha // System parameter
Beta // Parameter
Output: Privacy level for each timestamp εi.

// Calculating Temporal scale mh ¼
jtsh � tsh� 1

jþjtsh � tshþ1
j

2

� �
a

[m, n]  size (Selected_SP);
For i 2: n-1

Uniform_Up  |Selected_SP(i)-Selected_SP(i-1) |
+
|Selected_SP (2, i)-Selected_SP (2, i+1) |

Fraction  Uniform_Up/2;
Temporal_scale(i)  (Fraction)Alpha

End For
// The last element in the selected points does not have ‘next’

Uniform_Up  |Selected_SP (2, n)-Selected_SP (2, n-1) |
Fraction  Uniform_Up/2;
Temporal_scale(n)  (Fraction)Alpha;

// Calculating the Temporal sum μsum = ∑1�h�r μh
temporal_sum 0
For i 1: n

Table 1. Rule for minimizing salient points.

Condition Action

If three successive time intervals are all

increasing or all decreasing

If the third point is a beginning of an opposite movement (increase

after a decrease or decrease after an increase)

1. Add the first two together.

2. Remove the first two points from the list and keep the third.

Else

1. Add them together.

2.Remove their corresponding points from the List of Points.

Otherwise 1. Keep the corresponding point in the list of points.

https://doi.org/10.1371/journal.pone.0215856.t001
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temporal_sum  temporal_sum + Temporal_scale(i)
End For
// Calculating the privacy level εh ¼ ε�

mh
msum

For i 1: n
εi = Epsilon. (Temporal scaleðiÞtemporal sum );

End For
Step 4: Add Laplacian noise to the selected salient points.

If we consider the list of salient points SPi ¼ ððts1 ; xs1Þ; ðts2 ; xs2Þ; . . . ::; ðtsr ; xsrÞÞ, we can

obtain the noisy salient points S0Pi ¼ ððts1 ;
0xs1Þ; ðts2 ;

0xs2Þ; . . . ::; ðtsr ;
0xsrÞÞ, where

0xsh is obtained

using the probability distribution function (PDF) of the Laplacian distribution

0xsi ¼ xsi þ Lap
Ds
εi

� �

: ð14Þ

The Laplacian generated noise depends on the privacy level. Therefore, using a uniform dis-

tribution generates noise different from adaptive noise. The higher the value of the privacy

level, the higher the generated noise is. Therefore, it differs from one user to another. Knowing

that the Laplace distribution performs a simple translation, it perfectly fits with the definition

of differential privacy. The steps are shown in Algorithm 5. Since uniform privacy levels are

the same, the same PDF generates the noise, whereas, in adaptive privacy partitioning, differ-

ent PDFs are used to create the noise for each SP. Each different PDF incorporates a different

privacy level due to dynamic partitioning, and the PDFs’ are independently calculated for each

SP.
Algorithm 5: Calculating Laplacian noise
Input:
Selected_SP [] // List of Selected Salient points of length n.
S_max // Maximum value of the data stream.
S_min // Minimum value of the data stream
Mean_Mu; // Mean variable for the PDF function.
Scale_b; // Standard Deviation for the PDF function
Uniform_privacy [] // List of uniform privacy levels for each SP.
Adaptive_privacy [] // List of adaptive privacy level for each SP.
Output:
Uniform_Noisy_stream // List of distorted SPs using a uniform privacy
distribution.
Adaptive_Noisy_stream // List of distorted SPs using an adaptive pri-
vacy distribution.
Delta_s = s_max-s_min; // Data sensitivity (low sensitivity causes
higher noise values)
[m, n] size(Selected_SP);
For i 1: n

Uniform_Up  Delta_s/Uniform_privacy(i) // Delta over uniform
epsilon

Adaptive_Up  Delta_s/ Adaptive_privacy(i) // Delta over adaptive
epsilon

Uniform_Noise  pdf ('Normal’, Uniform_Up, Mean_Mue, Scale_b)
Adaptive_Noise  pdf ('Normal', Adaptive_Up, Mean_Mue, Scale_b)
Uniform_Noisy_stream (i)  Selected_SP(i)+ Uniform_Noise
Adaptive_Noisy_stream (i)  Selected_SP(i)+ Adaptive_Noise

End For
Step 3: Store the ‘noised’ SP for analytical or other purposes. The repositories contain a san-

itized representation of the SP with no indication of the original data.
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Step 4: The requesting sub-model receives the noised SP and attempts to reconstruct the

stream of data using linear estimation, as explained in the preliminaries section. The sub-

model uses the linear equation of a straight line to draw segments between every two points.

The general equation is

y ¼ axþ b; ð15Þ

where a is the slope of the line, represented as the (
change in the y� value
change in the x value ). The y-intercept parameter

b is the intersection point between the linear line and the y-axis, which is represented as

b ¼ 0xsi � a:tsi: ð16Þ

In our case, the slope is calculated as
change in noisy points
change in timestamps . Algorithm 6 shows the code steps.

Algorithm 6: Reconstructing the original data stream using linear
estimation
Input: Uniform_Noisy_stream containing a sequence of the noised SP and
a sequence of timestamps for each noised SP.
Output: SP // List of the reconstructed SP.
[~, n]  size (Uniform_Noisy_stream);
For i 1: n-1

a(i)  Uniform Noisy streamð1;iþ1Þ� Uniform Noisy streamð1;iÞ
Uniform Noisy streamð2;iþ1Þ� Uniform Noisy streamð2;iÞ

b(i)  Uniform_Noisy_stream (1, i)- a(i). Uniform_Noisy_stream
(2, i);
End For

a(n)  Uniform_Noisy_stream (1, n)/Noisy_stream (2, n);
b(n)  Uniform_Noisy_stream (1, n)- a(n). Noisy_stream (2, n);

// Reconstructing the original SP
For i  1: n
SP(i)  (a(i). Uniform_Noisy_stream (1, i)) + b(i);
End For

Step 5: For the activity dataset, the anomaly detection sub-model extracts the number of

communications between pairs of nodes as a Bayesian counting process [31] and represents

the number of interactions as weights assigned to communicating nodes in the network. The

anomaly detection sub-model then applies Bernoulli, Markov chain and Dirichlet processes to

find the nonparametric Bayesian inference.

Step 6: Perform individual-based analysis. In this step, we assume Nij(t) to be the adjacency

of node i to node j at time t. The increments determine the out-degree and in-degree of node i,
and we represent the number of outgoing nodes as

Ni:ðtÞ ¼
P

j6¼iNijðtÞ; ð17Þ

while the incoming communications over time for individual i are represented as

N:iðtÞ ¼
P

j6¼iNjiðtÞ: ð18Þ

We then calculate the total activity by finding the degree sum of the network over time

N..(t).

Step 6: A sample of size n is selected from the population. The random variable of interest,

X, is the number of anomalous individuals in the sample, while M is the number of anomalous
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individuals in the population, and N is the set of communicating individuals

P X ¼ xð Þ ¼ h x; n;M; nð Þ ¼
M
x

� �
N� M
n� x

� �

N
n

� � : ð19Þ

Fig 6. Dataset visualization using MATLAB’s T-SNE function for dimension reduction over Euclidean distance

metrics.

https://doi.org/10.1371/journal.pone.0215856.g006

Fig 7. Plotting the activity of 10 users in the dataset.

https://doi.org/10.1371/journal.pone.0215856.g007
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Experimental setup

In this section, we describe the simulation process, including the dataset, parameters, and eval-

uation metrics. We explain the setup and discuss the results in the second sub-section.

We conducted our experiments by applying the LDP privacy preservation distribution to a

set of user activity sequences. The data sequence was adapted from the VAST Challenge 2008

Fig 8. Selecting an SP to represent non-zero derivative periods. All SPs are selected on the curve.

https://doi.org/10.1371/journal.pone.0215856.g008

Fig 9. Selecting an SP to represent non-zero derivative periods. The SP for timestamp 7 was (dxi = 0).

https://doi.org/10.1371/journal.pone.0215856.g009
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[32]. The LDP model was applied to simulated cell phone data from the Mini Challenge on

social network analysis. Data were collected from 400 individuals located at 30 locations in the

network over a period of ten days. Fig 6 shows a simple visualization of the data after project-

ing the high dimensional communication log into low-dimensional points.

Each data stream represents a user’s calling activity over ten days. Each day represents a

timestamp. Fig 7 illustrates the data sequences (streams) of ten users.

Results and discussion

We applied the steps explained in the proposed approach in Section 5. We first determined the

salient points in each user’s data stream. The user’s activity in Fig 8 does not contain a constant

period (having the same number of calls), so all points are selected. However, the user in Fig 9

makes the same number of calls on the sixth and seventh days (dxi = 0). Since the first order

derivative for timestamp 7 is zero, the salient point at this timestamp is removed. The same

applies to timestamp 8; however, since it represents the beginning of a decreasing period, it is

Fig 10. Reduced SPs for a user communication pattern.

https://doi.org/10.1371/journal.pone.0215856.g010

Fig 11. Another example of reduced SPs.

https://doi.org/10.1371/journal.pone.0215856.g011
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retained. The colored lines parallel to the y-axis represent the timestamps, and the intersection

point between each line and the curve is a salient point.

The next step is to reduce the salient points to represent points at the beginning of an

increasing or decreasing period. Figs 10 and 11 show the reduced sets of two different users.

The user in Fig 10 does not have consecutive intervals with all increasing or decreasing values,

as the minimum interval is 2. The same scenario for the other user is shown in Fig 11.

After reducing the set of salient points, we calculate the individual privacy level for each

point using uniform or adaptive division and assign Epsilon values of 2 and 5. The Epsilon

value is used to generate the random noise applied to the reduced set. We use mean μ = 0.8

scale b = 0.2 for the PDF function, and noise is added to each point in different data-set sizes:

50, 100, 200 and 400 users.

Fig 12. Plotting original and reconstructed curves in a uniform privacy distribution.

https://doi.org/10.1371/journal.pone.0215856.g012

Fig 13. Plotting original and reconstructed curves in adaptive privacy distribution (low noise).

https://doi.org/10.1371/journal.pone.0215856.g013
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Having created and stored the synthetic data on the data collection server, we next demon-

strate the reconstruction process using linear estimation. Figs 12 and 13 show original and

reconstructed data streams. In Fig 12, the red curve represents original user activity, and the

blue curve represents the activity generated for uniform privacy levels. In Fig 13, the red curve

represents the original data stream, and the yellow curve is the linear reconstruction for adap-

tive distributed privacy levels. Note that the reconstruction of data preserves the structure of

the activity pattern, this is very important for anomaly detection.

We calculate the error rate for the combination of uniform-privacy division with linear esti-

mation and adaptive-privacy division regenerated using linear estimation. Fig 14 plots the

average error rate for the two different approaches on various data sizes. The error rate

Fig 14. Varying data size (ε = 2).

https://doi.org/10.1371/journal.pone.0215856.g014

Fig 15. The p-values of the anomalous nodes under the multinomial model.

https://doi.org/10.1371/journal.pone.0215856.g015
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equation is

e ¼
1

seq length
�
Pn

timestamp¼1

AvgðxdÞ � Avgð
0xdÞ

AvgðxdÞ
: ð20Þ

where Avg(xd) is the average of the actual values in the data stream for timestamp d, and

Avgð 0xdÞ is the average of the reconstructed values of the data stream for the same timestamp.

We next apply the Bayesian anomaly detection technique to the reconstructed stream of

users. In this experiment, we detect outliers with respect to the duration of calls between indi-

viduals. The duration variables are treated in the same manner as the calling activity described

earlier. During the first analysis phase, the model checks all 30 locations for anomalous users

to apply the multinomial model with the sequential Dirichlet process model with an uninfor-

mative negative binomial base measure [7].

We apply the Bernoulli process and Markov chain to all network users, with mean values of

[0.63, 0.48] using a threshold of 0.05, to obtain a better understanding of the messaging pat-

terns and their variability. This phase extracts the predictive P-values of the users from their

communication patterns, as shown in Fig 15. The detection phase of the reconstructed data is

the same as that of the original data. The same users have predictive p-values below the thresh-

old and are flagged by the detection sub-model, which implies that the application of LDP to

preserve data privacy succeeds in sanitizing the data. In addition, the data structure is main-

tained for further use by the anomaly detection sub-model.

In Fig 16, the abnormal activities peak on the eighth day, the same day the original activities

peak, suggesting that the reconstructed data do not lower the performance of subsequent anal-

yses, which can incorporate all the data into real-time anomaly detection.

As seen in the simulation results in Fig 16, the proposed model improves the estimation

error while being applied to large-scale data. The model conducts anomaly detection on a

Fig 16. Number of anomalous nodes in each daily time interval under a Markov Bernoulli model.

https://doi.org/10.1371/journal.pone.0215856.g016
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subset of the data without disclosing the actual values, which guarantees privacy and reduces

the cost of further analyses.

Conclusion and future work

In this paper, we presented a model for privacy preservation in social networks. The model

sanitizes the collected data and sensitive information of SN users using LDP and then attempts

to reconstruct the original sequences and perform analyses using sets of selected salient points.

We conserve the social structure of each user’s communication pattern. The error rate of the

estimated data compared to the original data is acceptable for large datasets with small time-

intervals. Our simulation results show that conducting anomaly detection on synthetic data

results in determining the same anomalous users and activities as those in the original data. In

the future, we plan to extend the proposed privacy model to include estimating noisy data with

non-linear approximation.
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