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Abstract

One measure of habitat quality is a species’ demographic performance in a habitat and the

gold standard metric of performance is reproduction. Such a measure, however, may be

misleading if individual quality is a fitness determinant. We report on factors affecting lifetime

reproduction (LR), the total number of lifetime fledglings produced by an individual, and

long-term territory-specific reproduction in a multi-generational study of northern goshawks

(Accipiter gentilis). LR increased with longer lifespans and more breeding attempts and was

strongly correlated with the number of recruits in two filial generations indicating that LR was

a good fitness predictor. Extensive differences in LR attested to heterogeneity in individual

quality, a requisite for the ideal pre-emptive distribution model (IPD) of habitat settling

wherein high quality individuals get the best habitats forcing lower quality individuals into

poorer habitats with lower reproduction. In response to 7–9-year prey abundance cycles,

annual frequency of territory occupancy by breeders was highly variable and low overall

with monotonic increases in vacancies through low prey years. Occupancy of territories by

breeders differed from random; some appeared preferred while others were avoided, pro-

ducing a right-skewed distribution of total territory-specific fledgling production. However,

mean fledglings per nest attempt was only slightly lower in less versus more productive terri-

tories, and, contrary to IPD predictions of increases in annual territory-specific coefficients

of variation (CV) in reproduction as breeder densities increase, the CV of production

decreased as density increased. Rather than habitat quality per se, conspecific attraction

elicited territory selection by prospecting goshawks as 70% of settlers comprised turnovers

on territories, resulting in occupancy continuity and increased territory-specific reproduction.

Top-producing territories had as few as 2 long-lived (high LR) and up to 6 short-lived (low

LR) sequential breeders. While individual quality appeared to effect territory-specific hetero-

geneity in reproductive performance, our data suggests that differences in individual quality
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may be washed-out by a random settling of prospectors in response to conspecific

attraction.

Introduction

Lifetime reproduction (LR) reveals the full extent of variation in fitness potential among indi-

viduals, and differences among individuals are the sources of variation on which natural

selection works [1, 2]. Common to many studies of LR in birds are extensive among-individ-

ual variation in LR and strong correlations between LR and lifespan (longevity) and number

of breeding attempts [3, 4]. Other influencing factors include phenotype, habitat composition

and structure, food abundance, weather, interspecific competition, weather during different

stages of individual life histories, mate quality, predation, population dynamics, and individ-

ual covariates such as body size and condition [3, 5–12]. Estimates of variance in LR require

data from complete life cycles of individuals [2] but the propensity of juveniles in many spe-

cies to disperse from a study area make LR data difficult to obtain. Despite this, several stud-

ies in which locally-born individuals recruited as breeders into a study population showed

that lifetime fledgling production and subsequent numbers of recruits were correlated, indi-

cating that lifetime production of fledglings is a good predictor of fitness [13–15]. Studies of

rate-sensitive fitness metrics report that early breeding in life should be favored by selection

because starting to breed early can improve an individual’s LR by increasing the number of

breeding attempts [1, 16, 17] and changes in reproductive rates are most pronounced in the

early years [3, 18, 19]. On the other hand, delayed reproduction may be favored if costs of

early reproduction (i.e., reduced survival, lowered future reproduction, and somatic mainte-

nance) outweigh the benefits [20–22]. Alternatively, focusing on the entire lifespans is funda-

mental for understanding a species’ life history, population ecology, and trade-offs among

life history traits. For example, longer lifespans allow more reproductive attempts and

increased chances of reproducing during periods of favorable environmental conditions

[23–25].

Age at first breeding in many raptors is density-dependent and manifests as increased pro-

portions of young breeders when a population of breeders falls below habitat saturation (i.e.,

due to high adult mortality) [26–28]. In northern goshawks (Accipiter gentilis; here after gos-

hawk), breeding by both sexes <2-years of age occurs occasionally in stable populations but up

to 30% in expanding populations of breeders (i.e., due to sudden increases in food resources)

[29–31]. Age of first breeding had significant effects on LR of female goshawks in Germany

that started breeding at age 1-year. These young females had significantly lower LR than

females that delayed breeding until age 3-years, but interestingly there were no differences in

breeding lifespans of females that started breeding early or delayed until age 3-years [19].

Higher costs of reproduction by young, inexperienced males vs. females in highly size-dimor-

phic raptors (males smaller than females) with strongly divergent breeding sex roles (i.e., gos-

hawks) whereby males maintain territories and provision their families with food through the

breeding season while females incubate and brood at nests, may be why young females are

reported breeding more frequently than young males [32–34]. Age-specific variation in mean

number of fledglings per breeding attempt in European goshawks followed the general pattern

of age-related reproduction in many birds [35]—a concave curve showing initial increases

with age, a peak at mid-age (6- to 7-years-old in goshawks), and a decline in old age [18, 19,

33, 36]. Whether age-specific reproduction follows the concave pattern, whether young
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breeders produce fewer fledgling in their initial attempt, and whether early breeding affects

breeding lifespans and LR in goshawks in America is poorly known.

Because age-specific fledgling production in birds initially improves with increasing age,

levels off, and declines in old age, it is often assumed that there is an advantage for both juve-

niles and adults to pair with adults. In studies where only two age classes of raptors (those in

juvenal plumage and those in adult plumage) were considered, there were typically fewer juve-

nile/adult pairing and more juvenile/juvenile and adult/adult pairing than expected by chance

[37–39]. However, when actual ages of adult/adult pairs were considered, there was no ten-

dency for hawks of similar age to pair [38, 39]. In fact, in certain years, pairing in the two age

groups in sparrowhawks (A. nisus) was non-random while in other years pairing was nearly

random, differences due perhaps to yearly differences in the available adults [37]. Because

many juvenile raptors molt into adult plumage in their second year, is important to recognize

that strong mate fidelity may affect assessments of mate choices and that assessments should

therefore focus on the actual ages of individuals in the year of pairing. Little variation in the

age at first breeding, high breeder survival, and turnover rate can affect appraisals of age-based

assortative mating [39–41]. In addition to age, variations in individual body mass (physiologi-

cal condition) or structural body size (ensemble of morphometrics) may provide cues to the

“quality” of potential mates and several authors documented mass- or size-based non-random

pairing in raptors [11, 12, 38, 42] while others were unable to do so [43–45]. If, in species with

strong territory fidelity, individuals preferentially pair with high quality territory owners, then

these individuals choose a territory by default. Of course, a territory owner’s condition might

be attributable to its territory quality, making the disentanglement of individual and territory

quality problematic [11].

Habitat quality in birds is often attributed to vegetation composition and structure around

nests because vegetation characteristics can influence prey abundance and availability [46–48],

predation [49–51], competition [52–54], and environmental conditions [55]. Because each of

these can affect an individual’s survival (lifespan), breeding attempts, and LR [19, 56, 57], an

individual’s reproductive performance in a habitat is a frequently used as a metric of habitat

quality [58]. This is because individuals are assumed to preferentially settle into habitats that

confer survival and breeding success and there is then an expectation of a congruence between

an individual’s fitness and its evolved habitat preferences [59–61]. Understanding the adaptive

significance of habitat use in heterogeneous landscapes requires a demonstration of choice

and a determination of the fitness consequences of choices [62]. Empiricists often use proxies

of fitness such as survival, breeding phenology, brood size, and breeding success, but proxies

are seldom shown to be correlated with numbers of fledglings recruited as breeders–the mea-

sure of contributions to future gene pools. Also, there is a lack of consensus on how to measure

habitat quality because indices of vegetation structure or productivity have uncertain links to

individual fitness and because studies of differences in reproduction among habitats differing

in vegetation traits often fail to separate the effects of individual quality (i.e., fitness; the genetic

contribution to future generations) from the quality of occupied habitats [24, 58, 63].

Territory-specific reproductive output by goshawks is typically highly variable; some terri-

tories are occupied frequently by breeders and produce many fledglings while others were

occupied inconsistently and produced few fledglings [64–66]. While variation in territory

occupancy and reproduction in birds is typically attributed to variation in habitat quality, it

has been argued that some of this variation may be attributable to variations in individual

genetic and learned characteristics such as abilities to contest territories and to find and utilize

resources through site familiarity about the physical and biotic features of the habitat [63, 67–

69]. Based on this argument, several authors suggested that goshawks distribute themselves

among habitats in heterogeneous landscapes according to the ideal pre-emptive distribution
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(IDP) model [70]. The IPD model predicts that the highest quality goshawks acquire the best

territories thereby forcing lower quality individuals into poorer territories where reproduction

is lower [66, 71, 72]. Thus, expectations under the IPD model are: (1) an among-year non-ran-

dom occupation of territories, (2) an increase in occupancy of infrequently-used (low quality)

territories as a population grows, (3) less variability among-year fledgling production in high

quality vs. low quality territories, and (4) more frequent occupancy of low quality territories by

young sub-adult individuals [37, 73, 74]. On the other hand, if habitat settling in goshawks fol-

lows the IPD model, then individual quality may exaggerate, moderate, or offset the effects of

habitat quality, potentially confounding the study of habitat quality [24]. Determining the rela-

tionship between fitness and individual versus territory quality is likely to be problematic in

long-term multi-generational studies where territories are occupied by multiple (sequential)

breeders with variable lifespans, and fledgling production, especially if settling into territories

is not “ideal” (individuals do not settle in the best available territories) in the first place. Fur-

thermore, in species with strong territory and mate fidelity, there are likely to be correlations

among reproductively-based quality-rankings of territories and/or mates with lifespan, num-

ber of breeding attempts, and number mates, especially when increased lifespan results in

more breeding attempts and sequential mates. Alternatively, Sergio et al. [24] found that over

the long term the effect of parental quality seemed to wash out in black kites (Milvus migrans)
and that territory quality might then be judged solely on total fledgling production.

Here we report on lifespan, age at first breeding, breeding lifespan, number of breeding

attempts, age-specific reproduction, mate choice, and morphological (e.g., body mass, tarsom,

wing and tail length) and environmental factors (e.g., breeding density, numbers of mates, and

quality ranks of mates and territories) that affect individual LR and recruit production. We

also report on how territory-specific differences in (1) years of occupancy by breeders, (2)

numbers of unique breeders and mates, and (3) long-term fledgling production affects the

study of territory (habitat) quality in a 20-year (1991–2010) multiple-generational, longitudi-

nal study of male and female goshawks in Arizona, USA. Our aims were to document the

extent of variation in LR among goshawks, identify individual and environmental correlates of

LR, determine the extent to which LR was a predictor of fitness (genetic contribution to the

next generation), and identify factors that could potentially affect a future study of habitat

quality based on relationships between the territory-specific demographic performance of

individual goshawks and the composition and structure of their forest habitats.

Methods

Study area

The study area (1,728 km2) was all of the Kaibab Plateau above 2,182 meters above sea level

(m.a.s.l.) in northern Arizona, USA (36˚2601600N, 112˚1105500W). The Kaibab Plateau is com-

posed of nearly continuous forests of pure ponderosa pine (Pinus ponderosa) between ~

2,075–2,450 m.a.s.l., a dry mixed-conifer forest comprised of ponderosa pine, Douglas-fir

(Pseudotsuga menziesii), white fir (Abies concolor), blue spruce (Picea pungens), and quaking

aspen (Populus tremuloides)] between 2,045–2,650 m.a.s.l., and a wet mixed-conifer forest

comprised of Engelmann spruce (P. englemannii), subalpine fir (A. lasiocarpa), blue spruce,

white fir, Douglas-fir, quaking aspen, and ponderosa pine above 2,600 m.a.s.l. Pinyon (Pinus
edulis)-juniper (Juniperus spp.) woodlands occurred below the study area between 1,830–2,075

m.a.s.l., and a shrub-steppe plain occurred below 1,830 m.a.s.l. [75, 76]. With the exception of

several narrow (<1 km) meadows and areas burned by high-severity wildfire, forests on the

study area were contiguous [77]. The southern one-third of the study area included the Grand

Canyon National Park-North Rim (GCNP), and the northern two-thirds included the Kaibab
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National Forest (KNF). Forests on the Kaibab Plateau are isolated from other forests by 80 to

250 km of shrub-steppe plain [78]. For detailed descriptions of the study area see [78, 79].

Field methods and background. We monitored territory occupancy and reproduction of

both male and female goshawks from April through September on a maximum of 125 territo-

ries from 1991–2010 [77, 78]. Northern goshawks are long-lived, monogamous, and territorial

forest-dwelling Accipiter with high mate and territory fidelity [32, 34, 80]. Active nests and ter-

ritories were identified when a nest was found with an adult in incubation or brooding pos-

tures or if eggs or nestlings were observed. Breeding adults were captured with dho-gaza nets

in their nest areas using a live, great horned owl (Bubo virginianus) lure from 10 days after

egg-hatch to 10 days post-fledging [81]. Breeding adults were initially sexed based on behavior

at nests and was confirmed by measures taken when captured on body mass (measured to

nearest gram with 1kg and 2kg spring scales), tarsus-metatarsus (tarsom) length, toe-pad

length (maximally-stretched distance between the junction of the toe-pad with the hallux talon

and junction of the toe-pad with the third digit talon [82]), wing cord (unflattened), and tail

length measured to the nearest mm. In years when breeders could not be trapped or resighted,

sex determination was as based on behavior at nests. All goshawks received a USGS leg band

and a colored aluminum band with unique alpha-numeric codes that were readable from 80 m

with 40–60× telescopes [81]. If a reading of a code was ambiguous (i.e., due to wear), hawks

were recaptured, identified by their USGS band, and given a new color band. Use of two bands

showed no cases of band loss among resighted or recaptured individuals over the 20 years.

Annual field efforts of crews comprised of 15–23 persons were focused on determining terri-

tory occupancy (finding nests), visiting active (eggs laid) nests, banding and measuring nest-

lings, and capturing, measuring, banding, and resighting breeding goshawks. Resighting of

banded individuals showed that breeders had strong annual fidelity to territories [78].

Active nests were visited weekly to determine their status, count young, and estimate the

timing and causes of nest failures. Nestlings were banded in the 10 days before fledgling. Num-

ber of young produced per breeding attempt was taken as the count of nestlings at banding

(20–30 days of age) or, uncommonly, counts of young in nest areas within 10 days post-fledg-

ling if nestlings were not banded [77]. Brood sizes ranged from 1–4, mean annual nest failure

rate (fledged no young) was 0.23 (range = 0.12–0.48), and mean annual brood size of successful

nests (fledged�1 young) was 2.0 fledglings (range = 1.5–2.5 fledglings) [77]. Due to pro-

nounced reversed size dimorphism in goshawks (females mass 1.4 times larger than males),

nestlings can be reliably sexed at banding on the basis of morphological measurements, includ-

ing body mass, tarsus-metatarsus length, and toe-pad length [34, 81, 83]. Our procedure mis-

classified only 2 of 104 (1.9%) banded nestlings that were subsequently retrapped or resighted

as breeders; both had been classified initially as females but were determined to be males on

recapture. We were unable to band all nestlings at some nests because of unsafe tree climbing

conditions (e.g., snags), late discovery of nests (e.g., at or after fledgling), or logistical con-

straints in years with many breeders. Nonetheless, fledglings produced at all unclimbed nests

were tallied [77]. Individuals were tallied as recruits to the breeding population when they

were first trapped or resighted (if banded as nestlings) in a nest area when they were discov-

ered incubating, brooding, or feeding fledglings. Local (in situ) recruitment is defined as

recruitment of locally-born and banded nestlings into the local breeding population. Immi-

grant recruitment was estimated at 54% of recruits [75].

Surveyed portions of our study area were saturated with territories, which we defined as an

exclusively-used, circular areas centered on nests (if only 1 nest was known in a territory) or

the geographic center between 2 or more alternate nests weighted by the number of times each

was used by the hawks [78]. Territory size (11.3 km2) was estimated as a radius equal to half

the mean distance (3.8 km ±0.08 km, range = 1.2–8.4 km, n = 588 first-order neighbor
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distances) among first-order neighboring pairs. Dividing the total study area (1,728 km2) by

11.3 km2 resulted in an estimated total of 144 territories in the study area. Thus, our sample of

125 monitored territories comprised ~ 87% of potential total territories [77]. The annual fre-

quency of breeding on 121 territories with�9 years of monitoring was highly variable, ranging

between 8–86% of territories with breeders (�x ¼ 40%) [77]. Variation in the proportion of ter-

ritories with eggs tracked annual variation in prey abundance in response to variations in

pulses of primary forest productivity (with 0–2-year lags) driven by El Niño-Southern Oscilla-

tion (ENSO) precipitation at a periodicity of 3–5 wet followed by 3–5 dry years [84–86]. Pri-

mary productivity of overstory and understory plants cascaded up through primary and

secondary consumers resulting in annual monotonic increases (or decreases) in bird and

mammal prey abundance with successive wet (or dry) years [77]. We ranked a year’s quality

for breeding based on the proportion of territories occupied by breeders in that year; in good

breeding years, more territories had breeding hawks, brood sizes were larger, and fewer nests

failed [77].

Unless banded as nestlings (ages known), all breeding individuals at first capture (typically

in June–July) were assigned to one of 3 age-classes based on plumage and eye color, where

“age” refers to full years since birth. A 2-year-old sub-adult (a hawk in its 3rd year) had many

juvenal feathers mixed with adult plumage, yellow-to-orange eyes; a 3-year-old sub-adult (in

its 4th year) had predominant adult plumage, scattered juvenal feathers, upper breast with

coarse streaking and barring, orange eyes), and a�4 year-old adult (in its�5th year) had full

adult plumage, breast with fine streaking throughout, orange-red to red eyes; hereafter a

“�4-year-old”). Plumage characteristics used to age 2- and 3-year-old unbanded hawks

matched the plumages of individuals banded as nestlings at their first capture as 2- and 3-year-

olds breeders. Minimum age at first breeding for banded recruits was 2-years [77].

Ethics statement and animal welfare. Capturing and banding of goshawks were con-

ducted under United States Fish and Wildlife Service Banding and Auxiliary Marking permit

(#21294), United States Geological Service Scientific Collecting permit (#MB044583-0), Ari-

zona Fish and Game Department Scientific Collecting permit (#SP708255), Grand Canyon

National Park Scientific Research and Collecting permit (#GRCA-2014-SCI-0025), and Colo-

rado State University Animal Care and Use Committee permit (#05-086A-01). All research

activities were consistent with American Ornithologists Union guidelines for capturing and

handling birds. All authors declare no conflicts of interest.

Lifetime reproduction. We report lifespans, age at first breeding, breeding lifespans

(years from first to last breeding), number of breeding attempts, and LR for known-age indi-

viduals (banded as nestlings or aged as 1- or 2-years-old on sub-adult plumages; hereafter

“known-age” hawks). We separately report minimum lifespans (minimum age of�4-years-

old at first breeding + subsequent years of breeding), numbers of breeding attempts, breeding

lifespans, and LR of individuals that were first captured in full adult plumage and assigned

ages of�4-years-old. In studies of life history characteristics of breeders, individuals breeding

in the first year of a study (or in newly discovered territories thereafter) have unknown breed-

ing histories and individuals still alive at the end of a study have unknown future breeding

careers. To minimize bias resulting from inclusion of such individuals, we excluded from our

sample of hawks all individuals found breeding on territories when the territories were first

discovered. For goshawks to be included in our sample, they would have to have been known

replacements of prior breeders (i.e., turnovers) on monitored territories. In the years when

turnovers occurred, all new recruits were considered to be first time breeders. To exclude indi-

viduals potentially alive at the end of the study (2010), we eliminated all hawks that were newly

recruited after 2000. This cutoff resulted in the inclusion of new recruits first breeding in
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cohorts 1992 through 2000, and left only 1 male and 1 female from these cohorts last known to

be alive in 2008.

LR was determined for known (banded) individuals only. Male breeders were particularly

difficult to trap and resight; a few could not be captured, and others were not captured until

their second or third breeding year. Likewise, we were unable to resight some banded males

and females in one or more breeding attempts, especially when an attempt failed before a

year’s trapping or resighting was completed. We assumed the same male or female was breed-

ing in a missed year (or years) when those years were bracketed by resights of the same indi-

vidual, an assumption supported by the strong breeder fidelity to territories [78, 87]. Similarly,

we inferred the identity of unbanded breeders or breeders with partially read bands (identity

uncertain) up to 3 years prior or subsequent to their capture (or conclusive band readings)

only if breeding by these individuals was preceded or followed by>3 years of no breeding on

their territories based on the assumption that the prior breeder died. Because no hawks

changed territories in one year and returned to breed on their original territory the following

year, we were confident in identity inferences of hawks missed in a single year when that year

was bracketed by breeding of the same individual on a territory. However, given an approxi-

mate 4-year mean breeding lifespan (see below), our confidence in inferring the identity of

missed breeders declined as numbers of years without resightings increased. In all cases,

broods were assigned to the inferred identity of the male and female breeder.

Due to the possibility of breeders immigrating to or emigrating from the Kaibab, ambiguity

remains as to whether all breeding attempts by goshawks in our study were documented. How-

ever, based on strong goshawk fidelity to breeding territories on the Kaibab and elsewhere [34,

78, 80, 87], we believe that movement of breeders to or from the Kaibab would have been min-

imal. Furthermore, the breeding dispersals we observed were rarely beyond 5 territories and

any immigrating/emigrating breeder would have to cross as much as 250-km of desert scrub-

land to nest in other forests. Because of our intensive territory monitoring [78], we believe few

if any breeding attempts were missed once territories were discovered. Lastly, we assumed that

breeders were the parents of all individuals in their broods. Violations of this assumption were

likely rare because only 1 of 77 nestlings at 39 goshawk nests on the Kaibab Plateau had a geno-

type not consistent with both parents [88], suggesting that extra-pair fertilizations (EPF) on

the Kaibab were lower than in other raptors (reviewed in [89]). Due to observed high mate

fidelity of Kaibab goshawks, reproduction of paired males and females was not entirely inde-

pendent. However, because breeding lifespan of pair members seldom overlapped completely,

we report LR for both sexes. We tested for differences between the distributions of breeding

lifespans, breeding attempts, and LR of known-age goshawks and hawks aged�4-years-old at

first breeding with two-sample Kolmogorov-Smirnov tests. We tested for differences in num-

bers of lifetime breeding attempts for goshawks that started breeding early versus late in 3–

4-year periods of good breeding versus poor breeding with a Poisson regression model that

included an interaction between timing of breeding (early/late) and breeding year quality

(good/poor). Periods of good and poor breeding years were defined by the annual proportions

of territories occupied by breeders, using 50% as the threshold (i.e., each year in a period of

good breeding years had >50% of territories with breeders, and poor years had�50% of terri-

tories with breeders).

Age-specific reproduction. We evaluated age and breeding year effects on nest success

(eggs laid,�1 young fledged) and fledgling production with generalized additive mixed mod-

els (GAMMs). Nest success (success = 1, failure = 0) was examined using a binomial GAMM

with a logit-link function. Age-specific reproduction was analyzed separately for known-age

(see above) males and females and goshawks aged of�4-years-old on their full adult plumage

at first breeding. However, to characterize a year effect on reproduction, a GAMM model was
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fit using a maximal sample size of the combination of known-age and�4-year-olds females

only. Each GAMM included year and female age as smoothed fixed effects and band ID and

territory ID as random effects. Age-specific effects on fledgling production by both sexes were

investigated in separate analyses: at the population level, and at the individual level. The popu-

lation-level analysis included all hawks where the response variable was the number of fledg-

lings produced per year by individuals in each age class, including individuals that bred only

once, and failed nests (0 fledglings). The individual-level included only hawks that bred from

one to the next year, and also included nest failures. Our intent in the individual-level analyses

was to determine whether individual goshawks followed the same pattern of age-specific as

individuals in the population-level analyses (sensu [18, 33]). At the individual-level, we fit

Gaussian GAMMs with identity-link functions since the response variable (change in number

of fledglings produced from one to the next breeding attempt) was not constrained to be�0.

All analyses were conducted in R [90] and the GAMM models were fit using the gamm func-

tion in the mgcv package with cubic regression splines [91, 92]. Autocorrelation plots showed

no significant violations of assumptions. We plotted the raw data for age-specific changes in

nest success and fledgling production for both the population- and individual-levels of

analysis.

We investigated the effects of early breeding experience on future life-history traits by com-

paring lifespan, breeding lifespan, number of breeding attempts, number of nest failures, and

LR of both sexes first breeding first at age 2-years and then at age 3-years to goshawks that

delayed first breeding to�4-years-old. We then combined 2- and 3-year-old first-time breed-

ers into a single group and compared this group to goshawks first breeding at age�4-years.

Lifespans and breeding lifespans were fit using Gaussian models with log-link functions, nest

failure data were fit using binomial models with logit-link functions, and number of breeding

attempts and LR were analyzed using Poisson models with log-link functions. We used Tukey

multiple comparison tests to determine significant differences between groups.

Mate choice. We investigated mate choice with regard to age-based assortative mating by

comparing mate ages at initial pairings for known-age hawks and hawks aged�4-years (where

appropriate, inclusive of their known-age mates) separately. We tested for correlations

between mate ages with the Wilcoxon-Pratt signed rank test, a nonparametric test that

accounts for ties (pairs with same age). To test for mean mate age differences among groups of

pairs with different age compositions and previous breeding experience, we used ANOVA and

Tukey-Kramer [93] multiple comparisons to control for family-wise error rate. We then com-

bined the samples of known-age and�4-year-old hawks in an investigation of the effects of

varying mate ages on fledgling production in all breeding attempts (initial and all subsequent

pairings) with heat maps of the maximum and ranges of fledglings produced in each attempt.

We also explored any evidence of assortative pairing based on mate quality where quality

was indexed by body condition (mass) and structural body size (mass, wing cord, tail length,

tarsom); both condition and size are metrics frequently used to predict reproductive fitness

and mate quality [11, 94]. Because metrics of body size may be less informative singularly than

with a multivariate approach, we used principle components analysis (PCA), which summa-

rizes covarying patterns of variation in morphometric data to produce independent composite

variables that can be interpreted as size and shape axes [95]. To investigate whether body sizes

of mates could predict LR among mates, we first transformed the raw size measurements of

mass, wing length, tail length, and tarsom values into z-scores by sex to account for sexual

dimorphism, and calculated the total number of fledglings produced by each mating pair

(LRpair). We then performed a PCA on the size measurements on each sex separately, and took

the first PC as a predictor of LRpair. We fit two generalized additive mixed models (GAMMs)

to assess whether (1) mass or (2) size (i.e., the first PC) of either males or females was
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significantly related to LRpair, and included random effects for individual birds to account for

repeated observations among individuals. GAMMs were used to assess potential non-linear

relationships between size and LRpair.
Individual and environmental covariates of LR. Various life-history metrics such as life-

span, age at first breeding, breeding attempts, nest failures, and morphological metrics, such as

body size and condition, are frequently used as measures of individual fitness [96, 97]. We

used Poisson generalized linear models (GLM) to investigate the effects of 9 explanatory vari-

ables for individual goshawks (lifespan, age at first breeding, breeding attempts, nest failures,

body size [mass relative to mean mass of all sex-specific mates], tarsus-metatarsus length, wing

cord, tail length, and body mass), and 5 environmental explanatory variables (number of

mates, proportion of territories with breeding pairs, directional changes in mass of changed

mates, territory rank, mate rank) on LR of individual male and female goshawks (variables and

acronyms described in Table 1). In all cases, the unit of observation was an individual male or

female, and the response variable was the number of young produced in their lifetime. We

used morphological measurements that were taken when a goshawk was initially captured as

an adult. Measurements included body mass using Pesola scales, caliper-determined length of

metatarsus, wing cord (from the bend of as unflattened wing to the tip of the longest primary),

and length of central tail feathers. Trapping of breeders, especially males, was a protracted pro-

cess that required stealth, patience, and expediency. To minimize disturbance in nest areas, we

occasionally released difficult-to-capture breeders before morphological measurements were

completed. In cases with missed measures, we used measures taken at subsequent recaptures

Table 1. Explanatory variables for individual and environmental effects on lifetime reproduction (LR) of north-

ern goshawks in Arizona, USA. Table includes variable name and variable description for generalized linear models.

Variable Name Description

Lifespan Number of years an individual lived (hatch to disappearance).

Agefirstbreeding An individual’s age at first breeding (eggs laid).

Breedingattempts Total breeding attempts in an individual’s lifespan.

Avgbrpairs Average annual proportion of territories with breeders during an individual’s reproductive

years. A measure of quality of year for breeding and an indicator of the density of breeders.

Proportion of territories with breeders was calculated as the number of known territories with

breeders in a year divided by the number of territories known in the prior year.

Nummates Number of different mates an individual bred with in its lifetime.

Mateswitch Averaged direction of change in a mate’s mass following change of mate. Change values were -1

for new mate smaller than previous mate, 0 for no change in mate mass, 1 for new mate larger

than previous mate. For individuals with just one mate, the value was coded as 0.

Nestfailures Frequency of nest failure (eggs laid, no fledglings produced) over lifespan of an individual.

Avgpermass Hawk mass relative to average mate mass (hawk mass/average mass of all of its mates). A

measure of the extent of reversed (males smaller than females) size dimorphism. Only mass of

individuals taken at first capture was used. Imputed mass values were used for individuals with

missing data.

Avgterrank Average rank of territories used by hawks during their reproductive years. Rank determined by

rank-ordering territories on final counts of fledglings standardized by number of years each was

monitored. The most productive territory received a rank of 1. Territories with the same total

fledglings received the same rank.

Avgmaterank Average rank of mates during a hawk’s lifespan. Rank determined by rank-ordering banded

males and females separately on total lifetime production of fledglings where a ranking of 1 was

the most productive. Mates with the same total fledglings received the same rank.

Tarsom Tarsom length (mm).

Mass Body mass (g).

TailL Tail length (mm).

WingC Wing cord (cm).

https://doi.org/10.1371/journal.pone.0215841.t001

Lifetime reproduction and habitat quality in northern goshawks

PLOS ONE | https://doi.org/10.1371/journal.pone.0215841 May 22, 2019 9 / 50

https://doi.org/10.1371/journal.pone.0215841.t001
https://doi.org/10.1371/journal.pone.0215841


(e.g., next breeding attempt), or, if not recaptured, we used non-parametric (most morphologi-

cal variables were not normally distributed) single imputation in R [98] with the package Mis-
sForest [99] to estimate missing morphometrics. We standardized all quantitative variables

(mean = 0, SD = 1) and conducted analyses using all explanatory variables for those individuals

with complete morphological data.

All explanatory variables were quantitative, except mateswitch. Mateswitch had 3 categories

(smaller mate as baseline, no change in mate size, and larger mate). We used R package

MuMIn [100] for model selection based on AICc [101], because the Pearson χ2 goodness-of-fit

statistic with our most general GLM indicated no overdispersion for all data sets (male, exclud-

ing tarsom, wingC,mass, and tailL: ĉ < 1:000, χ2 = 36.57, df = 64; male, including tarsom,

wingC,mass, and tailL:̂c < 1:000, χ2 = 27.48, df = 50); female, excluding tarsom, wingC,

mass, and tailL: ĉ < 1:000, χ2 = 41.39, df = 78; female, including tarsom, wingC,mass, and

tailL:̂c < 1:000, χ2 = 43.00, df = 71). Avgbrpairs, the proportion of territories with breeders in

a particular year, was included as a measure of a year’s quality for breeding; the greater the pro-

portion of territories with breeders, the better was the breeding year. Avgbrpairs was also a

measure of density of breeders because, as the proportion of breeding pairs increased, so did

the density of breeders. We report model-averaged slope estimates and the relative importance

of terms (sum of AICc weights over all models including the explanatory variable). We ran cor-

relations (Pearson’s or rank) among all quantitative explanatory variables of LR separately for

males and females. Because only lifespan had a Pearson correlation >0.7, we excluded lifespan
from all candidate model sets.

Fledgling production and fitness. We evaluated the reliability of fledgling success as a

measure of individual fitness by comparing individual fledgling production to the number of

fledglings eventually locally recruited. We displayed among-individual variation in LR by

rank-ordering (most to least productive) male and female breeders on numbers of fledglings

produced and plotting cumulative numbers of fledglings against cumulative numbers of breed-

ers. Because a quasi-Poisson model showed no significant overdispersion, we used a Poisson

GLM [98] and package AER [102] to examine the relationship between the LR of male and

female breeders whose young were banded and the numbers of first (F1) and second genera-

tion (F2) recruits they produced (there were too few F3 recruits for modeling). Parameter esti-

mates ±SE are given unless otherwise specified.

Territory occupancy and reproduction. We tested if goshawks annually nested preferen-

tially or randomly in 79 territories each monitored at least 18 years in a chi-square goodness-

of-fit test (sensu [63, 103, 104]). We binned territories into groups of 3 years of occupancy (1–

3, 4–6, 7–9, and so on) with the final bin containing the last four years in order to meet

assumptions of the test. Additionally, we visually assessed territory preference by plotting over-

lapping frequency distributions of observed number of years territories were occupied with a

random simulation. If no preference (i.e., hawks randomly nested in territories every year) the

expectation is that the majority of territories would be occupied for about half the monitoring

period (i.e., 10 years). Conversely, if territories were chosen preferentially some would be occu-

pied for a few years only while others (preferred territories) would be occupied through much

of the monitoring period. Preferential choice produces convex distributions of occupancy

while the absence of preference produces a concave distribution.

Reproductive performance in a habitat is the gold standard metric of habitat quality and

long-term total reproduction in a habitat is a function of the number of successful breeding

attempts and brood sizes per attempt. We investigated differences in territory-specific mean

fledglings produced per breeding attempt and mean long-term total fledgling production in

infrequently versus frequently occupied territories in 3 non-overlapping cohorts of territories:

36 territories studied 20 years (1991–2010); 25 territories studied 19 years (1992–2010; 1
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territory excluded because of loss due to high-severity fire in 2000); and 18 territories studied

18 years (1993–2010). We used analysis of covariance (ANCOVA) and the F-test for evidence

of differences in regression slopes among cohorts.

Results

Lifespan, breeding attempts, and fledgling production

In our 20-year study we monitored reproduction of 195 male and 250 female goshawks at 846

active (eggs laid) nests on as many as 125 territories (totaling to over 2,112 territory-monitor-

ing years). Breeding occurred on average in only 40% of territories every year, 21% (176/846)

of active nests failed and 79% (670) fledged�1 young [77]. In cases of partial reads of band

codes where resighting was limited to band leg and/or band color, or when nests failed before

resighting was completed (see Methods), the identity of breeders was inferred in 154 male and

123 female cases. When resights were missed in one or more successive years on a territory but

were bounded by successful resights of the same individual, the identity of a missed breeder

was inferred to be the same individual in 28% (43 of 154 inferences) of male cases and 40% (49

of 123) of females cases. For partial or failed resightings in a single year either before or after a

breeder was trapped or resighted on a territory and the single year was not bounded by suc-

cessful resights, the identity of the breeder was inferred to be the same as the trapped or

resighted individual in 51% (79 of 154 inferences) for male cases and 49% (60 of 123) for

female cases. Similarly, for partial or failed resightings in 2 successive years not bounded by

resights, the identity of a breeder was inferred to be the same as the trapped or resighted indi-

vidual in 18% (27 of 154) male cases and 10% (12 of 123) female cases. For partial or failed

resightings in 3 successive years, the identity of a breeder was inferred to be the same as the

trapped or resighted individual in 3% (5 of 154) male cases and 2% (2 of 123) female cases.

Each of the above unbounded identity inferences were made only if there were breeding gaps

of�4 successive years in a territory that preceded or followed the inference years. While confi-

dence in these inferences declined with increasing successive years of missed resightings, we

nonetheless believe that strong territory fidelity and frequent turnovers of banded hawks fol-

lowing�4 breaks in breeding by Kaibab goshawks supported our inferences.

Forty-five male and 58 female goshawks we banded as nestlings recruited as breeders into

the local population and were therefore of known-age. In addition to these, a few unbanded

goshawks (13 males, 30 females) were aged as 2- or 3-year-olds based on their subadult plum-

age at first breeding (see Methods). However, the majority of recruits (137 males, 162 females)

were unbanded and in full adult plumage at first breeding and could be aged only as�4-years

at that time. In our analyses of lifespans, breeding lifespans, and LR, we eliminated all gos-

hawks whose reproductive histories were unknown (i.e., those initial breeders in newly discov-

ered territories). This eliminated all breeders in the 1991 cohort and a few others in later

cohorts (S1 Fig). To ensure that we included only individuals whose full breeding lifespans

were confidently observed, we eliminated all hawks that recruited as breeders after 2000. Our

final sample of hawks included 69 males and 95 females, all from the 1992–2000 cohorts.

We first report lifespans, breeding lifespans, number of breeding attempts, and LR for the

69 (28 males, 41 females) known-age goshawks separately from the 95 (47 males, 48 females)

�4-years-old hawks. Lifespans of known-age hawks showed multi-modal distributions with a

major peak at 6-years and lesser peaks at 10- and 12-years-old in males, and major peaks at 4-,

5-years, and 10-years-old in females (Fig 1). The peaks of older hawks reflect the single (occa-

sionally 2) long-lived individual in each annual cohort (S1 Fig). Except for slightly lower mean

LR among known-age males (4.4 fledglings) than known-age females (5.8 fledglings), ages at

first breeding, lifespans, breeding lifespans, and number of breeding attempts were similar for
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both sexes (Table 2). Mean minimum lifespans of�4-year-old males (7.8 years) was 1 year

longer than lifespans of known-age males (6.8 years), whereas mean female lifespans was only

slightly longer for the�4-year-old group (8.0 years) than for the known-age group (7.4 years).

Interestingly, while mean LR in the 2 groups were the same for females (5.8 fledglings), the

Fig 1. Number of goshawks by lifespan of known-age males and females. Lifespan of 28 male and 41 female northern goshawks of

known-age (banded as nestlings or aged 2- or 3-years-old based on plumage at first breeding) northern goshawks first breeding in

the 1992–2000 cohorts of breeders in Arizona, USA, 1991–2010.

https://doi.org/10.1371/journal.pone.0215841.g001

Table 2. Life history characteristics of breeding goshawks. Mean±SE and median (range) of age at first breeding, lifespan, breeding lifespan (first to last breeding year),

number of breeding attempts, and lifetime production (LR) of fledglings of 164 (69 known-age plus 95�4-years-old) male and female northern goshawks first breeding in

the 1992–2000 cohorts in Arizona, USA.

Males Females

Known age

(n = 28)

�4-years-old

(n = 47)

Known age

(n = 41)

�4-years-old

(n = 48)

Age at first breeding1 2.9±0.27

3 (2–9)

3.2±0.24

3 (2–8)

Lifespan2 (years) 6.8±0.54

6 (3–12)

�7.8±0.41

�7 (5–16)

7.4±0.47

7 (3–13)

�8.0±0.39

�8 (5–16)

Breeding lifespan (years) 3.8±0.48

3 (1–9)

3.9±0.41

3 (1–12)

4.2±0.46

3 (1–11)

4.1±0.39

4 (1–12)

Breeding attempts 3.1±0.34

2.5 (1–7)

3.4±0.33

3 (1–11)

3.4±0.35

3 (1–10)

3.4±0.31

3 (1–11)

Lifetime reproduction3 4.4±0.57

3 (0–11)

5.9±0.63

6 (1–19)

5.8±0.65

5 (0–18)

5.8±0.63

5 (0–23)

1Age at first breeding unknown for hawks aged�4-yr-old.
2Lifespan of hawks aged�4-years-old at first breeding shown as a minimum.
3Total fledglings produced in lifetimes of individuals (LR).

https://doi.org/10.1371/journal.pone.0215841.t002

Lifetime reproduction and habitat quality in northern goshawks

PLOS ONE | https://doi.org/10.1371/journal.pone.0215841 May 22, 2019 12 / 50

https://doi.org/10.1371/journal.pone.0215841.g001
https://doi.org/10.1371/journal.pone.0215841.t002
https://doi.org/10.1371/journal.pone.0215841


�4-year-old male mean LR (5.9 fledglings) was more than a fledgling greater than LR of

known-age males (4.9 fledglings). Despite these differences, breeding lifespans and number of

breeding attempts were nearly identical for both known-age and�4-year-old males and

females (Table 2). Lower LR of known-age males likely reflected the inclusion of 2- and

3-year-old in this group of males that, while they made similar numbers of breeding attempts,

they suffered higher nest failure rates than older breeders (see below). Because the Kolmogo-

rov-Smirnov tests showed no between-group differences in distribution of breeding lifespans,

numbers of breeding attempts, and LR (P = 0.9934, P = 0.9994, P = 0.8806, respectively), we

combined the 2 groups of hawks with the caveat that we report the minimum lifespans of

�4-year-old hawks (�4-years + years observed alive).

Plots of breeding lifespans and LR for both sexes of combined known-age and�4-year-old

breeders showed strongly right-skewed individual variation in fitness potential (Figs 2 and 3).

The combined male mean breeding lifespan was 3.9 ±0.31years (median = 3, range = 1–12),

mean breeding attempts was 3.3±0.24 (median = 3, range = 1–11 attempts), and mean LR was

5.3 ±0.45 fledglings (median = 4, range = 0–19). For females, the combined mean breeding

lifespan was 4.1±0.30 years (median = 3, range = 1–12 years), mean breeding attempts was

3.4 ±0.23 (median = 3, range = 1–11), and mean LR was 5.8 ±0.45 fledglings (median = 5,

range = 0–23). Combined mean lifetime productivity peaked at 3 fledglings for males and 2

fledglings for females with approximately 60% of males and 53% of females producing 0–5

fledglings, and only 15% of males and 16% of females producing 10 or more fledglings.

Pairs of goshawks that started breeding at the beginning of a 3- to 4-year period of good

breeding conditions made more breeding attempts (�x ¼ 3:3 attempts, l̂ ¼ 3:3) than those

starting late in the phase (�x ¼ 2:9 attempts, l̂ ¼ 2:9) (see [105]). However, a significant inter-

action was found (P = 0.05) between timing (early/late) and quality (good/poor), where pairs

starting to breed in the last year of a poor period made the most lifetime breeding attempts

(�x ¼ 4:1 attempts, l̂ ¼ 4:0) as breeding by these pairs continued into the best of breeding

Fig 2. Breeding lifespans (years from first to last breeding) of 75 males and 89 females of combined known-age

and�4-year-old goshawks first breeding in the 1992–2000 cohorts in Arizona, USA.

https://doi.org/10.1371/journal.pone.0215841.g002
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years. Finally, we note that the 3–4-year cycles of good and poor breeding conditions may

have introduced bias to our estimates of goshawk lifespans as lifespans would have been

underestimated for individuals surviving into, but not through, periods of poor breeding con-

ditions due to the low detectability of non-breeders.

Age at first breeding

The minimum age at first breeding for 195 males and 250 females was 2-years and mean age

at first breeding by the 58 known-age male and 88 female goshawks was 3.6±0.21-years

(median = 3, range = 2–9) for males and 3.6 ±0.18-years (median = 3, range = 2–9) for females

(Table 3). Of the 58 males and 88 females of known-age, 77% of the males and 80% of the

females first bred at or before age 4-years, and 87% of males and 83% of females bred at least

once by age 5-years (Table 3). If goshawks aged�4-years-old at first breeding had propor-

tional age distributions as known-age hawks that were 4-years or older at their first breeding,

then about 60 (43%) of the 137�4-years-old males would have been 4-years-old, 36 (26%)

would have been 5-years, 30 (22%) would have been 6-years-old, and 12 (9%) would have been

Fig 3. Number of fledglings produced by goshawks during their lifetimes. Individual lifetime reproduction (LR) of

75 males and 89 females of combined known-age and�4-year-old goshawks first breeding in the 1992–2000 cohorts

in Arizona, USA.

https://doi.org/10.1371/journal.pone.0215841.g003

Table 3. Number of individuals by age (number of full years since hatch) at first breeding (%) for 58 male and 88 female northern goshawks of known-age in Ari-

zona, USA, 1991–2010.

Age

1 2 3 4 5 6 7 8 9 10 Mean

Males

age 1st breeding 17 (29) 18 (31) 10 (17) 6 (10) 5(9) 0 0 2 (3) 0 3.6

Females

age 1st breeding 25 (28) 31 (35) 15 (17) 3 (3) 7 (8) 4 (5) 2 (2) 1 (1) 0 3.6

https://doi.org/10.1371/journal.pone.0215841.t003

Lifetime reproduction and habitat quality in northern goshawks

PLOS ONE | https://doi.org/10.1371/journal.pone.0215841 May 22, 2019 14 / 50

https://doi.org/10.1371/journal.pone.0215841.g003
https://doi.org/10.1371/journal.pone.0215841.t003
https://doi.org/10.1371/journal.pone.0215841


older than 6-years. For�4-years-old females, about 76 (47%) of the 162 females would have

been 4-years-old, 15 (9%) would have been 5-years, 35 (22%) would have been 6-years, and 35

(22%) would have been older than 6-years. Given these estimates, the mean ages at first breed-

ing was 5.2-years for the�4-year-old males and 5.3-years-old for the females. These means

exceeded the mean ages of first breeding by known-age males and females by about 1.6 years

and show that, by extension, the actual lifespans of hawks aged�4-year-old at first breeding

would be greater than their mean minimum lifespans of about 7.6-years (Table 2). The propor-

tion of 2-years-old breeders in the breeding population was highly variable among years and

showed monotonic increases with each successive year of improved breeding conditions as

more territories were filled by active breeders. On the other hand, the proportions of breeding

2-year-olds declined sharply with the first year of declining conditions (Fig 4). Annual fluctua-

tions in the proportions of 3-year-old first-time breeders were not as extensive as for 2-year-

olds and exceeded 3% only in 1998 (9.2%) and 2000 (11.7%).

Age-specific reproduction

Nest success. In all of the GAMM analyses of age effects on nest success (fledged�1

young) and fledgling production by goshawks there were large standard errors associated with

the oldest age classes (12- to 15-year-old) due to small samples of old breeders. The binomial

GAMM for nest success for known-age hawks showed no age effects on nest success in 164

breeding attempts by 58 males (P = 0.82) or by 88 females (P = 0.43) in 249 attempts (Fig 5A).

Among�4-years-old hawks there was a significant decline in nest success with age in 428

breeding attempts by 137 males (P = 0.005) but no age effects in 491 attempts by 162 females

(P = 0.09) (Fig 6A). There were no significant year effects on nest success for either male

Fig 4. Annual percent of breeders that were 2-years-old was a function of a year’s quality for breeding. Annual

percent of breeders that were 2-years-old as a function of the quality of a breeding year (estimated as the percent of

territories with egg-laying pairs; [77]) of northern goshawks in Arizona, USA. Monotonic increases in the recruitment

of 2-year-old breeders indicated improving breeding conditions and the existence of vacancies on territories following

periods of poor breeding.

https://doi.org/10.1371/journal.pone.0215841.g004
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(P = 0.82) or female (P = 0.90) of known-age hawks or for male (P = 0.37) and female (P =

0.39)�4-years hawks.

Fledgling production. The GAMM analysis of fledgling production by known-age hawks

in the population-level analysis showed no significant age effects in 164 breeding attempts by

Fig 5. Age-specific reproduction by known-age goshawks. Means, ±2 standard errors, and overall mean values

(horizontal dashed line) of the raw data from GAMM analyses of age-specific reproduction by known-age male and

female northern goshawks in Arizona, USA. Numbers below standard error bars indicate the number of males and

females in each age group. (A) nest success (fledged�1 young) as a function of age of 164 breeding attempts by 58

males and 249 attempts by 88 females, (B) fledgling production as a function of age in 164 breeding attempts by 58

males and in 249 attempts by 88 females (population-level analyses), and (C) changes in numbers of fledglings

produced in 85 breeding attempts by 40 males and 133 breeding attempts by 55 females that bred in one and the next

year (individual-level analyses).

https://doi.org/10.1371/journal.pone.0215841.g005

Lifetime reproduction and habitat quality in northern goshawks

PLOS ONE | https://doi.org/10.1371/journal.pone.0215841 May 22, 2019 16 / 50

https://doi.org/10.1371/journal.pone.0215841.g005
https://doi.org/10.1371/journal.pone.0215841


58 males (P = 0.64) or by 88 females (P = 0.70) in 491 attempts (Fig 5B). Likewise, among the

�4-year-old hawks, there were no significant age effects in 428 breeding attempts by 137

males (P = 0.25) or 162 females (P = 0.46) in 491 attempts (Fig 6B). There were no significant

year effects on males (P = 0.66) or females (P = 0.24) of known-age, but year effects were

Fig 6. Age-specific reproduction by goshawks aged�4-years-old at first breeding. Means, ±2 standard errors, and

overall mean values (horizontal dashed line) of raw data from the GAMM analyses of age-specific reproduction by

male and female northern goshawks assigned a minimum age of�4-years old at their first breeding attempt in

Arizona, USA. Numbers below standard error bars indicate the number of males and females in each age group. (A)

nest success (fledged�1 young) as a function of age in 428 breeding attempts by 137 males and 491 attempts by 162

females, (B) fledgling production as a function of age in 428 attempts by 137 males and 491 attempts by 162 females

(population-level analyses), and (C) changes in numbers of fledglings produced in 244 attempts by 107 individual

males and in 266 attempts by 119 females that bred in one and the next year (individual-level analyses).

https://doi.org/10.1371/journal.pone.0215841.g006
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significant for both male (P = 0.03) and female (P = 0.06)�4-years-old hawks. A plot of year

effects on fledgling production by 180 females of the combined known-age�4-year-olds

clearly showed that 1991–1993, 1998–2000, and 2004–2006 were good breeding years, and

1994–1996, 2001–2003, and 2007–2008 were poor breeding years (Fig 7).

The individual level of the GAMM analyses of change in fledgling production in 85 sequen-

tial breeding attempts by 40 males and 133 attempts by 55 females of known-age that bred in

one to the next year also showed no significant age effects (males, P = 0.27; females, P = 0.69)

and no significant year effects on fledgling production (males, P = 0.50; females, P = 0.21) (Fig

5C). Likewise, for�4-year-old hawks there were no significant age effects (males, P = 0.94;

females, P = 0.84) and no significant year effects on fledgling production (males, P = 0.52,

females, P = 0.42) (Fig 6C).

Early breeding effects. Of the 28 breeding males and 41 females whose ages and lifespans

were known (hawks in the 1992–2000 breeding cohorts), 12 males (42%) and 14 females (34%)

started breeding at age 2-years, and 12 males (42%) and 18 (44%) females started breeding at

age 3-years (Table 4). Both male and female goshawks first breeding at age 2-years had shorter

lifespans than individuals that delayed breeding until at least 4-years-old (Tukey’s multiple

Fig 7. Year effect on fledgling production by goshawks. Expected year effect on fledgling production in 740 breeding

attempts by 250 female (combined known-age and hawks aged�4-year-old on first breeding) northern goshawks from

Poisson GAMM of population-level analysis of age-specific reproduction in Arizona, USA. The y-axis shows the deviation

from the mean response and the shaded region depicts the 95% CI. The expected year effect on fledgling production by male

goshawks (592 attempts by 195 males) was nearly identical to the female response.

https://doi.org/10.1371/journal.pone.0215841.g007
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comparison tests; P< 0.1). Despite shorter lifespans, there were no differences in breeding life-

spans or numbers of breeding attempts between any of the 3 age at first breeding groups.

While there were no differences in nest failure rates among females in the 3 age groups, nest

failure rates were higher (Tukey’s multiple comparison tests, P< 0.1) in 3-year-old first time

breeding males than in males delaying until at least age 4-years or older. A likely consequence

of the higher 3-year-old male failure rate was their significantly lower LR (P< 0.05) than of

males delaying until 4-years or older (Table 4).

Mate choice

In the year of pair (or re-pair) formation in pairs where exact mate ages were known, only 24%

of 37 pairs were of same-age hawks, males were older than their mates in 30% of pairings, and

females were older in 46% of these initial pairings (Fig 8A). When known-age hawks were

combined with�4-year-old hawks under the assumption that�4-year-old hawks were actu-

ally 4-years-old at first pairing, then 22% of 260 pairs at initial pairing were comprised of

same-age hawks, males were older in 46% of pairs, and females were older in 33% of pairs (Fig

8B). Of course, the abundance of cases of pairs comprised of at least one 4-year-old (n = 169

pairs) in Fig 8B was due in large part to the assumption that all�4-year-olds were actually

4-years at initial pairing. Given our estimate (see above) that most (72%)�4 year-old hawks

were actually 4-years (40%) or 5-years-old (32%) at first breeding, then our expectation is that

a large proportion of individuals comprising the 4-year-old dots would shift to the right and/

or up 1- to 2-years of age in the figure.

There were no significant correlations between male and female mate ages in the initial

year of pair formation for known-age hawks (W = 1.32, P = 0.19) or for pairs of hawks aged

�4-years (W = -1.26, P = 0.21). Thus, mate choice was random with respect to mate age, a

likely consequence of replacements of lost older mates by young individuals since the mean

absolute age difference (female age–male age) of mates among known-age hawks was 2.24

±0.38 years at first pairing. With respect to prior breeding experience at initial pairing by

known-age hawks, recruit-to-recruit (no breeding experience) pairings comprised 30% (11 of

37) of pairs with a mean age difference of 0.6±0.2 years (Fig 9A). Male recruit-to-experienced

female pairs comprised 38% (14 of 37) of pairings with a mean age difference of 2.9±0.6 years,

while male experienced-to-female recruit pairs comprised 16% (6 of 37) of pairings with a

mean age difference of 4.2±1.4 years. Finally, experienced-to-experienced pairs comprised

Table 4. Life history characteristics of goshawks first breeding at ages 2-, 3-, and 4+-year-olds. Tukey multiple comparisons of mean (± 95% CI) lifespans (years),

breeding lifespans (years), number of breeding attempts, nest failure rates, and lifetime reproduction (LR) for 164 first breeding at ages 2-, 3-, and 4+-year-olds (4-year and

older known-age +�4-years-old) goshawks in the 1992–2000 cohorts in Arizona, USA.

Age 1st breeding n Lifespan1 Breeding lifespan1 Breeding attempts1 Nest failure rate1 LR1

Males

2-years 12 5.83 (4.3–7.4) A 3.83 (2.3–5.4) A 3.17 (2.2–4.2) A 0.29 (0.15–0.43) AB 4.33 (3.2–5.5) CD

3-years 12 6.58 (5.0–8.2) AB 3.58 (2.0–5.1) A 2.83 (1.9–3.8) A 0.35 (0.19–0.51) A 3.83 (2.7–4.9) C

4+years 51 7.92 (7.2–8.7) B 3.96 (3.2–4.7) A 3.43 (2.9–3.9) A 0.18 (0.12–0.23) B 5.90 (5.2–6.6) D

Females

2-years 14 6.14 (4.7–7.6) A 4.14 (2.7–5.6) A 3.42 (2.5–4.4) A 0.23 (0.11–0.35) A 5.57 (4.3–6.8) A

3-years 18 7.72 (6.4–9.0) AB 4.72 (3.4–6.0) A 3.56 (2.7–4.4) A 0.20 (0.10–0.30) A 6.33 (5.2–7.5) A

4+years 57 �8.16 (7.4–8.9) B 3.93 (3.2–4.7) A 3.30 (2.8–3.8) A 0.17 (0.12–0.24) A 5.63 (5.0–6.2) A

1Non-overlapping letters A and B indicate significant differences between age groups at P < 0.1. Non-overlapping letters C and D indicate a significant differences

between age groups at P < 0.05.

https://doi.org/10.1371/journal.pone.0215841.t004
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16% of pairings with a mean age difference of 1.6±0.8 years (experienced-to-experienced pairs

were the consequences of a few hawks changing territories (breeding dispersals) and pairing

with other experienced hawks). This pattern was only slightly different for�4-year-old hawks.

Recruit-to-recruit pairings comprised 29% (49 of 169) of pairs, male recruit-to-experienced

Fig 8. Is mate choice based on mate age? (A) Mate age composition of 37 pairings (33 males, 32 females) of known-

age hawks, and (B) mate age composition of 169 pairings (120 males, 139 females) of hawks aged�4-year-old

(including their known-age mates where relevant) in the year of pair formation by northern goshawks on the Kaibab

Plateau, Arizona, USA. Size of dots indicates numbers of pairs observed in each mate-age category. Solid lines depict

one-to-one relationships.

https://doi.org/10.1371/journal.pone.0215841.g008
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female pairs comprised 28% (48 of 169), male experienced-to-female recruit pairs comprised

35% (59 of 169), and experienced-to-experienced pairs comprised 8% (13 of 169) of pairings

(age difference among these pairs were unknown because of uncertain ages of�4-year-old

hawks) (Fig 9B). Among known-age hawks, variation in mate ages was least variable among

Fig 9. Is mate choice based on a mate’s breeding experience? Box plots of pair age differences in the year of pair

formation with respect to a mate’s breeding experience by northern goshawks in Arizona, USA. Vertical bars are

medians (i.e., 50th percentile), boxes contain the central 50% of differences (i.e., bounded by the 25th and 75th

percentiles), and dots are outliers. “Both recruits” pairs are both first-time breeders, “recruit/exp” pairs are male

recruit/female experienced, “exp/recruit” pairs are male experienced/female recruit, and “both exp” pairs are both

previous breeders. (A) Known-age hawks only and (B) hawks aged�4-years-old with their known-age mates where

relevant.

https://doi.org/10.1371/journal.pone.0215841.g009
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recruit-to-recruit pairs, followed by experienced-to-experienced, and was most variable

among pairs with a recruit and an experienced hawk. The lesser age variation in recruit-to-

recruit pairs probably reflected the young ages of individuals in the pool of potential recruits,

whereas the larger age variation in recruit-to-experienced pairs reflected the replacement of

lost mates of older experienced hawks by younger recruits. For known-age hawks, pairwise

comparisons of mean age differences between mates at first pairing with respect to pair com-

position and previous breeding experience showed an overall significant difference (F = 4.73,

P = 0.008) only between comparisons of recruit/recruit pairs to male experienced/female

recruit pairs (P = 0.01) and to male recruit/female experienced pairs (P = 0.04).

A plot of the range of mate-age compositions at all breeding attempts of known-age com-

bined with�4-year-old hawks (270 pairs, 574 breeding attempts) showed that 39% of breeding

attempts were by pairs of the same-age, that the majority (66%) of pairings were comprised of

mates whose ages differed by 4- to 8-years, and that 10 years was the maximum age difference

between mates (Fig 10A). As with the initial pairings of�4-year-old hawks (Fig 8B), there was

a tendency for males to be older than their mates through their breeding lifespans. Heatmaps

of the maximum and range of numbers of fledglings produced in the 574 attempts showed a

consistent maximum production of 3 fledglings by pairs of mixed ages between 3- and 9-years

of age and a lower maximum of 0–2 fledglings by pairs comprised of an older (�12-years)

male or female (Fig 10B and 10C). Whether lower production by older hawks reflects senes-

cence is unclear because the small sample of old hawks limited the maximum and range of

their fledgling production. Nonetheless, there was some evidence that male-older pairs were

slightly more consistent in breeding performance than female-older pairs.

Our investigation of assortative mating based on body mass or size in the initial year of

pairing (or re-pairing) included 147 male and 151 female goshawks whose mass, wing cord,

and tarsom and tail length were known. The first PC for males explained 40.8% in the variation

of morphological measurements and was significantly correlated with body mass (0.79%),

wing cord (0.75%), and tail length (0.60%), and to a lesser degree tarsom length (0.31%). The

first PC for females explained 32.0% of the variation in morphological measurements and was

comprised primarily of a contrast between body mass (0.72%) plus tarsom (0.65%) and wing

cord (-0.41%) plus tail length (-0.42%). Because body mass in our PCAs explained the majority

of size variation in both males and females, we henceforth considered mass alone to be a suffi-

cient index to both potential mate condition and body size. There was no correlation (r =
-0.07, P = 0.34) between mate body masses of males and females at first pairing; like mate age,

mate choice with respect to mate quality was random. Likewise, in a heatmap of LRpair there

was no pattern in total fledgling production among pairs of differing masses (Fig 11).

In our assessment of whether condition (mass) or size (the 1st PC) of either males or females

was related to LRpair, female condition in both GAMM models was insignificant (P = 0.74 for

mass and P = 0.78 for the 1st PC) but male mass and size were significantly related to LRpair
(P = 0.05 for mass and P = 0.006 for the 1st PC), with larger males tending to produce more

fledglings across the mating pair’s lifetime (S2 Fig).

Individual and environmental covariates. Our Poisson GLM analyses of individual and

environmental covariates of LR included up to 75 male and 89 female goshawks (see S3–S7

Figs for box plots of raw data for each covariate and LR). We analyzed 2 different data sets for

each sex (i.e., 4 data sets), one with 13 environmental and individual explanatory variables

using a slightly smaller sample size (65 males, 86 females), including measured and imputed

morphological data for each sex, and another set with 9 explanatory variables that excluded the

morphological variables, tarsom, wingC,mass, and tail (avgpermass retained). For analyses

including tarsom, wingC, mass, and tailL, the percent of 65 males whose 5 morphological vari-

ables were imputed varied between 1.5% (tarsom) and 6.2% (wingC, tailL), and for 86 fema1es
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with 6 imputed variables, 1.2% (tarsom) and 16.3% (avgpermass). For analyses excluding tar-
som, wingC, mass, and tailL, the percent of 75 males whose morphological variables were

imputed was 1.3% (avgmaterank) and 14.7% (avgpermass), and for 89 fema1es, 9.0% (avgma-
terank) and 19.1(avgpermass).
Lifespan was strongly correlated with other explanatory variables in all data sets (S1 and S2

Tables) while avgpermass and mateswitch were weakly correlated with other explanatory vari-

ables. Because of strong correlation with other variables, we excluded lifespan from our

Fig 10. (A) Variation in ages of pairs over time and fledgling production in all breeding attempts by pairs of

different age compositions. Variation in age composition and fledgling production through the duration of pair

bonds (not limited to initial year of pair formation) in 505 breeding attempts by 168 male and 180 female northern

goshawks (known-age +�4-years-old hawks). Size of dots indicates numbers of pairs observed in each mate-age

category. (B) heat map of maximum number of fledglings produced in each breeding attempt by pairs of mixed ages,

and (C) heat map of mean number of fledglings produced in these breeding attempts in Arizona, USA. Gray-scale

indicates the maximum number of fledgling (includes 0 fledglings) produced by pairs in each mate-age composition

category; white areas indicate no data.

https://doi.org/10.1371/journal.pone.0215841.g010
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candidate model set. Avgterrank and avgmaterank were negatively correlated (due to the top

producing territories and mates receiving ranks of 1 and less productive territories and mates

ranks <1) with lifespan and breedingattempts. For both males and females materank was posi-

tively correlated with nummates. In both data sets, nestfailures were strongly positively corre-

lated with lifespan, breedingattempts, and nummates; as lifespan increased, so did breeding

attempts, number of mates, and nest failures. For both sexes, Lifespan was correlated positively

with agefirstbreeding, reflecting an up to a 2-year cost of future lifetime by breeding before

age� 4-years (Table 4, S1 and S2 Tables). In males, mass was strongly correlated with tarsom,

Fig 11. Is mate choice based on mate size or physiological condition? Scatter plot of z-scores for paired male and

female goshawks showing (A) body mass and (B) heat map of the smoothed total number of fledglings per pair in 423

breeding attempts (not limited to initial year of pair formation) by 147 male and 151 female goshawks of known-mass

on the Kaibab Plateau, Arizona, USA. Solid lines depict one-to-one relationships.

https://doi.org/10.1371/journal.pone.0215841.g011
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wingC, and tailL, but only with tarsom in females. This difference may reflect more variable

female than male mass during the nestling period (when females were trapped and measured),

the consequences of among-year and among-territory variability in prey abundance, differ-

ences in clutch and brood sizes, and male competencies in food provisioning.

There were 8 candidate models within 2 AICc units of the top model for females and 10 for

males (S3 and S4 Tables). For both data sets, slope estimates (Table 5) were positive (breedin-
gattempts), negative (nestfailures), or negligible (avgmaterank, agefirstbreeding, avgbrpairs, avg-
permass, nummates, mateswitch, and avgterrrank, wingC, tarsom,mass, and tailL), using α =

0.05. Results were similar with data sets that excluded tarson, wingC,mass, and tailL, with the

exception of negative slope estimates with agefirstbreeding and nestfailures for females (Table 5

and S5 Table). The GLM analysis of LR showed that nestfailures and breedingattempts had rela-

tive importance of terms�0.8 in male and female data sets. For females, the slope of the rela-

tionship between LR and agefirstbreeding was negative (although not significant at a = 0.05),

whereas in males, the relationship was not significant. Thus, there is some evidence that age-
firstbreeding in females was linearly related to LR, where LR was slightly higher if they started

breeding before age 4-years. Conversely, no significant linear relationship was found between

agefirstbreeding and LR in males.

LR, recruitment, and fitness. Of 862 nestlings banded in 1991–2008 (nestlings banded in

2009–2010 excluded because of 2-year-old minimum age at first breeding precluded their

recruitment in the final 2 years of the study), 104 (45 males, 59 females) were recruited into the

local (in situ) breeding population, giving a recruitment rate of 0.12. These F1 recruits pro-

duced 490 nestlings that were banded, 17 (7 males, 10 females) of which recruited (rate ~ 0.04)

as local breeders. The 17 F2 (grandchildren) breeders produced 120 fledglings that were

Table 5. Influence of individual and environmental effects on lifetime reproduction (LR) of goshawks. Slope parameter estimates from the generalized linear model

candidate set with morphological data (tarsom, wingC,mass, and tail) included. Shown is adjusted standard error (ŜEadj), relative importance, and p-values for the model

terms for the influence of individual and environmental effects on lifetime reproduction of 65 male and 86 female northern goshawks in Arizona, USA.

Males Females

Model term Estimate

(±SEadj)

Relative importance P1 Estimate

(±SEadj)

Relative importance P1

Intercept 1.465(0.137) <0.001��� 1.701(0.153) <0.001���

Avgbrpairs -0.020(0.053) 0.296 0.705 -0.011(0.038) 0.277 0.764

Agefirstbreeding 0.010(0.041) 0.254 0.798 -0.112(0.070) 0.849 0.109

Avgmaterank -0.029(0.057) 0.362 0.615 -0.007(0.035) 0.265 0.834

Avgpermass 0.005(0.032) 0.234 0.874 0.002(0.028) 0.235 0.957

Avgterrank -0.050(0.075) 0.456 0.506 -0.044(0.059) 0.510 0.453

Breedingattempts 0.646(0.081) 1.000 <0.001��� 0.627(0.054) 1.000 <0.001���

Nummates 0.021(0.051) 0.312 0.682 0.017(0.042) 0.328 0.690

Mate switch, no change in mate 0.046(0.134) 0.551 0.729 -0.127(0.172) 0.433 0.463

Mate switch, larger mate2 0.201(0.223) - 0.368 -0.097(0.157) - 0.536

Nestfailures -0.310(0.086) 0.997 <0.001��� -0.267(0.057) 1.000 <0.001���

Mass 0.001(0.030) 0.223 0.968 0.006(0.028) 0.252 0.835

TailL 0.008(0.032) 0.251 0.797 0.009(0.029) 0.269 0.769

Tarsom 0.009(0.037) 0.249 0.809 0.005(0.028) 0.247 0.846

WingC 0.012(0.040) 0.265 0.769 0.006(0.029) 0.252 0.822

1Significance level: �0.05, �� 0.01, ��� 0.001.
2Mate switch is a categorical variable with multiple factor levels. Relative importance tracks the explanatory variable only, not each level; hence, the multiple rows in the

table.

https://doi.org/10.1371/journal.pone.0215841.t005
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banded, of which 6 (3 males, 3 females) recruited (rate ~ 0.05) as local breeders. Declines in

recruitment rates over these generations mostly reflected the decreasing number of study-

years available for successive generations to recruit. Numbers of local recruits from each year’s

cohort of banded fledglings was positively correlated with the size of the cohort (S8 Fig). On

combining known-aged hawks and�4-year-old breeding hawks, the cumulative distributions

of fledgling production showed that about 26% of both genders produced about 52% of total

Kaibab fledglings produced, and about 11% of breeders produced about 52% of local F1

recruits (Fig 12). While recruitments of F2, and especially F3, generations were likely to have

been underestimated due to insufficient study years for recruitment to occur, only 4.1% of

males (n = 7) and 4.6% of females (n = 10) produced all local F2 recruits and 1.7% of males

(n = 3) and 1.4% of females (n = 3) produced all local F3 recruits. Thus, a relatively small pro-

portion of the parental generation produced a disproportionate number of the total fledglings

and local recruits. Of the 195 breeding males and 250 females, the average male produced

3.9 ± 0.34 fledglings, 0.4 ± 0.06 F1 recruits, 0.07 ± 0.03 F2 recruits, and 0.03 ± 0.02 F3 recruits

and the average female produced 4.6 ± 0.39 fledglings, 0.4 ± 0.05 F1 recruits, 0.07 ± 0.02 F2

recruits, and 0.02 ± 0.01 F3 recruits. Our GLM analyses of LR of individual males and females

and numbers of local recruits they produced showed that number of fledglings produced by

both sexes was a highly significant predictor of the number of both F1 (males, P< 0.001,

df = 193; females, P< 0.001, df = 248, Fig 13A and 13C) and F2 recruits (males, P< 0.001,

df = 19; females P< 0.001, df = 248, Fig 13B and 13D). Thus, the number of fledglings pro-

duced by an individual was a good predictor of its fitness, as also reported for goshawks in Ger-

many [19] (but see [16]).

Fig 12. Proportion of total fledglings and F1 recruits produced by varying proportions of individual breeders.

Proportional variation among 195 male and 250 female goshawks in total fledgling production and number of recruits

to the local breeding population in Arizona, USA. Although 189 (96.4%) males and 238 (95%) females fledged young

(lower curve), only 52 (27%) males and 71 (28%) females produced fledglings that recruited into the local breeding

population (upper curve).

https://doi.org/10.1371/journal.pone.0215841.g012
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Territory-specific reproduction: Breeding attempts, breeders, and mates. Our chi-

square goodness-of-fit test for random vs. preferential nesting within 79 territories monitored

for at least 18 years showed that goshawks occupied territories non-randomly across years

(X2
5
¼ 126:35, P< 0.001); some territories appeared to be occupied preferentially while others

were avoided (Fig 14). The range in percent of years in which breeding occurred on the 79 ter-

ritories was highly variable (5–89%, �x ¼ 39%� 0:02, median = 4.5) as was the 18-year total

Fig 13. Number of children and grandchildren that locally recruited as breeders in relation to the number of

fledglings produced by individual male and female goshawks. Number of banded descendants of 196 male (A, B)

and 250 female (C, D) northern goshawks that recruited into the local breeding population as children (F1 generation)

and grandchildren (F2 generation) in relation to the number of fledglings each breeder produced in Arizona, USA.

Each ‘x’ represents an individual adult. Trend lines determined with Poisson regression with log-link functions.

https://doi.org/10.1371/journal.pone.0215841.g013
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number of fledglings produced on each (range = 1 − 28 fledglings; �x ¼ 11:8� 0:81,

median = 11.0, mode = 11.0) (Fig 15). The number of unique sequential breeders on the

79 territories ranged from 1–6 males (�x ¼ 2:7� 0:17, median = 2) and 1–7 females

(�x ¼ 2:9� 0:18, median = 3) (Fig 16). Some of the most frequently occupied and most

Fig 14. Breeding goshawks occupied territories non-randomly. Observed versus expected (from Poisson

distribution) pattern of occupancy of 79 territories over 20 years by northern goshawks in Arizona, USA.

https://doi.org/10.1371/journal.pone.0215841.g014

Fig 15. Total fledglings produced by goshawks on 79 territories monitored at least 18 years in Arizona, USA.

https://doi.org/10.1371/journal.pone.0215841.g015
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productive (Table 6, Fig 16) of territories were occupied by as few as 2 long-lived goshawks

while others had as many as 6 short-lived breeders. Number of lifetime mates per male on the

79 territories ranged from 1–4 (�x ¼ 1:4� 0:05 females, median = 1, n = 156 males) and 1–5

mates per female (�x ¼ 1:4� 0:04 males, median = 1, n = 248 females) and was as expected

correlated with the breeding lifespans of individuals (males, r = 0.593; females, r = 0.704).

Fig 16. The number of unique breeders on a territory in relation to frequency of territory-specific occupancy and

total fledgling production. (A) Numbers of sequential breeding male and female goshawks on each of 36 territories

monitored for 20 years in relation to (A) the number of years each territory had breeders, and in relation to (B) the

20-year total fledglings produced on each of the 36 territories in Arizona, USA.

https://doi.org/10.1371/journal.pone.0215841.g016
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Although long-lived individuals typically had more mates than short-lived hawks, several gos-

hawks with breeding lifespans�8 years had as few as 1 long-lived lifetime mates (S6 Table).

Long-term total reproduction on territories was a function of the number of successful

breeding attempts and brood sizes per attempt. Mean fledglings produced per attempt,

whether in frequently or infrequently occupied territories, was only weakly correlated (ignor-

ing homoscedasticity violations) with total fledglings produced on 3 different cohorts of terri-

tories; 36 territories studied 20 years (1991–2010); 26 territories studied 19 years (1992–2010);

and 18 territories studied 18 years (1993–2010). Because the 3 regression slopes were not dif-

ferent (P = 0.65), the 3 cohorts were pooled (Fig 17). Although mean fledglings produced per

breeding attempt was consistently more variable in the less productive (those left of mean

fledgling production) than in the more productive territories (those right of the mean), mean

fledgling production per attempt in some less productive territories exceeded the highest mean

per attempt in the more productive territories. Differences in total fledglings produced

between high and low productive territories reflected differences in the frequencies of occu-

pancy, brood sizes, and failure rates. Among the most productive territories, those in the

upper-right quadrant were occupied by breeders a mean of 10.2 years, had a mean brood size

of 1.9±0.04 and a mean nest failure rate of 0.11, whereas, while those in the lower right quad-

rant were occupied more frequently (�x ¼ 11:7 years), these territories had smaller broods

(�x ¼ 1:4� 0:05) and higher nest failure rates (p̂ ¼ 0:27). Among the less productive territo-

ries, those in the upper-left quadrant had the largest broods (�x ¼ 2:0� 0:09) and the lowest

failure rates (p̂ ¼ 0:01) overall territories, but were occupied a mean of only 3.2 years, most

(67%, 42 of 63 breeding attempts) of which occurred during best of the 3-year periods of good

breeding (1991–1993, 1998–2000) when brood sizes were large and nest failures low (see [75]).

Because territories in the lower-left quadrant were occupied about 2 years longer (�x ¼ 5:5

years) than upper-left territories, breeding in the lower-left territories more often occurred

during poor breeding years leading to smaller brood sizes (�x ¼ 1:0� 0:06) and more frequent

nest failures (p̂ ¼ 0:34). Contrary to IPD predictions, the annual CV of fledgling production

among all territories decreased as breeder density increased (Fig 18) and there were no differ-

ences in the frequency of sub-adult (2- and 3-year-old) goshawks breeding in the more- vs. less

frequently occupied territories (Table 6).

Table 6. No differences in the proportion of 2- or 3-years-old breeders in the less productive than more productive territories.

Less productive territories

Territory cohort Number of unique breeders Number (%) of 2-year-olds Number (%) of 3-year-olds

male female total male female male female total

20-yr, 36 territories 28 30 58 2(7) 3(10) 2(7) 1(1) 8(14)

19-yr, 26 territories 16 21 37 1(6) 3(14) 1(6) 1(5) 6(16)

18-yr, 18 territories 6 14 20 1(17) 0 0 3(21) 4(20)

More productive territories

20-yr, 36 territories 63 70 133 6(10) 2(3) 2(3) 8(11) 18(14)

19-yr, 26 territories 30 43 73 1(3) 3(7) 3(10) 3(7) 10(14)

18-yr, 18 territories 16 29 45 1(6) 5(17) 2(13) 2(7) 10(22)

Comparisons of the percentages of total territory-specific breeders that were 2- or 3-years-old in less productive territories than in the more productive than the overall

mean number of fledglings in three cohorts of territories (36 territories monitored 20 years, 25 territories monitored 19 years, 18 territories monitored 18 years) in

Arizona, USA.

https://doi.org/10.1371/journal.pone.0215841.t006

Lifetime reproduction and habitat quality in northern goshawks

PLOS ONE | https://doi.org/10.1371/journal.pone.0215841 May 22, 2019 30 / 50

https://doi.org/10.1371/journal.pone.0215841.t006
https://doi.org/10.1371/journal.pone.0215841


Discussion

Influence of lifespan and age at first breeding on LR

LR of Kaibab Plateau goshawks increased with number of breeding attempts, which was

strongly correlated with lifespan, breeding lifespan, and nest failures. Because most goshawks

started breeding at age�4-years, lived less than 8 years, had breeding lifespans of about 4

years, and typically skipped breeding in 1–3 years [75], the typical breeder made 3 lifetime

breeding attempts and produced a total of 5.3 (males) and 5.8 (females) fledglings. Nonethe-

less, the salient feature of this population was a strongly right-skewed among-individual

variation in LR. A minority (25%) of males and females produced 2 or fewer fledglings, the

consequence of 18.7% of males and 21.3% of females breeding only once and about 3% of both

sexes producing clutches but failing to fledge any young in their lifetimes. Only 15% of males

and 16% of females produced 10 or more fledglings, with a maximum production of 19 fledg-

lings by males and 23 by females. The extent of individual variation in LR among Kaibab gos-

hawks was similar to LR variation among female goshawks in Bavaria [106], in male Cooper’s

hawks (A. cooperii) in New York [107], female sparrowhawks (A. nisus) in Scotland [108], in

several other hawks and owls [109–111], and in birds in general [3, 112].

LR can be affected by age of first breeding, which is often influenced by population struc-

ture and dynamics [3, 27, 113]. Density-dependent breeding by young raptors is driven by the

availability of breeding territories, food, or mates and typically manifests as changes in the

Fig 17. Are fewer fledglings per breeding attempt produced on less productive (low quality?) territories than on

more productive (high quality?) territories? Linear regressions of mean numbers of fledglings produced per breeding

attempt on low productivity vs. high productivity territories and the sum total fledglings produced by 3 different

cohorts of territories (36 territories monitored 20 years [1991–2010]; 25 territories monitored 19 years [1992–2010];

and 18 territories monitored 18 years [1993–2010]) by northern goshawks in Arizona, USA. Territories in each cohort

are divided into 4 quadrants based on their mean total fledglings produced per study period (vertical line) and means

of numbers of fledglings produced per breeding attempt (horizontal line). Means (±SE) and ranges of numbers of years

that territories were active (A; eggs laid), and means (±SE) and ranges of nest failures (F) are provided for each

quadrant.

https://doi.org/10.1371/journal.pone.0215841.g017
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number of young breeders in a population as breeder density fluctuates [3, 29, 114]. When a

breeding population falls below habitat saturation the proportion of young breeders typically

increase (resource permitting), but as density increases and fewer territories are available,

young hawks may wait years for vacancies [26, 27]. Both goshawk sexes are capable of breeding

at 9 months of age and the proportion of these first-year breeders in populations have been

reported as high as 35–40%, with first-year females more commonly breeding than first-year

males [30, 115, 116]. In highly size-dimorphic raptors such as goshawks, males typically defend

territories and provision their mates and broods with food while females remain at nests incu-

bating, brooding, and defense of nests. Less frequent breeding by young males may reflect

increased costs of reproduction due to their limited experience at foraging and territorial

defense [28, 34, 83, 117]. More frequent nest failure and lower LR of 2- and 3-year-old Kaibab

males compared to the less frequent failures and higher LR of 2- and 3-year-old females and

those males delaying breeding until >3-years-old attests to the importance of male experience.

We find it interesting that, against expectations, 2-year-old first breeding Kaibab males had

higher LR than 3-year-old first time breeders. We suspect that this difference was related to the

fact that 5 (42%) of the 12 2-year-old male breeders first nested in 1992 and 1993, by far the

best of breeding years [77], whereas none of the 12 3-year-old first breeding males nested in

these years. Unusually high prey abundance in 1992–1993 likely countered the effect of inexpe-

rience on the LR of 2-year-olds.

Interestingly, while the mean lifespan of 2- and 3-years-old Kaibab males and females

breeding on the Kaibab were shorter by as much as 2 years than lifespans of both sexes that

delayed till age>3-years, there were no differences in either breeding lifespans and or number

of breeding attempts between these 2 groups. The similarities may be related to the duration of

the trough-to-peak periodicity of good and poor breeding conditions on the Kaibab Plateau

Fig 18. Variation in annual fledgling production and goshawk breeding density contradicts the ideal pre-emptive

model. Contrary to predictions from the ideal pre-emptive model of habitat selection wherein the annual coefficient of

variation (CV) in annual fecundity increases with breeder density as more lower quality territories become occupied

and produce fewer and fewer young, the CV of annual fledgling production declined as breeding density increased

(percent of territories with breeders; see inset) increased in Arizona, USA.

https://doi.org/10.1371/journal.pone.0215841.g018
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[75]. Many first-time Kaibab breeders (young or older) laid eggs in the initial years of a 3–

4-year period of improved breeding conditions whereas only a fraction of territories had

breeders during a subsequent 3–4 year period of poor conditions (see Fig 4). The periodicity of

breeding year quality likely played a role in restricting the breeding lifespans of many of the

hawks in each age group to 3 and 4 years, and may have also resulted in underestimates of the

lifespans of some hawks. Three to 4 years of good breeding (when most pairs laid eggs) com-

bined with low resighting probability of non-breeders during the following poor year period

(when few pairs laid eggs) would underestimate lifespans of any individuals that survived into

but not through the poor years to breed (and be resighted) again the next good breeding

period. Like females on the Kaibab Plateau, female goshawks in Germany showed no differ-

ences in breeding lifespans among females that bred early (�x ¼ 2:8 � year) versus those that

bred later in life. However, unlike the slight differences in LR of 2- and 3-year-old Kaibab

females, the German females first breeding at 2-years had significantly lower LR than those

starting at 3-years [19].

The absence of breeding by goshawks <2-year-old on the Kaibab Plateau was intriguing.

According to the delayed breeding hypothesis (i.e., individuals delaying first breeding are of

higher quality) birds that delay breeding are expected to have higher LR than those that breed

at an early age [118, 119]. However, the not uncommon breeding by�1-year-old goshawks

elsewhere in their geographic range and occasional breeding by 2- and 3-year-old goshawks

on the Kaibab Plateau suggests there may be a fitness benefit to starting early in life [19, 33].

The temporal variability in breeding by 2- and 3-year-old goshawks on the Kaibab appears to

reflect the limited life experience of these young individuals in an environment with highly

variable food resources where even experienced adult breeders frequently do not produce eggs

in periods of low food abundance [77, 86]. It is not surprising then that even less experienced

goshawks in their first or second year would breed on the Kaibab. Nonetheless, given the aver-

age 3 lifetime-breeding attempts irrespective of age at first breeding, it would seem adaptive to

start early in life, especially for females as there were no LR costs for starting at least at 2-years.

While breeding early may bet-hedge against the probability of death before reproduction [105,

120, 121], breeding by 2- and 3-year-old Kaibab goshawks was clearly opportunistic and

dependent on food abundance (sufficient to produce a clutch) as well as availability of mates

(i.e., vacancies on territories). Unfortunately, the extent to which vacancies existed on the Kai-

bab was difficult to determine because of the low detectability of non-breeders. The likelihood

of accrued adult mortality through non-breeding periods and the absence of occupancy evi-

dence (hawk sightings, refurbished nests, molted feathers, feces) in many territories during

low breeding years suggested that vacancies were not uncommon [75]. In fact, we suspect that

acquisitions of territories by some 2- and 3-year-old hawks occurred during low breeding peri-

ods but went unobserved due to the inability of the hawks to produce a clutch and low detec-

tion probabilities of non-breeders. Increases in 2-year-old breeders as breeding conditions

improved affirmed the presence of young floaters as well as vacancies. The steep declines to nil

in numbers of 2-year-old breeders on deterioration of breeding conditions was likely a mani-

festation of the inability of young inexperienced breeders to procure sufficient food in years

when many experienced adults failed to lay. The high proportion of 2-year-old breeders in

1991 (6%) and 1992 (13%) (Fig 4) indicated that breeding conditions were extraordinary in

1991 through 1993, resulting in the highest percentages of territories with breeders in our

20-year study (86% in 1992, 77% in 1993) and was coincident with a record-long El Niño wet

period [122] that increased primary forest productivity, bird and mammal prey abundance,

and goshawk breeding [75].

There were a few Kaibab goshawks of both sexes that were not observed breeding until age

9-years. These hawks may have acquired territories when younger but may have been unable
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to produce clutches for multiple years due to a string of poor breeding years. Alternatively,

these hawks may have dispersed to a monitored territory from a yet to be discovered territory

where they previously bred (more likely to occur in the early years of our study when fewer ter-

ritories were being monitored), or they may have bred elsewhere and immigrated to the Kai-

bab. Due to high territory fidelity of breeding goshawks on the Kaibab Plateau and elsewhere

[34, 78, 80, 87] we contend that older first-breeding Kaibab goshawks were mostly individuals

that acquired territories earlier in life but were delayed in breeding by food limitation.

Age-specific reproduction

Reproductive performance in many long-lived birds initially improves with age with a strong

increase early in life followed by a plateau. While detrimental effects of aging on reproduction

might be expected, such effects are difficult to document due to the sharp declines in numbers

of old individuals within populations. The only significant effect of aging in our 12 GAMM

analyses of age-specific reproduction was on nest success (a nest attempt producing�1 fledg-

ling) of�4-year-old males (Fig 6) where there was a steady decline in nest success with

increasing age, although this effect was likely strongly influenced by two males breeding at age

14-years whose nests failed (for annual nest success on the Kaibab see [77]). There was, how-

ever, an incipient (nonsignificant) concave curve in the individual-level analyses of age-spe-

cific fledgling production of known-age males (Fig 5). Both curves are suggestive of a gradual

decline with age in a male’s ability to provision food to his female and brood. The otherwise

flatness of the curves in both the population-level and individual-level analysis of male and

female age-specific fledgling production on the Kaibab contrasted with the concave curves of

increased fledgling production early in life followed by either a stable productivity through age

10-years or a decline with age in productivity by European goshawks and several other raptors

[18, 33, 123, 124]. Because the concave curves in European goshawks started with significantly

lower fledgling production by first-year (9-months old) and 1-year-old hawks [19, 33], we sus-

pect that the absence of concave curves on the Kaibab may have been due to the absence of

breeding by hawks younger than 2-years. Our finding of no significant age effects on fledgling

production from age 2- to 15-years is similar to Abt’s [124] finding that brood size in 919 gos-

hawk breeding attempts in Germany (see [36]) was remarkably stable from age 4-years to over

10-years.

Based on the association between extensive inter-annual variations in food abundance and

variation in nest success and brood size of Kaibab goshawks [77], we were surprised to find a

significant year effect only on age-specific brood size in the population-level analysis of

�4-year-old goshawks. This shows that brood size was more sensitive to environment fluctua-

tions than nest success and that the non-detection of a year effect on brood size in other age-

specific analyses may have been related to sample size. The number of broods in the popula-

tion-level analyses of�4-year-old hawks (n = 919) was nearly double the nest attempts

included in the individual-level (n = 510) and as much as 2- to 4-times as many in the analyses

of known-age hawks (population-level, 413 attempts; individual-level, 218 attempts).

Mate choice

Researchers are often interested in measures that are proxies for fitness in order to predict

individual differences in survival and reproductive success. Such proxies are typically breeding

age, breeding experience, body condition, and body size, and these are likely to be mediated by

individual quality because those of higher quality are presumed better at acquiring resources

and increasing survival and reproduction. While assortative mating in birds is common in

long-lived, territorial, and monogamous species, the patterns (expressed at the population
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level) and preferences (expressed at the individual level) of mate choice are poorly understood

[125, 126]. Age-based assortative mating where birds mate with individuals of certain ages has

been shown to be adaptive because adult-adult pairings are typically more productive than

inexperienced-inexperienced and mixed-age parings [37, 41, 127]. In raptor studies where

only two age classes, juvenile and adult (ensemble of all precisely-aged adults), were included,

age-based assortative mating was found; there were fewer juvenile-adult pairing and more

juvenile-juvenile and adult-adult pairing than expected by chance. However, when precisely-

aged adult-adult pairs were considered there was no tendency for hawks of similar age to be

paired [37–39]. While age assortative mating can result from active mate choice, other factors

such as little variation in age at first breeding, high survival, and high site and mate fidelity,

can produce strong correlations between mate ages [40, 41]. While Kaibab goshawks exhibited

wide variation in age at first breeding (2- to 9-years-old), most (86–88% of known-age hawks)

started breeding between ages 2- and 5-years, had relatively high adult annual survival rate

(0.78 peak survival at age 5-year [75]), and showed strong mate and territory fidelity [77, 78],

our analyses provided no evidence of active age-based mate choice. The small proportion (22–

24%) of same-age pairs (Fig 8) probably reflected the relative abundance of 3- and 4-year-old

goshawks in the floater pool, especially in the years of expanding numbers of breeders, whereas

the more frequent (56–79%) pairing of variable-aged pairs was the result of new recruits (typi-

cally 2- to 5-years-old) pairing with older breeders whose mates had disappeared.

Body size in birds may indicate a potential mate’s quality because an individual’s condition

predicts its fitness inasmuch as those in better condition have more resources to allocate

towards increasing their reproductive fitness [11, 12, 128, 129]. In size-dimorphic raptors a

potential mate’s size may indicate its quality because pairs with larger females (or smaller

males) have higher fitness as a result of a directional selection arising from their different effi-

ciencies in their divergent breeding sex roles [130–132]. As in the lack of age-based assortative

mating, we found no evidence of body condition or size-based assortative mating in Kaibab

goshawks; mate choice on the Kaibab appeared to be and on a “first-come, first-serve” basis,

an expectation if available mates were in short supply.

LR: Individual and environmental correlates

The salient reproductive feature of goshawks in our study was extensive among-individual var-

iation in lifetime production of fledglings and recruits. Cumulative distributions of individual

male and female fledgling production showed that only a third of breeders produced two-

thirds of the population’s fledglings, and increasingly smaller proportions of these breeders

produced local (in situ) recruits in 3 succeeding generations. Production of the majority of

fledglings and subsequent recruits by a small number of breeders has been documented in

other raptors [109, 111, 133, 134] and in birds in general [15, 135, 136]. The significant rela-

tionship between individual fledgling production and numbers of recruits by goshawks on the

Kaibab Plateau supports the contention that individual LR on the Kaibab is a good predictor

of fitness.

Our investigations into how individual and environmental conditions combined to shape a

goshawk’s lifetime breeding performance and fitness potential revealed that numbers of breed-

ing attempts and nest failures accounted for most of the variation in male LR, and number of

breeding attempts, number of nest failures, and age at first breeding accounted for most of the

variation in female LR. The slopes of the relationships in the GLMs between LR and age of first

breeding for females were negative, although not significant in the model including all mor-

phological variables, indicating that females had marginally higher LR if they started breeding

at a younger age. When age at first breeding was treated categorically and pooled for all females
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breeding for the first time at or after age 4 years (Table 4), this relationship was washed-out

and no significant differences were found. Similarly, in our categorical analyses of the effects

of age at first breeding on LR, males breeding for the first time at 2 years-old had significantly

lower LR than those delaying until age 4 years or older, whereas no significant relationship was

found when age at first breeding was treated continuously in the GLM analyses (Table 5).

These discrepancies were due to the few outlying individuals that delayed breeding until well

past age 4 years (i.e., one male first breeding at age 9 but none breeding between 6 and 8 years-

old) as well as the timing of breeding by many males for the first time at 4 years during periods

of good breeding years. Thus, despite the prospect of a reduction in lifespan of up to 2 years in

both males and females that first bred before age 4-years, neither showed substantial differ-

ences in LR compared to hawks delaying till age 4-years. On the other hand, males breeding

before age 4-years suffered increased nest failures, where nests of males that delayed breeding

until age 4-years or more were half as likely to fail. Why then did male goshawks on the Kaibab

attempt to breed before age 4? Life-history theory predicts that fitness is highly sensitive to

changes in age at first reproduction [16], because early breeding increases the potential num-

ber of lifetime breeding attempts, starting as early as possible is intuitively a good strategy.

Nonetheless, breeding early in life can depress survival probability and accelerate reproductive

senescence [137–139]. Decisions of when to begin breeding can also be affected by the envi-

ronmental conditions experienced by individuals either early or later in life. Given that both

goshawk genders are mature sexually before the end of their first year and life expectancy for

Kaibab goshawks began to decline after age 3-years (S7 Table), it was surprising not to see

more 2- and 3-year-old breeders. Breeding by young goshawks on the Kaibab was less com-

mon than in other goshawk populations, and breeding by 2- and 3-year-old Kaibab goshawks

was almost entirely limited to the first and second year of a series of years of improving breed-

ing conditions. Due to accrued mortalities of territory owners during a series of poor breeding

years, vacancies on territories increased opportunities for 2- or 3-year-old goshawks to recruit

and begin breeding as conditions improved. Despite potentially shorter lifespans, increased

nest failures, and reduced LR among males, the majority (72%) of 2- or 3-year-old males suc-

cessfully fledged young. These young recruits augmented the much more frequent recruitment

of full adult (�4-years-old) goshawks as breeding conditions improved and the proportion of

territories with breeders increased [77].

The negative correlations between avgbrpairs, the annual average density of breeding pairs

(Table 1, S1 and S2 Tables), and a hawk’s breeding lifespan was the opposite of our expecta-

tions. The negative correlation likely reflected interactions between the timing of first breeding

and the length of a hawk’s breeding lifespan. Long-lived individuals (e.g., breeding lifespans

>10 years) experienced multiple 3–4 year periods of good (high breeder density) and poor

breeding years (low density), whereas breeding by short-lived hawks more commonly started

and finished in a sequence of 3–4 good years when breeding density was high. The mix of peri-

ods of high versus low quality breeding years experienced by long-lived hawks lowered the

average number of breeding pairs during their reproductive lifespans relative to short-lived

individuals. The positive correlation between age of first breeding and lifespan reflected the

shorter lifespan of goshawks first breeding at ages 2- and 3-years and longer lifespans of hawks

that delayed breeding till later in life. Long-lived hawks also had more opportunities to breed,

had more mates, and more nest failures than short-lived hawks. It remains to point out that

our inability to resight non-breeders (common during poor breeding years) may have under-

estimated lifespans because non-breeders could not be resighted as alive.

Among environmental effects, territory quality and mate quality (both estimated by total

fledgling production) were positively correlated with a goshawk’s breeding lifespan, number

of breeding attempts, and number of mates. However, due to strong territory fidelity by
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Kaibab goshawks [78], territory quality could not be separately estimated from hawk quality

because the two were confounded; the more long-lived and productive an individual gos-

hawk, the more productive its territory. The same confounding occurred between individual

quality and mate quality because of strong mate fidelity. None of the individual morphologi-

cal characteristics (mass, tail length, tarsom length, wing cord) of goshawks explained varia-

tion in LR for either sex. This contrasted with goshawks on the Baltic island of Gotland

where males with the greatest body mass produced more fledglings, and where male wing

length was shorter in rabbit-poor areas and longer in rabbit-rich areas where more fledglings

were produced [140].

Age and breeding experience of mates (especially males) may affect the reproductive perfor-

mance of goshawks on the Kaibab Plateau. Contrary to our expectations that females should

avoid pairing with inexperienced (younger) males given their more frequent nest failure, the

mean age of male mates was younger than their females across the majority of age-classes (Fig

8). Younger males may be a manifestation of a male floater pool younger on average than

female floaters because of lower male than female survival as both juveniles and adults [77,

141, 142]. Nonetheless, mate ages were most similar in the 3- to 6-year age-classes, perhaps a

consequence of the floater pool being comprised of young goshawks, the similarity of breeding

lifespans of both sexes, and high mate fidelity. Increases in age variation among pairs after age

8-years reflected mortalities of original mates and the predominance of young goshawks in the

floater pool of potential replacements.

Reproduction on territories: Individual versus habitat quality?

Our ultimate research objective is to identify the compositional and structural components of

forest vegetation that confers habitat quality to goshawks. Our aim is to determine the relation-

ship between the species composition and 3-dimentional structure of forest vegetation in terri-

tories and the long-term demographic performance of territory occupants. It is often assumed

that individuals either initially settle in high quality territories or disperse from poor quality

sites to better habitat to improve their reproductive success [63, 133, 143]. However, the spe-

cific reproductive performance of individuals may also reflect their innate abilities to contest

for territories or mates, use resources efficiently, and survive longer to reproduce more often

(individual abilities are known to improve with age and experience [19, 33, 140]). Thus, terri-

tory-specific estimates of habitat quality based on reproductive output alone may be substan-

tially biased by variation in individual quality [63].

The question of habitat vs. individual quality (i.e., fitness) has important conservation

implications, especially where species are conserved via habitat management [24, 96, 144].

However, if individual quality is a major contributor to demographic performance, manage-

ment could be counter-productive unless the two qualities are positively correlated [24].

Understanding the extent of synergy between individual and habitat quality requires reliable

metrics of individual fitness, territory-specific habitat composition and structure, and the

behavioral processes and choices made in territory selection – choices that distribute goshawks

among habitats [63]. Habitat selection is a hierarchical process of responses (choices) that typi-

cally result in a disproportionate use of habitat patches that differ in resources and environ-

mental conditions [58, 62]. Because habitat preferences of individuals are assumed adaptive,

there is an expectation of a congruence between a species’ evolved habitat preference and an

individual’s fitness [59, 145, 146]. This expectation is supported by numerous bird studies

reporting differential reproductive performance in different habitats [3, 56, 144]. However,

because little is known how individual quality vs. habitat quality affects individual perfor-

mances, most habitat quality studies treat conspecifics as ecological equivalents [147].
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Prospecting animals select habitats based on a variety of cues: the composition and/or

structure of vegetation [49, 148, 149]; food [50, 150, 151]; presence of nest sites, competitors,

and predators [52, 53, 152]; interspecific attraction or other social information such as old nest

structures [153–155]; and a potential mate’s characteristics such as body condition or size that

might reflect the quality of a mate’s habitat [11, 42, 58, 156]. The usefulness of environment

and social cues of course depends on their temporal variability and predictability at appropri-

ate spatial scales. Researchers have variously estimated habitat quality by frequency of occu-

pancy, survival of occupants, annual and total reproductive rates, dates of occupation in

seasonal settings, frequency of receipt of breeding dispersals, and quantity and quality of food

and nest sites [24, 157–159]. Because some territories are occupied more frequently than oth-

ers and occupancy rates are known to be correlated with other measures of territory quality,

occupancy rate is considered a consistent measure of territory quality [143]. However, occu-

pancy assumes that prospecting individuals, whether first-time or dispersing breeders, choose

territories based on habitat assessments and that choices are not spatially and temporally con-

strained by the number of territories an individual is capable of assessing [160]. Finally, occu-

pancy measures of habitat quality may be ambiguous in long-lived birds with strong site

fidelity because individuals remain faithful to their territory even if better territories become

available [143].

On the other hand, individual quality has been estimated variously by age, morphology

(e.g., tarsus, wing, tail length, body condition, body mass), longevity (survival), reproduction,

and LR (a composite measure of survival and reproduction) [123, 161, 162]. Accordingly,

extensive heterogeneity in individual survival and reproduction has been documented in

many species [105, 107, 108], and several studies report strong correlations between individual

LR and number of recruits. Thus, LR in an expanding list of species have proven to be reliable

measures of fitness [13, 14, 105].

Selecting the best habitat requires prospectors to visit a sample of habitats, determine the

best-of-n, and return to settle (assuming a vacancy) in the best [163]. However, the number of

territories a young, inexperienced goshawk could adequately assess for food availability or veg-

etation composition and structure is likely constrained perceptually, spatially, and temporally.

First, young prospecting Kaibab goshawks would have to assess conditions in large areas (i.e.,

home ranges can be up to 3,500 ha; [32]). Second, prospecting time is constrained by a need,

driven by limited lifespans and breeding opportunities, to quickly acquire a territory and begin

breeding. Observations of juvenile non-breeding goshawks on the Kaibab suggested that pros-

pecting initially involves continuous wandering until appropriate selection cues are encoun-

tered when, thereafter, movements are limited to smaller areas [164]. Based on ages at first

breeding, initial prospecting may persist for several years and may even be employed by post-

breeding adults as evidenced by reports in goshawks and other raptors [165–167] of extra-ter-

ritory excursions and intraspecific nest intrusions and occasional short breeding dispersals by

Kaibab goshawks. Nonetheless, near-lifetime fidelity to territories was a prominent behavior of

Kaibab goshawks suggesting that, because most spent their entire breeding lives in their initial

territory, prospectors ought to devote substantial time and energy assessing habitats.

Krüger and Lindström (66), Squires and Kennedy (72), and Kenward (34) suggests that

selection of breeding habitat, and the subsequent distribution of goshawks among habitats,

follows the ideal pre-emptive distribution (IPD) model [70, 168, 169]. However, if goshawks

follow the IPD model, and if there is synergy between individual and habitat quality, then indi-

vidual quality may mediate, offset, or exaggerate habitat quality effects [24]. If reproductive

costs and energy allocation tradeoffs in a habitat are affected by individual quality, then indi-

vidual quality must be controlled for when making inferences about habitat quality based on

the individual demographic performance. Expected outcomes under IPD settling are:
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territories are occupied non-randomly over years, some are frequently occupied and others

rarely; more of the infrequently-occupied territories become occupied during periods of popu-

lation growth; among-year fledgling production is more variable in less-frequently occupied

territories; there is a positive relationship between mean fledgling production on a territory

and its coefficient of variation (CV) as a population’s breeding density increases; and less-fre-

quently occupied territories are occupied more commonly by young breeders [73, 151, 170].

In support of the supposition that Kaibab goshawks settled according to the IPD, Kaibab

territories were (1) occupied non-randomly year-to-year, (2) more of the less-frequently occu-

pied territories transitioned to being occupied as the density of breeders increased and

declined as density declined, and (3) fledgling production per breeding attempt was more vari-

able in less-frequently occupied territories. However, contrary to expectations, the annual CV

of fledgling production across all territories decreased as breeder density increased, and there

were no differences in the frequency of sub-adult goshawks breeding on more- or less-fre-

quently occupied territories (Fig 18). Based on the IPD and the convention that habitat-spe-

cific measures of individual survival and reproduction are gold standard measures of habitat

quality [58], the more consistently occupied and productive territories were expected to con-

tain high quality habitat, high quality hawks, or both. Yet, this expectation was controverted by

our data showing that (1) over the long-run, the top producing (>20 fledglings) territories

were occupied by as few as 2 long-lived (high fitness) goshawks to as many as 7 short-lived

(low fitness) breeders, that (2) despite greater variation in fledgling production per attempt in

the less productive territories (<12 fledglings), many of the less productive territories were as

equally productive per attempt as the most productive of territories, that (3) instead of habitat

cues per se, prospecting hawks appeared to have been attracted by settled conspecifics and 70%

of recruits filled vacancies on territories, and that (4) the quality of territorial singletons

appeared to have little effect on a prospector’s habitat choice because choice on the Kaibab was

random with respect to mate age, condition, or body size. Mate choice seemed to occur on

“first-come, first-serve” basis, an expectation if potential mates were in short supply. A “first-

come, first-serve” mate choice also raises the possibility that, over the long-run, differences in

the fitness of successive breeders – the individual contributions to the long-term production of

fledglings in a territory – might be negated by a “washing out” of among-individual differences

(sensu [24]). A washing-out seems corroborated by the fact that top producing territories were

either occupied by a few long-lived (high fitness) goshawks, multiple short-lived (low fitness)

individuals, or long-lived breeders paired with multiple short-lived mates.

Identifying the cues used by Kaibab goshawks during habitat selection is complicated by

the fact that competition among prospectors for territories was likely low due to apparent low

territory occupancy in 14 of the 20 study years (1994–1997, 2003–2010) [75]. Low occupancy

suggested that the resource most limiting to prospectors may not have been habitat at all but

was instead the availability of territorial singletons. Furthermore, the top fledgling-producing

territories on the Kaibab occurred across the entire elevational gradient from low elevation

ponderosa pine-dominated territories to upper elevation wet mixed-conifer-dominated terri-

tories, and, based on our qualitative assessment of the vertical and horizontal structure of the

conifer forests across the gradient, other than tree density there was little heterogeneity in hab-

itat structure at the territory scale (~11.3 km2). The lack of strong among-territory structural

differences combined with any perceptual, temporal, and spatial constraints on young pros-

pecting goshawks raises questions regarding the direct role of habitat cues during habitat selec-

tion by prospectors.

That habitat selection may not be directly cued to habitat seems problematic given the sub-

stantial evidence that habitat affects fitness through variations in environmental conditions

and resources that in turn affect individual survival and reproduction [58, 146, 171]. With the
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exception of several long (<15 km), narrow (<0.5 km) meadows, several high-severity fire

scars (see Fig 2 in [75]), and scattered small (2–17 ha) shelterwood and seed-tree harvested

areas (each of which retained some mature trees), forest cover on the Kaibab Plateau was

unbroken. Despite gradual increases in tree density and species diversity with increasing eleva-

tion (see Study Area), forest structure on the Kaibab was relatively homogeneous and potential

nest sites (small areas with large trees and relatively high tree and canopy density [172, 173])

were abundant and randomly distributed across the study area [174]. In fact, the near continu-

ous conifer forest cover on our study area was considerably less heterogeneous than the degree

of habitat heterogeneity in other raptor studies where territories were unequally and non-ran-

domly occupied ([24], see [151, 175]). Due to the relative homogeneity of Kaibab forests, it

seems unlikely that forest structure in and of itself would provide sufficient predictive cues to

habitat quality, especially in view of extensive periodic variation in food abundance on the Kai-

bab [86].

Whether prey type and abundance cues were used by Kaibab goshawks was of course

unknown. However, prey abundance on the Kaibab varied extensively over years [86, 176] and

the simultaneous Kaibab-wide increases in number of goshawk territories that changed occu-

pancy states from no breeders to breeding pairs (or breeding pairs to no breeders as food

abundance increase (or decreased) indicated that prey abundance varied synchronous across

the Kaibab [75]. Unfortunately, we were unable to determine if variation in prey abundance

was equal in productive vs. less productive territories. Due to the 3–4 year periodicity in Kai-

bab prey abundance, food availability in a given year was unlikely to have been a reliable cue to

future habitat quality.

Given the perceptual, temporal, and spatial constraints on young prospecting goshawks in

relatively homogeneous habitat with temporally-variable food resources, it would not be sur-

prising that prospectors used settled conspecifics in choosing their habitats. Settled conspecif-

ics, especially if evidence of past or current successful breeding was available, provide cues to

the potential quality of a habitat. Conspecific attraction also affords opportunities to detect

and fill vacancies in established territories [154, 155, 177]. In fact, the importance of conspecif-

ics to prospecting Kaibab goshawks was evidenced by the fact that 70% of new breeding

recruits were replacements (turnovers) on territories where mates had either died or changed

territories. Thus, rather than habitat quality per se, conspecific attraction could result in non-

ideal habitat and/or mate choice whereby the most fit individuals did not necessarily settle in

the best habitat or pair with the best mate. Conspecific attraction could result in consistent

mate replacement that would, in and of itself, confer more breeding attempts and ultimately

more productive and higher ranking territories.

In future research into the relative effects of individual quality and habitat quality on long-

term territory-specific reproduction in goshawks, we anticipate investigating whether total

fledgling production on a territory is better explained by differences among individual hawks,

hawk pairs, or territories using both individual and territory identities as correlates of “terri-

tory quality” (sensu [147]). We then hope to investigate differences, if any, in over-story and

understory species composition and 3-dimentional structure (from LiDAR) of forest vegeta-

tion at the territory-scale across the array of low to high fledgling-producing territories on the

Kaibab Plateau. Finally, we caution that in future reproductively-based studies of habitat qual-

ity, it is essential to control for differences in individual quality (fitness) and to incorporate in

such investigations as much as is known of the cues used, and decisions made, by individual

birds during the process of habitat selection before drawing conclusions about habitat quality.

This is especially true when the intent is to maintain population viability of a species by priori-

tizing high quality sites for conservation.
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Supporting information

S1 Fig. Variance of lifespan and breeding lifespan in annual cohorts of 195 male and 250

female goshawks in Arizona, USA. Cohorts are collections of hawks (each individual repre-

sented by a row) first found breeding in a given year, 1991–2010. Row cells completely filled

with thick lines were unbanded individuals breeding on newly discovered territories, all had

unknown prior breeding careers. Cells half-filled with thick lines represents replacements of

prior breeders (i.e., turnovers) on territories under continuous monitoring; all replacements

were assumed first-time breeders. Cells with thin lines leading to thick lines that fill a cell

completely were known-age hawks (hatched in the year at the start of thin lines) whose first

breeding (thick line) occurred in newly discovered territories. Based on 2-year-old mini-

mum age at first breeding and infrequent first breeding by 3-year-olds, these hawks (n = 6)

were assumed first-time breeders. Cells with thin lines leading to cells half filled with thick

lines were known-age hawks that were replacements of prior breeders on continuously

monitored territories. Length of thick lines represent observed breeding lifespans (first to

last breeding attempt). Hawks still alive in 2009 may have had unknown future breeding

careers.

(TIFF)

S2 Fig. Scatterplot of body sizes of paired male and female goshawks and each pair’s total

fledgling production from principle component analysis. (A) Body sizes in the year of pair-

ing from the first principle component (PC; inset depicts variable loadings from the first PCs

for males and females where body sizes were estimated from tarsom length, wing cord, tail

length, and body mass) for 147 males and 151 females, and (B) heat map showing total fledg-

ling produced over the duration of each pair bond (LRpair) from the first PC in 423 breeding

attempts by northern goshawks in Arizona, USA, 1991–2010. Solid lines depict one-to-one

relationships.

(TIFF)

S3 Fig. Changes in LR associated with changes in mate mass following mate change and in

ages at first breeding. Box plots of lifetime reproduction (LR) in relation to (A) direction of

changed mate size for 89 females following breeding dispersal, (B) direction of changed mate

size for 75 males following breeding dispersal, (C) standardized differences in age at first

breeding for females, (D) standardized differences in age at first breeding for male northern

goshawks in Arizona, USA.

(TIF)

S4 Fig. Changes in LR associated with changes in number of breeding attempts and in life-

spans. Box plots of individual lifetime reproduction (LR) in relation to (A) standardized num-

ber of breeding attempts by 89 females, (B) standardized number of breeding attempts by 75

males, (C) standardized lifespans of females, (D) standardized lifespans of male northern gos-

hawks in Arizona, USA.

(TIF)

S5 Fig. Changes in LR associated with changes in number of mates and in number of nest

failures. Box plots of individual lifetime reproduction (LR) in relation to (A) standardized

number of mates over the lifetime of 89 females, (B) standardized number of mates over the

lifetime of 75 males, (C) standardized number of nest failures during the lifetime of females,

(D) standardized number of nest failures during lifetime of male northern goshawks in Ari-

zona, USA.

(TIF)
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S6 Fig. Changes in LR associated with the average rank of mates during a hawks’ lifetime

and with changes in the density of breeders. Box plots of individual lifetime reproduction

(LR) in relation to (A) standardized average mate rank (rank-ordering all males and females

on LR where a ranking of 1 was the most productive) during lifetime of 89 females, (B) stan-

dardized average mate rank during lifetime of 75 males, (C) standardized average number of

breeding pairs during reproductive years for females, (D) standardized average number of

breeding pairs during reproductive years for male northern goshawks in Arizona, USA.

(TIF)

S7 Fig. Changes in LR associated with changes in a territory’s rank and with changes in the

degree of pair-specific differences in body sizes. Box plots of individual lifetime reproduction

(LR) in relation to (A) standardized average territory rank (rank-ordered on final count of

fledglings standardized by number of years a territory was monitored) over lifetime of 89

females, (B) standardized average territory rank over lifetime of 75 males, (C) standardized

average percent mass of all mates (a measure of the degree of pair-specific size dimorphism,

males smaller than females) during lifetime of females, (D) standardized average percent mass

of all mates during lifetime of male northern goshawks in Arizona, USA.

(TIF)

S8 Fig. Larger annual cohorts of fledglings produced more recruits. Number of banded

northern goshawks recruits from each annual cohort of fledglings compared to the number of

fledglings banded in that cohort in Arizona, USA.

(TIF)

S1 Table. Correlations (r) for quantitative explanatory variables of lifetime reproduction

(LR) for 65 male northern goshawks in Arizona, USA.

(DOCX)

S2 Table. Correlations (r) for quantitative explanatory variables of lifetime reproduction

for 86 female northern goshawks in Arizona, USA.

(DOCX)

S3 Table. Candidate model set (ΔAICc< 2) for generalized linear models of individual and

environmental influences on LR of 65 male goshawks including morphological data tar-
som, wingC, mass, and tailL in Arizona, USA. All models include an intercept term. Degrees

of freedom (df), log likelihood (logLik), AICc, delta AICc, and model weight (weight) are

included.

(DOCX)

S4 Table. Candidate model set (ΔAICc< 2) for generalized linear models of individual and

environmental influences on LR of 86 female goshawks including morphological data tar-
som, wingC, mass, and tailL in Arizona, USA. All models include an intercept term. Degrees

of freedom (df), log likelihood (logLik), AICc, delta AICc, and model weight (weight) are

included.

(DOCX)

S5 Table. Influence of individual and environmental effects on lifetime reproduction of

goshawks. Relative slope parameter estimates from the generalized linear model candidate set

without tarsom, wingC,mass, and tailL data. Presented is adjusted standard error (ŜEadj), rela-

tive importance, and p-values for the model terms for the influence of individual and environ-

mental effects on lifetime reproduction of 75 male and 89 female northern goshawks in
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Arizona, USA.
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S6 Table. Breeding lifespans and number of lifetime mates of northern goshawks in Ari-

zona, USA.
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S7 Table. Life expectancy of breeding northern goshawks in Arizona, USA.

(DOCX)
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