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Abstract

Identifying agricultural practices that enhance water cycling is critical, particularly with

increased rainfall variability and greater risks of droughts and floods. Soil infiltration rates

offer useful insights to water cycling in farming systems because they affect both yields

(through soil water availability) and other ecosystem outcomes (such as pollution and flood-

ing from runoff). For example, conventional agricultural practices that leave soils bare and

vulnerable to degradation are believed to limit the capacity of soils to quickly absorb and

retain water needed for crop growth. Further, it is widely assumed that farming methods

such as no-till and cover crops can improve infiltration rates. Despite interest in the impacts

of agricultural practices on infiltration rates, this effect has not been systematically quantified

across a range of practices. To evaluate how conventional practices affect infiltration rates

relative to select alternative practices (no-till, cover crops, crop rotation, introducing perenni-

als, crop and livestock systems), we performed a meta-analysis that included 89 studies

with field trials comparing at least one such alternative practice to conventional manage-

ment. We found that introducing perennials (grasses, agroforestry, managed forestry) or

cover crops led to the largest increases in infiltration rates (mean responses of 59.2 ± 20.9%

and 34.8 ± 7.7%, respectively). Also, although the overall effect of no-till was non-significant

(5.7 ± 9.7%), the practice led to increases in wetter climates and when combined with resi-

due retention. The effect of crop rotation on infiltration rate was non-significant (18.5 ±
13.2%), and studies evaluating impacts of grazing on croplands indicated that this practice

reduced infiltration rates (-21.3 ± 14.9%). Findings suggest that practices promoting ground

cover and continuous roots, both of which improve soil structure, were most effective at

increasing infiltration rates.

Introduction

There is a need to develop more resilient, multifunctional agricultural systems, particularly

given risks posed by climate change to farm productivity and environmental outcomes [1–3].
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Specifically, water-related risks from increased rainfall variability include soil erosion and

water pollution, degradation of soil quality, and reductions to crop yields [4–6]. Although soils

are vulnerable to water-related risks, they are also being recognized as a medium to mitigate

such risk when managed to deliver a wide range of ecosystem benefits, beyond maximizing

crop production [7,8]. Thus, designing agricultural systems that improve soils and soil water

cycling is one strategy that could help reduce negative impacts of increasing rainfall variability

[9–12]. To this point, global modeling analyses indicate that enhancing soil water storage at a

large scale can benefit crop productivity and improve ecosystem services, such as by reducing

runoff [13,14]. However, there is a need to identify how to secure such outcomes on the farm-

scale, particularly across a range of management practices, environments, and climates.

Emerging interest in how soils can support climate adaptation has increased the urgency to

understand the potential benefits of farms shifting from conventional to alternative agricul-

tural practices. Presently, conventional cropping systems typically feature annual crops, leave

the soil bare when a cash crop is not growing, have limited crop diversity, and include regular

soil disturbance through tillage: within the United States, only approximately 3% of cropland

acres are growing a cover crop and 25% are utilizing no-till practices [15–17]. Soil disturbance,

a lack of soil cover and limited plant diversity can degrade soils, reducing their ability to with-

stand rainfall variability through affects such as disrupting aggregation, increasing bulk den-

sity, and limiting water holding capacity [18]. In contrast, management practices such as no-

till and cover crops may improve soil properties related to water storage such as aggregate sta-

bility and bulk density, but they remain in the minority [19]. The limited adoption rates may

be in part related to the fact that, in spite of decades of agronomic research surrounding such

practices, we are only beginning to understand their potential value for improving key func-

tions related to soil health and water cycling [18].

A growing body of research suggests that a range of alternative farming practices can con-

tribute to biological, physical and chemical transformations in soil that in turn can increase

water storage, improving resilience to droughts, floods, and extreme weather conditions

[20,21]. For example, studies have shown that no-till, cover crops and crop rotations can in

some cases improve soil carbon content, soil biological activity, and soil physical properties

associated with water storage [22–27]. For example, no-till avoids disrupting soil aggregates

and structure, and cover crops protect soils, particularly during extreme events. There is also

evidence that practices such as introducing perennials and designing diversified landscapes,

such as through crop rotations or integrating crop and livestock practices, can improve soils in

similar ways, likely by providing vegetative protection of soils above- and below-ground, and

including living roots throughout the year [28–31]. However, because there are a number of

different soil water measurements, the effects of specific practices on soil water properties have

not previously been well summarized quantitatively [20].

The primary goal of this analysis was to synthesize published field-experiments investigat-

ing impacts of agricultural practices on water infiltration rates and to gain insight into mecha-

nisms impacting infiltration rates. We focused on soil infiltration rates because infiltration is a

critical ecosystem function that can mitigate drought and flood risk by facilitating water entry

into the soil and reducing water losses by runoff [29]. This is a particularly important ecosys-

tem function given predicted climate changes, especially the trend toward increasing rainfall

variability, leading to heavier intensity rainfall events and impacts in non-irrigated agricultural

regions when there are longer periods without rainfall [4]. Infiltration rates are frequently

measured in field experiments and are sensitive to changes in management. Infiltration rates

are also closely related to other important characteristics of soils, including physical aspects

such as aggregate stability, bulk density, plant available water, as well as chemical and biologi-

cal aspects including soil carbon, and microbial biomass [20,26,27]. In this study, we
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considered a range of specific alternative practices that can be adopted on farms, including no-

till, cover crops, crop rotations, introducing perennials, and livestock grazing on croplands,

compared to more conventional controls (experiments with tillage, no cover crops, monocrop-

ping, annual crops, and no grazing). We hypothesized that the various alternative practices

would increase infiltration rates, but that the relative impacts would vary, and that is the moti-

vation behind including multiple practices in our analysis. We secondarily explored patterns

of additional environmental and management factors (e.g. soil texture, climate indices, and

the length of the experiment) that we hypothesized could be modulating observed effects.

Methods

Study criteria

We evaluated the effects of various alternative farming practices that can be adopted in other-

wise conventional farming systems [32–34]. We considered zero tillage (no-till) as compared

to conventional tillage, cover cropping or green manure practices that keep soils covered com-

pared to leaving them bare (cover crops), diversified farming (crop rotations, intercropping) as

compared to monoculture cropping (crop rotations), agricultural systems with mainly peren-

nial compared to annual crop systems (perennials), and grazing of croplands versus conven-

tionally harvested or hayed fields (crop and livestock) (Figs 1 and 2 and Table 1). The main

criteria for inclusion were field experiments that: 1. Measured and reported steady-state infil-

tration rates, defined as the volume of water entering the soil over a designated period; 2.

Fig 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Flow Chart describing the

search protocol utilized to identify and select published research for this analysis.

https://doi.org/10.1371/journal.pone.0215702.g001
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Compared one of the alternative practices of interest relative to select conventional controls in

a standardized way.

Literature search

The literature search was conducted using EBSCO Discovery ServiceTM (detailed in Basche and

DeLonge [25]) and only included field experiments in English language peer-reviewed litera-

ture through 2015 (the earliest publication that met our criteria was from 1978). Keyword

strings included “infiltration W1 rate” AND “crop�” for all searches, and additional keywords

were used for individual practices (Table 1). These searches returned approximately 700 stud-

ies, of which 79 fit our criteria. We used the USDA-NRCS Soil Health Literature database [35]

to find additional papers, leading to 10 more studies for a total of 89 (Table 1). Information

about article rejection can be found in the PRISMA chart in Fig 1. Articles were rejected

because they either did not compare controls to treatments appropriately, did not measure

infiltration rate, or were otherwise not relevant to our analysis. For additional details, see the

Supporting Information.

Management practices

Experiments within each practice were systematically included in the database only if they fit

the below additional criteria.

Fig 2. Conceptual figure of the alternative agricultural practices evaluated in this analysis and their impact on infiltration rates, including an example of a

conventional practice control. Infiltration is a key component of the water cycle, influencing how much precipitation becomes available to plants as opposed to what is

lost through other pathways such as runoff and evaporation. Conventional management is represented by tillage, a lack of crop rotation, no livestock, and non-continuous

cover of plant roots. Alternative practices include the presence of livestock, crop residue, continuous plant roots and crop diversity. These alternatives could alter

infiltration rates through a range of physical, chemical or biological processes, as shown in the illustration. Possible soil biological changes are represented through the

addition of bacteria and fungi (represented as yellow and orange symbols). Possible soil physical changes are represented by differences in porosity, compaction and

aggregation as represented in the size and distribution of soil aggregates. Possible soil chemical changes are represented in the addition of carbon represented in the soil

coloration, which is lighter in the conventional management and darker in the alternatives. Depth of water movement represents a significant increase in the cover crop

and perennial treatments as was found in this analysis. Artwork by Lana Koepke Johnson.

https://doi.org/10.1371/journal.pone.0215702.g002
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No till: Papers identified from the additional search term “till�” were included if experi-

ments clearly included a no-till treatment. We compared any tillage practices–reduced tillage

as well as more physically disruptive tillage practices that are typically described as conven-

tional tillage–to zero tillage as the alternative treatment (unlike some meta-analyses that have

compared reduced to conventional tillage separately e.g. van Kessel et al. [36]). When papers

included multiple different tillage practices that could have been counted as a control treat-

ment, they were further classified as conventional or reduced tillage, based on reported equip-

ment and/or method of plowing.

Cover crops: Papers identified from the additional search string of “cover crop�” OR

“green manure” OR “catch crop�” were included when a control treatment with no cover crop

was present (e.g. bare soil when the cash crop was not growing). Experiments were included

when the cover crop was grown intentionally to protect the soil and was not harvested, and

residues were mechanically terminated, chemically terminated, or left as a green manure (e.g.

a crop grown specifically for fertility purposes).

Crop rotation: Papers identified from the additional search string of “rotation” AND “con-

tinuous” were included when there was a control treatment that represented the continuous

(year after year) cropping of one cash crop. The experimental treatment needed to include the

same crop as well as at least one additional crop, grown in rotation (as in McDaniel et al. [23]).

We included two experiments where an additional crop was grown not in rotation but as an

intercrop (i.e. two plant species grown simultaneously on the same field) and one experiment

that met the rotation criteria but was different in that it also included grazing in the experi-

ment treatment but not the control (Table A in S1 File). In all experiments, we recorded the

number of crops in rotation for analysis.

Perennials: Papers identified from the additional search string of “perennial” OR

“agroforest�” included experiments where a perennial treatment was compared to an annual

cropping system. This practice represented more significant shifts in management practices

that have been the subject of fewer studies, thus we included control practices that varied

slightly (for example, they included monocultures with or without conventional tillage). Treat-

ments included perennial grasses, agroforestry and managed forestry (Table A in S1 File).

While these treatments have differences in species and management, they share the critical fea-

ture of continuous living cover through perennials. Given the limited number of total studies,

we aggregated these into a single class (as in Basche and DeLonge 2017 [25]). Two of the eight

Table 1. Criteria and results for literature searches for specific agricultural practice comparisons.

Practice Search key words Control Treatment Experiments Paired

Comparisons

No-Till “till�” Tillage (conventional or reduced) No-till 52 207

Cover crop “cover crop�” OR “green

manure” OR “catch crop�”

No cover crop (e.g. bare soil when no cash

crop)

Cover crop 23 81

Crop

rotation

“rotation” AND “continuous” Continuous cropping of one cash crop

(Monoculture)

Same crop + at least 1 more crop, grown

in rotation or as an intercrop

11 39

Perennial “perennial” OR “agroforest�” Cultivated annual crop Perennially-based system (perennial

grass, managed forestry or agroforestry)

8 40

Crop and

livestock

“graz�” AND “livestock” Conventionally harvested crops

(including cultivated forage crops in

pasture)

The same crops with livestock grazing

(of crop residues or forage)

7 24

Shown here are the control and treatment conditions for all practice comparisons considered for this study, as well as the number of experiments and specific paired

comparisons (response ratios) that met the criteria for inclusion into the meta-analysis. Additional details for each experiment are in Supporting Information (Table A

in S1 File).

https://doi.org/10.1371/journal.pone.0215702.t001
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experiments ultimately included in this practice also had livestock grazing as part of the treat-

ment (compared to an annual crop system with no livestock; Table A in S1 File).

Crop and livestock: Papers identified from the additional search string of “graz�” AND

“livestock” were included if there was a crop-only control and a treatment with a similar crop

system that also included livestock grazing. This treatment was of interest as it is representative

of one phase of integrated crop-livestock systems that has implications for diversifying crop-

land management. The identified studies included experiments with either annual crop or pas-

ture-based systems, where control systems were harvested conventionally (i.e. with

equipment) whereas treatments included livestock grazing and no conventional harvesting.

Database design

Data from experiments were extracted and categorized systematically. When experiments

reported measurements from several years, years were included separately. When experiments

included multiple measurements of infiltration rate within a year, measurements were aver-

aged, as has been done in other meta-analysis evaluating soil properties that may be measured

on a sub-annual basis [23]. This approach, which was used for 10 studies (and 11% of the

response ratios in the database), allowed us to use as much data as possible to capture the influ-

ence of the treatments on infiltration rates over a longer timeframe.

We analyzed additional variables to examine how effects of management on infiltration

rate are modulated by other factors of interest [23,37,38]. These variables included soil tex-

ture (percent sand, silt, clay), climate, study location, and study length. We also analyzed

additional information within select practices, including tillage descriptions (within no-

till), inclusion of cover crops (within no-till), the number of crops grown in an experiment

(within crop rotations), and if crop residues were removed or maintained (within cover

crops). Study length was defined as the number of years a treatment was in place, as

reported by the authors, and we assumed that this duration explains differences between

control and treatment conditions.

We supplemented our dataset using publicly available sources to explore broader patterns

that could be influencing the effectiveness of management practices. When annual precipita-

tion was not reported, we used the Global Historical Climatology Network (GHCN)-Daily

database [39] (contains records from over 80,000 stations in 180 countries and territories). As

an additional indicator of longer-term climate conditions for all study sites, we used locations

to extract estimates for the aridity index, an integrated measure of temperature, precipitation

and potential evapotranspiration (CGIAR-CSI Global-Aridity and Global-PET Database, reso-

lution of 30 arc seconds [40,41]). In cases where soil textures were not reported in papers from

the U.S. (which represented the largest number of studies, Table 1), we used data from the U.S.

Department of Agriculture’s Web Soil Survey [42].

Statistical analysis

Statistical analysis was conducted by calculating response ratios, representing a comparison of

control treatments to experimental treatments, as is common in meta-analysis methodology43.

Response ratios (LRR) represented the natural log of the infiltration rate measured in the

experimental treatment divided by the infiltration rate measured in the control treatment (Eq

1) [43]. A weighting factor (Wi) was included in the statistical model as is suggested by Philli-

bert et al. [44] based on the experimental and control replications (Reps) of each study (Eq 2)

[45]. Natural log results were back transformed to a percent change to ease interpretation.

Infiltration rates and agricultural management
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Results were considered significant if the 95% confidence intervals did not cross zero.

LRR ¼ ln
Experimental Infiltration Rate

Control Infiltration Rate
ð1Þ

Wi ¼ Experimental Reps� Control Reps= Experimental Repsþ Controls Reps ð2Þ

For statistical analyses, the five practices were analyzed separately because there were nota-

ble differences in experimental designs and control treatments. A linear mixed model (lme4

package in R) was used to calculate means and standard errors for the five practices. The statis-

tical model also included a random effect of study to account for the factor of similar environ-

ments and locations in the cases where experimental designs allowed for multiple paired

observations (e.g. a single study included multiple tillage practices or multiple cover crop treat-

ments using different species) [46]. For the two practices that included the largest number of

studies (no-till and cover crops) and could therefore be statistically evaluated in greater detail,

additional fixed effects including mean annual precipitation, study length and soil texture,

were analyzed with a similar linear mixed model [47]. Given the limited sample sizes for the

other three practices (perennials, cropland grazing and crop rotations) additional fixed effects

models could not be robustly applied, but figures were developed to explore trends (Figs A-C

in S1 File). Regression coefficients were calculated to determine the effect of continuous envi-

ronmental variables (Table 2). Additional details, including sample R code, are provided in the

Supporting Information.

A sensitivity analysis was performed for each of the practices using a Jacknife technique,

where individual experiments were removed from the respective databases and overall means

were recalculated, to determine how sensitive overall effects were to individual experiments44.

This technique provides understanding of how the results would change if individual studies

were not included in the database. We evaluated histograms for all practices to determine if

there was evidence of publication bias (a preference for published studies with significant

effects) [48].

Results

Database description

Through the methodical keyword-based literature search, we identified 89 studies eligible for

inclusion in our database, representing 391 paired comparisons on six continents (Fig 3 and

Fig D in the S1 File). Many experiments were in North America (31) or Asia (27), with most

Table 2. Regression coefficients (β) for continuous environmental and study variables included in the analysis.

Practice Aridity Index Annual

Precipitation

% Sand % Clay Study Length

β n β n β n β n β n

No-Till 0.028 207 0.000 207 0.001 188 -0.003 189 0.016 207

Cover Crop -0.009 81 0.000 81 0.010 69 -0.015 72 0.015 81

Crop Rotation 1.228 39 0.001 39 0.004 32 -0.008 38 -0.005 39

Perennial 0.011 40 0.000 37 0.004 18 0.022 20 -0.007 40

Crop and livestock 0.430 24 0.000 24 0.005 20 0.008 20 0.010 24

(aridity index, annual precipitation, % sand content in soils, % clay content in soils, and length of study (treatment

duration) (n = number of paired comparisons per practice, bold notes p < 0.05). See “Model Selection and R Code”

in the S1 File for additional information.

https://doi.org/10.1371/journal.pone.0215702.t002
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located in the United States (25) and India (20). More than half of the experiments and subse-

quent paired comparisons were no-till (207 paired comparisons from 52 studies), while the

next largest practice was cover crops (81 paired comparisons from 23 studies). Sixty-three per-

cent of the database (246/391 paired comparisons) demonstrated an increase in infiltration

rate with any of the five alternative agricultural practices included in the analysis. Overall

means for perennials and cover crops were significantly greater than zero (Fig 4).

No-Till

The overall mean increase in infiltration rates in no-till versus tillage comparisons was not sig-

nificantly different from zero (5.7%, confidence interval -13.3–24.7%) (Fig 4). Also, we did not

find differences between experiments comparing reduced tillage to no-till versus conventional

tillage to no-till. We found the effects of no-till to be complex, revealing possible conditions

and environments where no-till practices are more likely to increase infiltration rates (Fig 5).

For example, in the subset of experiments reporting residue management details (11 with resi-

due retained, 7 with residue removed), there were higher increases in infiltration rates in

experiments that combined no-till with residue retention practices (41.5%, confidence interval

-3.4–86.6%). Only 2 of 52 experiments reported data capturing the effect of no-till plus a cover

crop (compared to tillage plus a cover crop) and results were inconclusive (16.2%, confidence

interval -94.0–126.5%). Similarly, there was no significant difference when no-till experiments

included more crop diversity (in both control and experimental treatments), such as having at

least two crops in rotation or double cropping (0.0%, confidence interval -18.9–18.8%). With

respect to environmental variables, we found an effect of precipitation, with significant

Fig 3. Map of experiment locations included in the analysis, with respect to their aridity regimes. Aridity regimes were determined using the aridity

index, an integrated measure of temperature, precipitation and potential evapotranspiration from the CGIAR-CSI Global-Aridity and Global-PET

Database [40,41]. Maps were generated with ESRI ArcGIS version 10.4 (http://www.esri.com). See Fig D in the S1 File for maps depicting locations for

individual practices.

https://doi.org/10.1371/journal.pone.0215702.g003
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improvements in regions with 600 to 1000-mm annual precipitation (55.6%, confidence inter-

val 5.8–105.3%) (Fig 5). There were also greater numbers of results where no-till reduced infil-

tration rates located in more arid environments (i.e., lower aridity indices), but the effect was

not statistically significant (Table 2 and Fig E in the S1 File). We did not detect any clear effects

of soil texture, nor did we find differences due to study length (Table 2 and Figs F-G in the S1

File).

Cover crops

The mean increase in infiltration rates for cover crop experiments (n = 81, 23 studies) was sig-

nificantly above zero (34.8%, confidence interval 19.8–50.0%) and results demonstrated a few

other important differences relative to patterns observed in no-till experiments. For example,

there was a significant improvement in infiltration rates when cover crop experiments were in

place for more than four years (30.0%, confidence interval 1.7–51.3%, representing 34 of the

71 comparisons) (Fig 6). Also, we did not detect differences when cover crop experiments

were aggregated by annual rainfall or aridity index (Fig 6 and Table 2). There was evidence

that the effects of cover crops on infiltration rate improvements were greater in coarsely tex-

tured soils with higher sand contents and less clay (Table 2 and Fig F in the S1 File). Similar to

the no-till plus residue retention experiments, we found there to be a significant increase in

Fig 4. Percent change in infiltration rate with the five alternative agricultural practices included in the analysis compared to conventional controls

(mean ± 95% confidence interval, n = number of paired comparisons per practice).

https://doi.org/10.1371/journal.pone.0215702.g004
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infiltration rates when experiments combined cover crops with no-till (compared to no cover

crops with no-till; 44.6%, confidence interval 11.6–77.5%) (Fig 6).

Fig 5. Response of infiltration rates to subsets of no-till experiments. Means and 95% confidence intervals were calculated using fixed effects for

different subsets related to annual precipitation, study length, soil texture, tillage practice in controls, and crop and residue management (n = number of

paired comparisons).

https://doi.org/10.1371/journal.pone.0215702.g005
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Crop rotations

Impacts of crop rotations on infiltration rates were inconsistent, with an overall mean effect

that was not significantly different from zero (18.5%, confidence interval -7.4–44.4%, n = 39

from 11 experiments) (Fig 4). Many experiments in our database compared monoculture to

two crops in rotation, and only a few compared three or more crops in rotation. Further, in

many experiments the control crop was monoculture maize (Fig A in the S1 File). The aridity

index analysis revealed that most of the declines in infiltration rate among the crop rotation

experiments fell within more arid regions (Table 2 and Fig E in the S1 File).

Fig 6. Response of infiltration rates to subsets of cover crop experiments. Means and 95% confidence intervals calculated

using fixed effects for subsets related to annual precipitation, study length, soil texture, and tillage practice (n = number of paired

comparisons).

https://doi.org/10.1371/journal.pone.0215702.g006
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Perennials

Experiments comparing perennial treatments to annual crops showed the largest improve-

ment in infiltration rates (59.2%, confidence interval 18.2–100.2%, n = 40 from 8 experiments)

(Fig 4). These experiments included three types of perennial systems: agroforestry, perennial

grasses, and managed forestry (Fig B in the S1 File); they were aggregated into a single group

for this analysis because of the limited number of available studies (only eight total met the

inclusion criteria) and because they share a key feature of continuous roots in the soil (Table A

in the S1 File). Despite differences among and between these practices, the perennial practices

showed a consistent pattern in that growing perennial rather than annual plants led to

improved infiltration rates.

Crop and livestock (cropland grazing)

Experiments that fit our criteria for crop and livestock systems were more likely to contribute

to a decline in infiltration rates overall (-21.3%, confidence interval -50.4–7.9%, n = 24 from 7

experiments) (Fig 4). However, individual studies within this practice suggested that pasture-

based and diversified annual crop systems with livestock could lead to improved infiltration

rates under some conditions (Fig C in the S1 File).

Publication bias and sensitivity analysis

We did not find evidence of publication bias in our overall analysis, as shown by histograms

demonstrating that experimental results within each practice were not skewed toward very

positive or very negative effects (Fig 7). Also, the Jacknife sensitivity analysis revealed robust

results, with only minor shifts to overall means and confidence intervals when individual

experiments were removed (Fig 8). Results were most robust for no-till and cover crops, which

had the largest numbers of experiments. However, two practices–crop rotation and perenni-

als–were somewhat sensitive to the removal of individual experiments. When two of the eight

perennial experiments were separately removed, the 95% confidence intervals of response

rates shifted to slightly cross zero (Fig 8). These experiments were the two with livestock,

which suggests that in these environments the presence of livestock did not reduce infiltration

[49,50]. For the crop rotation studies, the removal of one experiment [51] led to a significantly

different mean from zero.

Discussion

Alternative management impacts infiltration, likely through biological,

chemical and physical processes

Overall we found that the largest infiltration rate changes were associated with practices that

entail a continuous presence of roots and soil cover, suggested by the positive improvements

of perennial systems compared to annual crops and cover crops compared to no cover crops,

as well as the negative trend associated with the crop and livestock systems compared to crop

systems only. Determining the exact processes underpinning the observed results is outside

the scope of meta-analysis. However, these results point to changes in soil hydrologic function

which, in turn, is known to be associated to an intertwined set of biological, chemical and

physical factors. For example, physical processes associated with root growth and decomposi-

tion contribute to improved soil structure such as porosity and aggregation, which enhances

water entry into the soil [52]. Recently, Basche and DeLonge [25] found that cover crops,

perennial grasses and agroforestry practices led to significant improvements in two soil hydro-

logical properties related to water infiltration (porosity and water retained at field capacity),
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which could help explain the effects from those practices in this analysis. The reduced infiltra-

tion rates that we found with respect to the crop and livestock studies could be related to the

removal of vegetative cover or soil compaction from grazing, although the available studies for

this practice were limited [53–55]. Overall, our results suggest that management has an impor-

tant contribution to infiltration rates, and that these are likely related to soil physical changes.

Given established relationships between soil carbon and soil water properties [26,27], one

factor that likely has a role in our findings is the impact of carbon accrual from the analyzed

practices. For example, increases in soil carbon have been quantified by meta-analyses in

response to cover crops, crop rotations, and other conservation practices [7,23,24]. Also,

perennial systems typically store more soil carbon than annual croplands [56–58]. However,

reviews evaluating the effect of no-till on carbon have found mixed results [22,59–62], similar

to the complex no-till findings in the present analysis. Specifically, these reviews have found

that no-till can lead to carbon accrual in some instances but may also lead to no net increase in

carbon but rather a redistribution of carbon closer to the soil surface [59]. Further, it has

recently been demonstrated that the relationship of soil carbon to soil available water may not

be as strong as indicated by prior analyses [63].

Continuous cover of the soil combined with reduced soil disturbance is known to promote

enhanced biological activity, with is also linked to physical soil structure. For example, man-

agement practices leading to a greater number of earthworms could contribute to soil aggrega-

tion and pore creation, increasing water entry [64,65]. A recent meta-analysis found that

reduced tillage increased earthworm abundance and biomass by more than 100% compared to

Fig 7. Publication bias analysis using histograms of response ratios. Histograms created using the methodology suggested by Rosenberg et al. (2000)

[48]. Normal distributions indicate that publication bias was not likely a factor in study results (i.e. there was not a bias against publishing experiments

that did not have significant effects).

https://doi.org/10.1371/journal.pone.0215702.g007
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conventional inversion tillage [66], suggesting a potential biological mechanism that may help

explain the success of no-till in improving infiltration rates under some circumstances. Cover

crops have also been found to increase earthworm populations and recent work finds that they

also significantly increased microbial biomass as well as mycorrhizae colonization across a

range of experiments [67–69]. Increased biological indicators such as earthworms, microbial

communities, microbial biomass and/or mycorrhiza colonization might also be expected in

other practices that promote crop diversity and year-round growth, such as crop rotations and

perennial systems, potentially facilitating higher infiltration rates through their effects on soil

structure as well.

While increasing infiltration rates may mostly be considered important for reducing flood-

ing risk, the previously discussed soil improvements can play a role in reducing the impacts of

drought. A recent global meta-analysis found significant improvements from conservation till-

age on soil hydrological properties such as aggregate stability, aggregate size, saturated hydrau-

lic conductivity and available water capacity [70]. In particular, increasing available water

holding capacity and soil organic matter are understood to increase the likelihood that water

will be stored and/or utilized when drier conditions or drought arise [18]. Further, there is

growing evidence that increases in soil organic matter and available water holding capacity are

associated with increased yield stability, in particular through increased use of conservation

agriculture systems [71,72]. Although tradeoffs may arise between alternative management

Fig 8. Sensitivity of results to individual studies using a Jacknife technique. Blue lines represent zero or no effect, and 95% confidence intervals that do not

cross zero were considered significant. The solid black line represents the overall practice means and the dashed lines are overall 95% confidence interval before

individual studies were removed to re-calculate the displayed means and confidence intervals.

https://doi.org/10.1371/journal.pone.0215702.g008
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and crop yields, the results of this work and prior work suggest that they can also improve the

soil while increasing yield stability, important benefits to consider in the context of rainfall var-

iability and climate change.

Comparing the efficacy of different management practices

Our results suggest similarities and distinctions between alternative management that are in

many ways corroborated with past studies that have limited their scope to a narrower range of

practices. For example, the overall finding that continuous soil cover can improve infiltration

rate is corroborated by prior research focused on cover crops or agroforestry. A recent meta-

analysis of eight experiments in Argentina found a similar effect of cover crops on infiltration

rate, where infiltration was increased by an average of 36% due to the presence of cover crops

compared to no cover controls [73]. Also, Ilstedt et al. [74] found that afforestation and agro-

forestry increased infiltration rates relative to annual crop systems by 100–400% across four

experiments in tropical agroecosystems.

Somewhat contrary to conventional thinking around no-till, our global meta-analysis

found that no-till did not consistently improve infiltration rates at this scale. In contrast to our

findings, a recent qualitative review (mostly from studies within the United States, in both wet-

ter and drier environments) found that no-till in most instances increased infiltration rates

over conventional tillage [37]. Also, a review of experiments in the Argentine Pampas, a

humid environment with well-drained soils, found that no-till doubled infiltration rates [38].

While our results did demonstrate a trend toward improvement, our database included very

few cases where infiltration rates increased by at least a factor of two as a result of no-till, even

in humid environments (16/207 paired comparisons; Table A in the S1 File). Also, we did not

find a significant effect of no-till in the subset of no-till experiments including cover crops (Fig

5), contrary to our findings in for cover crops (where cover crops increased infiltration rates

within the subset of cover crop studies with no-till, Fig 6). This inconsistency may be related to

the limited number of no-till experiments reporting infiltration rates for combinations of fac-

tors, such as use of cover crops, which would have allowed more comprehensive analysis. We

did, however, find that no-till experiments with residue retention were more likely to increase

infiltration rates, suggesting the importance of combinations of practices to maximize benefits.

Crop rotations had an inconsistent effect on infiltration rates. We did observe a negative

effect of crop rotations on infiltration rates in drier regions (Table 2; Fig E in the S1 File). How-

ever, the studies that met our criteria were largely from more arid regions, so the limited data-

set may have inhibited analysis across a sufficiently wide range of aridity regimes in order to

detect stronger overall effects. In a meta-analysis that similarly considered conventional man-

agement versus crop rotations but focused on soil carbon, McDaniel et al. [23] found that crop

rotations generally increased carbon, but that greater increases were correlated with more pre-

cipitation. Thus, the study revealed a sensitivity of crop rotation impacts to climate, potentially

related to small decreases in bulk density that may have affected soil hydrologic function [23].

Together, these findings suggest a need to closely monitor the impacts of crop rotations on sev-

eral soil variables, especially in drier environments. This may be especially important for this

practice, as there is already great deal of variability in the crop diversity and level of complexity

of crop rotation practices.

Although limited experiments fit our criteria for crop and livestock systems, the overall

result suggests that careful management of these complex systems may be necessary to main-

tain or increase infiltration rates. While the mean change in infiltration rates was negative

across all studies, individual experiments suggested that a positive effect was possible under

some circumstances and management practices. For example, Masri and Ryan [75] found
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infiltration rates increased when a diverse annual crop rotation included livestock as compared

to when the systems included crops only. Franzluebbers et al. [76] reported increased infiltra-

tion rates in pasture-based systems with versus without livestock, but only when a lower graz-

ing intensity was utilized. It is also important to note that cropland grazing typically represents

only one component of a diversified farming system that may have different outcomes when

assessed on a larger scale [77].

Uncertainty surrounding measurement timing and experiment duration

One variable potentially affecting our results could be related to a sensitivity to the timing of

measurements in these experiments. This sensitivity may be particularly relevant for the no-till

studies. For example, immediately after a tillage event, the infiltration rate in tilled fields could

increase relative to no-till because of managed decreases in bulk density [37]. An experiment

included in this analysis [78] found greater seasonal differences versus treatment differences

when comparing tillage practices to no-till. Our database could not be categorized according

to inter-season periods of measurement and management, as such analysis would have been

complicated by inconsistent data availability and was beyond the scope of our study. As such,

we were only able to evaluate overall trends based on available data and these limitations likely

account for some uncertainty in our analysis.

Another related variable that could be introducing uncertainty is the lack of studies report-

ing effects following a wide range of treatment durations. In our analysis, we did not find

experimental length to be a significant factor in our analysis across any of the practices

(Table 2; Fig G in the S1 File). This finding therefore does not support the common conven-

tion that management practices need be in place for an extended period of time in order to

demonstrate improvements to various soil properties. Instead, we found that even after a short

period (as little as within the first few years) it was possible for infiltration rates to increase rel-

ative to conventional controls in some cases (for example, for some crop rotation and peren-

nial experiments, Fig G in the S1 File). At the same time, longer experiments did not

consistently lead to more significant changes. This finding could also be related to the interan-

nual timing of measurements, as infiltration rate is a dynamic process subject to interseason

and/or interannual variability. However, examining such effects was beyond the scope of this

analysis, as the primary goal was to detect infiltration rate changes between different farming

practices.

Uncertainty surrounding data limitations and research gaps

Overall, our results revealed the varying relative abundance of experiments evaluating different

practices; no-till experiments comprised more than half of our database, while many fewer

experiments evaluated practices such as perennials or crop and livestock systems. This obser-

vation aligns with recent findings indicating that more complex agroecological research

receives relatively limited research funding [79,80]. While we did find several studies for each

practice, our sensitivity analysis revealed that the limited number of experiments in some led

to more sensitive results. Smaller sample sizes also limited our ability to explore influences of

other environmental and management factors (e.g. we were able to comprehensively evaluate

the effects of precipitation and soil texture only for no-till and cover crop practices).

Additional levels of analysis that also consider the combined and synergistic effects of mul-

tiple management practices would also be valuable. For example, it would be interesting to

compare the combined effects of no-till, cover crops, and crop rotations (typically combined

in conservation agriculture systems) as compared to conventional agricultural systems. How-

ever, such analysis was beyond the scope of this study and would be challenging given the very

Infiltration rates and agricultural management

PLOS ONE | https://doi.org/10.1371/journal.pone.0215702 September 19, 2019 16 / 22

https://doi.org/10.1371/journal.pone.0215702


limited number of experiments that combine practices and report results in a sufficiently simi-

lar way to directly compare controls and treatments. More complex, well-replicated, and long-

term studies would be needed to enable a similar meta-analysis to the present study, but with

this broader scope.

In general, a lack of detail on environmental and management factors was another impor-

tant gap in our analysis. Gerstner et al. [81] and Eagle et al. [82] proposed criteria that field

experiments should include to increase their utility for meta-analyses or synthesis reports, in

the fields of agronomy and ecology. These criteria include environmental features, such as soil

and climate characteristics, as well as reporting complete factorial results from experiments.

Conclusions

The overall trend quantified by this analysis is the potential for improvements to infiltration

rates with various alternative agricultural management practices, with the greatest benefits

observed in response to introducing perennials or cover crops. Our findings suggest the

importance of the presence of continuous living plant roots and the positive soil transforma-

tions that accrue as a result. We found that no-till practices did not consistently increase infil-

tration rates but were more likely to do so in more humid environments or when combined

with residue retention. Another important finding is that some practices have been substan-

tially less studied than others, particularly ones that show some of the greatest promise for

facilitating water infiltration such as the use of perennials.

Future work should explore greater opportunities for expanding practices such as perennial

integration into agroecosystems to facilitate improvements to water infiltration. Further, more

complex, long-term field experiments that evaluate alternative systems rather than individual

practices would benefit our understanding of agroecosystem designs for optimal water out-

comes. Additional research is also needed to better understand the potential synergies between

optimal water outcomes and other ecological benefits at several scales, such as in relation to

soil biology, nutrient cycling, and drought and flood impacts. Utilizing alternative practices

that increase water infiltration rates offers the opportunity to mitigate effects of extreme

weather that are expected to grow more frequent with climate change.

Supporting information

S1 Data. IR_meta.csv contains the database utilized in this analysis.

(CSV)

S1 File. Descriptions of all experiments, maps of experimental locations for the five differ-

ent practices, model selection and R code, figures depicting the continuous variables

included in the analysis, and additional analysis of the perennial, crop rotation and crop

and livestock systems. Table A. Description of experiments included in the meta-analysis

database

Fig A. Response of infiltration rates to sub-categories of crop rotation experiments

(n = number of paired comparisons per group). (a) Paired comparisons grouped by the num-

ber of crops included in the experimental treatment rotation. (b) Paired comparisons grouped

by the main crop in the control treatment. Note that this does not include Govaerts et al.

(2007) which reported maize monoculture and wheat monoculture separately.

Fig B. Percent change in infiltration rates for perennial experiments. Paired comparisons

grouped by the three types of included treatments: agroforestry, perennial grasses, and man-

aged forestry (n = number of paired comparisons per group).

Fig C. Response of infiltration rates for crop and livestock (cropland grazing) experiments.
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Paired comparisons grouped by the presence of annual crops or pasture in control and experi-

mental treatments (n = number of paired comparisons per group).

Fig D. Experiment locations for each of the different agricultural practices included in the

analysis. (1) no-till, (2) cover crops, (3) crop rotation, (4) crop and livestock, (5) perennials.

Maps generated with ESRI ArcGIS ver. 10.4 (http://www.esri.com).

Fig E. Natural log response ratio by practice across the range of aridity indices. Response

ratios above zero (solid line) represent a positive effect of the practices on infiltration rates.

Smoothed means are represented in blue and gray. Aridity index values greater than 0.65

(dashed line) represent regions considered to have more humid climates.

Fig F. Natural log response ratio by practice category across the range of (1) sand and (2)

clay contents. Smoothed means are represented in blue and gray. Dashed lines represent the

broad groups of sand and clay (>50% sand, >30% clay) that were used for the fixed effects

analysis in the cover crop and no-till experiments. As a result of data limitations, this figure

does not represent some experiments from each category (no-till: 8/52 missing experiments

(15%), cover crops: 3/23 (13%), crop rotations: 1/11 (9%), perennials: 2/8 (25%), and cropland

grazing: 2/7 (29%).

Fig G. Natural log response ratio by practice category for the effect of study length.

Smoothed means are represented in blue and gray. Response ratios above zero (solid line) rep-

resent a positive effect of the conservation practices.
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