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Abstract

Glioblastoma multiforme is one of the most invasive type of glial tumors, which rapidly grows

and commonly spreads into nearby brain tissue. It is a devastating brain cancer that often

results in death within approximately 12 to 15 months after diagnosis. In this work, optimal

control theory was applied to regulate intracellular signaling pathways of miR-451–AMPK–

mTOR–cell cycle dynamics via glucose and drug intravenous administration infusions. Glu-

cose level is controlled to activate miR-451 in the up-stream pathway of the model. A poten-

tial drug blocking the inhibitory pathway of mTOR by AMPK complex is incorporated to

explore regulation of the down-stream pathway to the cell cycle. Both miR-451 and mTOR

levels are up-regulated inducing cell proliferation and reducing invasion in the neighboring

tissues. Concomitant and alternating glucose and drug infusions are explored under various

circumstances to predict best clinical outcomes with least administration costs.

Introduction

Glioblastoma multiforme (GBM) is the most common and the most aggressive type of brain

cancer. The median length of survival time is approximately 12 to 15 months following diagno-

sis. GBM is characterized by anaplasia, nuclear atypia, cellular pleomorphism, mitotic activity,

and more importantly, alternating phases of rapid proliferation and aggressive invasion into the

surrounding brain tissue. This leads to an inevitably critical recurrence even after the surgical

resection of the main tumor mass [1, 2]. The mainstay of treatment for GBM is surgery, followed

by radiotherapy and chemotherapy. Despite advances in these approaches, glioma cells can still

invade the neighboring tissues beyond detection leading to tumor recurrence. High probability

of main treatment failure also encourages researchers to investigate the use of innovative treat-

ments when the first line of therapy has failed, in order to improve clinical outcomes [3].

In the tumor microenvironment (TME), glioma cells encounter many challenges including

hypoxia, acidity, and limited nutrient availability. To maintain rapid growth, tumor cells need

to adapt to these biochemical changes and modify their metabolic activity by increasing glycol-

ysis even in the presence of oxygen. This process is called the Warburg effect which requires

consuming considerable amounts of glucose [4]. The tricarboxylic acid cycle, or Krebs cycle,
plays an important role in the breakdown of organic fuel molecules and the survival in non-
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hypoxic normal differentiated cells. These molecules include glucose, fatty acids, and some

amino acids. While differentiated cells favor this type of metabolism, which is very efficient in

terms of ATP production, tumor cells adopt the inefficient aerobic glycolysis producing rela-

tively large amounts of waste product in the form of lactic acid [5]. This may provide cancer

cells the advantage of not having to depend on oxygen as an energy source especially in a hostile

tumor microenvironment, thus leading to longer survival [6]. Inhibition of glycolysis may also

prevent drug resistance thus a better understanding of this metabolic pathway may lead to bet-

ter treatment options and clinical outcomes [7]. Developing strategies of metabolic adaptation,

angiogenesis, and migration is critical for cancer cells in order to survive metabolic stress and

ensure enough nutrient supply as tumor mass accumulates where glucose supply may fluctuate

due to heterogeneous biochemical and biophysical conditions [8]. Therefore, adequate cellular

responses to glucose withdrawal are critical for cancer cell survival. Cancer cells then activate

the 50-adenosine monophosphate activated protein kinase (AMPK) pathway under metabolic

stress. It is the master cellular sensor of energy availability which enhances glucose uptake and

conserve energy, thus avoiding cell death [9]. MicroRNAs, also abbreviated as miRNA, are

approximately 22 nucleotide single-stranded non-coding ribonucleic acids (RNAs) that are

known to regulate gene expression [10]. Dysregulation of microRNA expression has been

linked to oncogenic and tumor suppressor activities in several types of cancer, including GBM

[11, 12], where altered miRNA expression contributes to tumorigenesis [13, 14].

Godlewski et al. [8] identified an interesting mechanism of glioma cell migration and prolifer-

ation wherein a particular microRNA, miR-451, and its counterpart, AMPK complex (CAB39/

LKB1/STRAD/AMPK), determine whether the cell favors growth at the expense of invasion or

conversely. Moreover, they also identified a potential feedback loop between LKB1 and miR-451

allowing for a sustained and robust response to glucose withdrawal [15]. It was found out that (i)

under high (normal) glucose conditions, up-regulation of miR-451 leads to the down-regulation

of AMPK complex, which then leads to elevated proliferation and decreased migration of glioma

cells and (ii) glucose withdrawal induces down-regulation of miR-451 and up-regulation of

AMPK, which promotes cell migration with reduced proliferation.

The mathematical models developed by Kim et al. [14, 16, 17] describe the effects of the

miR-451–AMPK core control system on cell proliferation and migration in glioblastoma. It

explains the response of miR-451 to high and low glucose levels as well as the mutual antago-

nism between miR-451 and AMPK complex concentrations. Kim et al. [18] then extended the

model to include the dynamics of mammalian target of rapamycin (mTOR), which is a protein

kinase that links with other proteins as well as to the cell cycle dynamics, to form the miR-451–

AMPK–mTOR core control system. This mutual antagonism between miR-451 and AMPK,

which was predicted in these mathematical models [14, 16–18], was confirmed by recent exper-

iments. For example, Ansari et al. [19] recently found that (i) the miR-451 transcription in

GBM cells is induced by unrestricted activity of its transcription factor OCT1 (official gene

symbol POU2F1) in the presence of abundant glucose, resulting in AMPK inhibition through

direct targeting of CAB39 in the LKB1 complex; and (ii) the miR-451 level is inhibited through

the phosphorylation and inactivation of OCT1 at S335 by AMPK in response to glucose deple-

tion-induced metabolic stress, leading to a reciprocal negative feedback loop between miR-451

and AMPK. In this case, suppression of miR-451 in turn leads to sustained AMPK activities

and a robust response to glucose withdrawal in GBM cells. The multiscale mathematical mod-

els [14, 16–18] also predict the growth–invasion cycling patterns of glioma cells in response to

fluctuating glucose uptake in the tumor microenvironment. The core control system predicts

bistability and hysteresis bifurcation when delayed down-regulation of miR-451 activities along

certain molecular pathways would induce glioma cells to stay longer in the proliferative phase

despite relatively low glucose concentrations, making this mechanism a therapeutic target.
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The cell cycle represents an integrated series of events that regulates complex processes

including cell proliferation, cell division and DNA replication, regulated by a complex hierar-

chy of genetic and metabolic networks which involves several transition states of varied lengths

and checkpoints [20]. The stages of the cell cycle are as follows: (i) synthesis phase (S), a period

where DNA replication occurs; (ii) gap phase 2 (G2), during which proteins required for mito-

sis are produced; (iii) mitosis phase (M), a period where chromatin condensation, nuclear

envelope breakdown (NEBD), chromatid separation, and cytokinesis happens; (iv) gap phase 1

(G1), in which genes necessary for DNA replication are activated and the protein agents of S

phase progression are accumulated; and (v) resting phase (G0), a state in which cells can exit

the cell cycle and enter a phase of quiescence or relative inactivity [21]. The progression of

mammalian cell cycle is tightly regulated by coordinated activation of cyclin-dependent

kinases (CDKs) family [22]. The CDKs are positively regulated by cyclins and negatively by

CDK inhibitors (CDKIs) such as the proteins p15, p16, p21 and p27. In cancer cells, cyclins

are over-expressed while CDKIs are under-expressed which results in the dysregulation of the

cell cycle, and promoting uncontrolled cell growth [20]. Tyson and Novak [23, 24] identified

that the transition between two stable steady states, G1 and S–G2–M cell-cycle phases, are

described using the kinetic relations of the model that is controlled by changes in cell mass.

A standard GBM treatment is surgery followed by chemotherapy and radiotherapy. How-

ever, even under best circumstances, the mean survival of this disease is about a year. Poor out-

comes of standard care treatments are due to the topographically diffuse nature of the disease

[25]. By the time of diagnosis, typical GBM cells may have widely spread throughout the brain

tissue [26–28], increasing the potential of recurrence. Thus, annihilation of distant tumor satel-

lites is implausible despite surgically removing all the essential tumor seen on enhanced MRI

scan [29]. Knowing the exact margins of a tumor mass in real patients is indeed a daunting

task. In this study, it is assumed that a major tumour mass has been surgically removed and

that the infiltrative tumor cells are near the surgical site. The objective is to prevent the glioma

cells from further diffusing into the surrounding brain tissue. Localization approach will be uti-

lized, that is, glioma cell invasion will be blocked keeping them in a proliferative phase while

also attempting to limit excessive growth before a second surgery [17]. Our analytical tool is

primarily based on the framework of optimal control theory, which has been successfully used

to make informed decisions involving biological models such as optimal treatment strategies in

human immunodeficiency virus (HIV) models [30–33], tuberculosis [34–36], and cardiopul-

monary resuscitation (CPR) techniques [37, 38]. Optimal control theory is also applied to the

miR-451–AMPK core control system to determine the intravenous glucose and/or drug infu-

sion protocols with least possible cost under various circumstances in de los Reyes, et al. [39].

Recently, Kim et al. [40] developed an intracellular signaling pathway model that extends

the miR-451–AMPK–mTOR core control system including the cell cycle dynamics. In this

work, a potential control problem is formulated in order to maintain high levels of miR-451

and mTOR (low levels of AMPK) inducing cell proliferation prohibiting cell motility and inva-

sion to the neighboring tissues. With glucose levels as a key regulator of miR-451 activity

which also activates mTOR in the downstream signaling pathway, glucose intravenous infu-

sion is considered to up-regulate miR-451 and mTOR concentrations above certain threshold

values. In addition, a drug suppressing the inhibitory effect of mTOR by the AMPK complex is

incorporated. This drug can be administered concomitantly or alternately with glucose as a

secondary intravenous infusion. The controls are then given by dose rates of glucose and drug

intravenous administrations regulating upstream and downstream signaling pathway, respec-

tively. Solution of the optimal control problem aims to determine infusion protocols with min-

imal glucose and drug amount, and least administration costs. Hence, glucose and drug levels

are regulated to prevent rapid tumour growth, hyperglycemia, and further drug complications.
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The results propose plausible glucose and drug intravenous infusion controls which indicate

the time of administration, frequency, number of administrations, and dosages of glucose and

drug per infusion.

In the current study, we will first present the miR-451–AMPK-mTOR–cell cycle intracellular

signalling pathway developed by Kim et al. [40]. A drug module is incorporated to up-regulate

mTOR activities inducing cell proliferation. Then an optimal control problem is formulated

with the goal of activating miR-451 and mTOR levels through glucose and drug intravenous

infusions. Two different infusion protocols will be explored, namely, concomitant and alternat-

ing glucose and drug intravenous administrations. Optimal solutions for two strategies are

presented and results on frequency, dosage per infusion, total glucose and drug amount, and rel-

ative cost incurred in the administrations are compared. The conclusion section discusses and

summarizes the optimal control results, and provides outlook for future research directions.

Materials and methods

Intracellular signaling dynamics model

In this section, we present the basic components of intracellular signalling pathway of tumor

cell containing the core control miR-451–AMPK–mTOR and cell cycle pathway developed in

Kim et al. [40], incorporating a drug which blocks the inhibitory pathway of mTOR by AMPK

complex. The core control model identifies a key mechanism which determines the molecular

switches between the proliferative and migratory phases in response to fluctuating glucose and

drug levels. The simplified signaling pathways consists of five key determinants of the intracel-

lular structure, namely, glucose level G, miR-451 level M, AMPK complex activity A, mTOR

concentration R, and drug level D. The intracellular cell cycle dynamics are developed by

Tyson and Novak [23, 24] including only the essential interactions for its regulation and con-

trol. The model captures the kinetics of chemical processes within the cell such as production,

destruction, and different molecule interactions. The transition between two main steady

states, G1 and S–G2–M phases, of the cell cycle are described using the kinetic relations of the

model that is controlled by changes in cell mass. Powathil et al. [41] modified the model by

using equivalent mammalian proteins, namely the Cdk-cyclin B complex [CycB], the

APC-Cdh1 complex [Cdh1], the active form of the p55cdc-APC complex [p55cdcA], the total

p55cdc-APC complex [p55cdcT], the active form of Plk1 protein [Plk1] and the cell mass

[mass]. Also included are the effects of the changes in oxygen dynamics at the macroscopic

level through the activation and inactivation of HIF-1 α. This results in changes in cell cycle

length. In addition, the cell cycle inhibitory effect of p21 or p27 genes of HIF-1 α is incorpo-

rated. Kim et al. [40] proposed to link both the miR-451–AMPK–mTOR control system and

the cell cycle dynamics to provide a mechanism driving the cell cycle to undergo the quiescent
stage G0-phase depending on the concentration level of mTOR. Fig 1A depicts the detailed

schematic diagram of the intracellular signalling networks including miR-451, AMPK com-

plex, mTOR, and key players in the cell cycle module (CycB, Cdh1, p55cdcT, p55cdcA, Plk1).

Kinetic interpretation of arrows and hammerheads represent induction and inhibition in the

signaling network, respectively. The dimensionless diagram of the core control miR-451,

AMPK complex, and mTOR linking to the cell cycle is depicted in Fig 1B. It should be noted

that uG and uD are the sources of glucose and drug with decay rates μG and μD, respectively,

which can be controlled exogenously. S1 and S2 are signaling sources to AMPK complex and

mTOR, respectively, while α, β and γ are inhibition strengths, and ϕ denotes decay.

It has been shown that high (normal) glucose concentration yields over expression of miR-

451 levels (down-regulation of AMPK complex and up-regulation of mTOR) leading to ele-

vated cell proliferation and reduced migration, while low glucose levels leads to down-
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regulation of miR-451 activities (up-regulation of AMPK complex and down-regulation of

mTOR) reducing cell proliferation and inducing migration into the surrounding brain tissue

[8, 15, 18, 40]. The effect of various glucose levels in the regulation of the core control is

depicted in Fig 2.

Kim et al. [14] developed a core control system of glioma cell migration and proliferation

by using a regulatory network of key molecules (miR-451 (M), AMPK (A)) as follows:

dM
dt

¼ Gþ
‘1‘

2

2

‘
2

2
þ aA2

� M;

dA
dt

¼
1

�1

S1 þ
‘3‘

2

4

‘
2

4
þ bM2

� A
� �

:

ð1Þ

As observed in experiments [8, 15, 19], the regulatory system in Eq (1) includes a mutually

antagonistic loop between miR-451 and AMPK complex in response to high and low glucose

levels (G). This genetic toggle switch induces a monostable and bistable system, characterizing

proliferation and critical cell infiltration of GBM cells in brain [14]. In the follow-up studies

[14, 16–18] including mTOR (R) and cell cycle modules, this mutual antagonism and bistable

system played a critical role in developing anti-invasion strategies. A mutually antagonistic

feedback loop has been well-studied for its bistable properties by use of mathematical models

([42–45] and other references in [45]). For instance, in a study on a genetic toggle switch in

Escherichia coli [42], a mutually inhibitory loop between repressor 1 and repressor 2 was

Fig 1. A model of the miR-451–AMPK–mTOR–cell cycle signaling pathway. (A) Detailed schematic diagram of cellular decision of proliferation and migration

in glioblastoma [40]. (B) Block diagram of the theoretical model representing glucose (G) regulation on miR-451 (M), AMPK (A), mTOR (R) with the signaling

pathway to the cell cycle dynamics and the drug (D) suppressing the inhibition of mTOR by AMPK.

https://doi.org/10.1371/journal.pone.0215547.g001
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shown to induce bistability in addition to monostable status. In particular, Lu et al. [45] in a

theoretical study on miR-based regulation showed that the regulatory network including a

mutual inhibition feedback circuit between the miR-34/SNAIL and the miR-200/ZEB can

induce a tristable circuit of epithelial-hybrid-mesenchymal fate differentiation. A detailed anal-

ysis on the self-activating, tristable state-inducing toggle switch or more general multistable

genetic circuits can be found in [43, 44]. Other biological networks without mutual inhibition

can also induce a bistable system. For instance, Aguda et al. [11] investigated the role of miR-

NAs in regulation of cell cycle and cancer zone by emerging bistable toggle switch in the feed-

back loops of miR-17-92, E2F, and Myc.

In this study, we consider a drug D suppressing the inhibitory effect of mTOR by AMPK

complex where the inhibition strength is given by z(D) = e−D. When D is large, γe−D is small

Fig 2. Effect of glucose on regulation of the core control system. Two trajectories of core control control concentrations in miR-451–AMPK–mTOR space in

response to (A) low (G = 0.1), (B) intermediate (G = 0.5), and (C) high (G = 1.0) glucose levels.

https://doi.org/10.1371/journal.pone.0215547.g002
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which makes dR/dt to be large. Thus, the presence of drug up-regulates mTOR activity that

could eventually lead to cell proliferation. Fig 3 illustrates the mTOR bifurcation curve.

Observe that increasing drug concentration shifts the hysteresis curve upwards keeping the

same bistability window. Hence, with higher drug levels for the same glucose concentrations,

mTOR is activated prompting elevated cell growth.

In the miR-451-AMPK-mTOR core control system developed by Kim and colleagues [14,

16–18, 40], the bistability regime of main variables emerges in response to glucose levels. As it

was shown in [40], the existence and size of the bistability window (|Wb|) depend on other essen-

tial parameters and may disappear under perturbations of parameters. As it will be shown later

(Figs 4 and 5), some of key parameters are sensitive in creation or destroying the bistability while

other parameters are not. After achieving the equilibrium, continuation of the curve is computed

by varying the glucose concentration G and bifurcation points are detected labeled LP and CP
for limit and cusp points, respectively. Fig 6A illustrates the hysteresis diagram (G, R)−curves for

different S1 values. In order to obtain the cusp point (CP), fold continuation is computed starting

at a limit point where two parameters G and S1 are activated resulting to codim 2 bifurcations.

Both parameters (G, S1) are varied along the curve where each point is a limit point for the equi-

librium curve at the corresponding value of S1. This is depicted in Fig 6B. The cusp point gives

the threshold values thM, thA, and thR. A Matlab software MatCont was used for numerical

continuation and bifurcation study of continuous and discrete dynamical systems [46].

The governing model equations for the dimensionless intracellular signaling dynamics are

then described by the following ordinary differential equations

dG
dt
¼ u1ðtÞ � mGG;

dM
dt
¼ Gþ

‘1‘
2

2

‘
2

2
þ aA2

� M;

dA
dt
¼

1

�1

S1 þ
‘3‘

2

4

‘
2

4
þ bM2

� A
� �

;

dR
dt
¼

1

�2

S2 þ
‘5‘

2

6

‘
2

6
þ zðDÞgA2

� R
� �

;

dD
dt
¼ u2ðtÞ � mDD;

d½CycB�
dt

¼ k1 � ðk02 þ k00
2
½Cdh1� þ ½p27=p21�½HIF�Þ½CycB�;

d½Cdh1�

dt
¼
ðk0

3
þ k00

3
½p55cdcA�Þð1 � ½Cdh1�Þ

J3 þ 1 � ½Cdh1�
�

k4½masss�½CycB�½Cdh1�

J4 þ ½Cdh1�
;
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dt

¼ k0
5
þ k00

5

ð½CycB�½masss�Þ
n

Jn
5
þ ð½CycB�½masss�Þ
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d½p55cdcA�
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¼
k7½Plk1�ð½p55cdcT� � ½p55cdcA�Þ

J7 þ ½p55cdcT� � ½p55cdcA�
�

k8½Mad�½p55cdcA�
J8 þ ½p55cdcA�

� k6½p55cdcA�;

d½Plk1�

dt
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The cell cycle dynamics and the regulatory core control system are linked by a variable called

pseudo-mass ([masss]) given by

½masss� ¼ ½mass� þ
z1

�
1

R

�n1

Kn1
m þ

�
1

R

�n1
: ð3Þ

The oxygen dynamics through HIF-1 α is described as

½HIF� ¼
z2

�
1

K

�n2

Kn2
H þ

�
1

K

�n2
; ð4Þ

and the growth rate μ is expressed as

m ¼ mþ þ εm̂; ð5Þ

where m̂ is the probability density function with uniform distribution between −1 and 1. This

growth rate formulation introduces cell cycle heterogeneity of length between 20 and 30 hrs to

Fig 3. Bifurcation diagram of mTOR. Hysteresis diagram of mTOR concentration over the range of glucose levels and the corresponding effect of

different drug concentrations on its dynamics.

https://doi.org/10.1371/journal.pone.0215547.g003
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account for the natural variability between cell growth rates and to have a non-synchronous

population [41]. The model parameters in system (2) are listed in Tables 1 and 2.

In the current model formulation, mTOR (R) is activated/inactivated in the same way as

miR-451 (M). In addition, R links the core control system and the cell cycle dynamics via the

pseudo-mass ([masss]) which influences the cell mass [mass] and the intracellular proteins

(refer to Eq (3)). Therefore, when glucose supply is high, R is up-regulated (proliferative phase;

up-regulated M, down-regulated A) and [masss]� [mass] yielding a typical cell cycle (see Fig

7). On the other hand, when glucose supply is low, R is down-regulated (migratory phase;

down-regulated M; up-regulated A) and [masss] exceeds [mass] influencing the cells to enter

into resting phase G0 [40].

Let us assume that glucose (G) and drug (D) can be regulated through intravenous infusions

and can be periodically administered. For illustrative purposes, consider 3h infusions every

12h with maximum dosage of 1 unit, and refer this as regular infusion. We then have

ujðtÞ ¼

(
1 for t 2 ½12n; 12nþ 3�; n ¼ 0; 1; 2; . . .

0 otherwise:
for j ¼ G;D: ð6Þ

The intracellular dynamics under regular infusion can be seen in Fig 8. Since glucose and drug

levels oscillate, it follows that M and R also periodically fluctuates around the threshold (thM�

1.87, thR� 2.76) as can be seen in Fig 8A. Note that when M and R crosses the threshold value

from above, respectively, peak in pseudo-mass is generated. It can thus be inferred that these

peaks indicate cell migration since M and R levels are below their respective threshold values.

Fig 4. Sensitivity analysis on bistability of core control system. PRCC values of the core control model parameters influencing the bistability of the (G, R)

hysteresis curve. The double asterisk (��) indicates a p-value of less than 0.01. The sample size carried out in the method is N = 100, 000.

https://doi.org/10.1371/journal.pone.0215547.g004
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As shown in Fig 8B, a trajectory of core control concentrations in mTOR-miR-451–AMPK

space switches between proliferation and migration region. A closer look at the intracellular

cell cycle proteins, mass, and masss dynamics are illustrated in Fig 8C. Note that regular infu-

sion significantly perturb the cell cycle dynamics stimulating several cell divisions (see mass

profiles) and cell migration (see masss). Indeed, fluctuating glucose levels in the microenviron-

ment leads to the dichotomy of grow and go dynamics of glioblastoma cells yielding bigger

tumor mass as reported in [14], even in the presence of (fluctuating) drug concentrations to

keep the cells in proliferation phase.

Optimal control problem

In the current investigation, we aim to regulate the amount of glucose and drug infusions to

up-regulate miR-451 and mTOR above its threshold values inducing cell proliferation

Fig 5. Effect of parameters ℓ1, ℓ4, ℓ5, ℓ6 on the core control nullclines and bistability. M- and A-nullclines for different ℓ1 and ℓ4 values for specific glucose levels:

(A) G = 0.1, (B) G = 0.4, and (C) G = 0.8, showing instances of bistability and monostability. (D) Bifurcation curves for ℓ1 and ℓ4 and shaded region of bistability.

(E) R- and A-nullclines for different ℓ5 and ℓ6 values showing monostability.

https://doi.org/10.1371/journal.pone.0215547.g005
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avoiding migration to neighboring tissues. The modeling approach utilizes optimal control

theory to identify infusion administration protocols. Let uG(t) and uD(t) be the controls of the

system representing dose rates of glucose and drug intravenous administrations, respectively.

Two different administration protocols are examined, namely, (1) concomitant, and (2) alter-
nating glucose and drug infusions, with the following objective functionals

JconðuGðtÞ; uDðtÞÞ ¼
Z t1

t0

MðtÞ þ RðtÞ �
B1

2
uGðtÞ

2
þ

B2

2
uDðtÞ

2

� �� �

dt;

Jaltðu1ðtÞ; u2ðtÞÞ ¼
Z t1

t0

MðtÞ þ RðtÞ �
B1

2
uGðtÞ

2

� �

dt

þ

Z t2

t1

RðtÞ �
B1

2
uDðtÞ

2

� �

dt;

ð7Þ

respectively. Here, M(t) and R(t) denote the level of miR-451 and mTOR concentrations,

respectively. Parameters B1 and B2 are weight factors measuring the relative cost based on

maximizing miR-451 M(t) and mTOR R(t), and administering glucose and drug intravenous

infusions over a specified time interval, respectively. The control costs are modeled by the lin-

ear combination of quadratic terms u2
GðtÞ and u2

DðtÞ. Our objective is to find optimal infusion

regimen for glucose and drug administrations, denoted by u�GðtÞ and u�DðtÞ, such that the

objective functionals are satisfied, that is,

Jconðu�GðtÞ; u
�
DðtÞÞ ¼ max

Ocon
JconðuGðtÞ; uDðtÞÞ;

Jaltðu�GðtÞ; u
�
DðtÞÞ ¼ max

Oalt
JaltðuGðtÞ; uDðtÞÞ;

ð8Þ

where

Ocon ¼ fuGðtÞ; uDðtÞ 2 Lðt0; t1Þ j 0 � uGðtÞ; uDðtÞ � umax; t 2 ½t0; t1�g;

Oalt ¼ fuGðtÞ 2 Lðt0; t1Þ; uDðtÞ 2 Lðt1; t2Þ j

0 � uGðtÞ � umax; t 2 ½t0; t1�; 0 � uDðtÞ � umax; t 2 ½t1; t2�g;

ð9Þ

Fig 6. Codimension 2 bifurcation. (A) Hysteresis diagram of mTOR concentration over glucose level for three different values of S1 = 0, 0.2, 0.34. (B)

Codimension 2 bifurcation varying G and S1 showing the equilibrium curves and cusp point (CP). Bistable and monostable regions are also depicted.

https://doi.org/10.1371/journal.pone.0215547.g006
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The bounds for the controls represent the limits on dose rates for glucose and drug admin-

istrations. Assuming that miR-451, AMPK, and mTOR responses are regulated by glucose lev-

els and influenced by drug levels, our control strategies deal with finding optimal control

regimens for both glucose and drug intravenous infusions. We also note that the existence of

optimal controls is guaranteed by standard results in control theory [51]. In this maximization

problem, the necessary convexity of the integrand in the objective functional holds. Therefore,

we can proceed with applying Pontryagin’s Maximum Principle [52]. An iterative method is

used for solving the optimality system which is a two-point boundary value problem having

initial conditions for the state variables and terminal conditions for the adjoints. Numerical

simulations are obtained using a fourth-order iterative Runge-Kutta method. Given the initial

conditions and guess for the controls, state equations are solved using the forward scheme

while the corresponding adjoint equations are solved using the backward scheme with the

transversality conditions. The controls are updated by using a convex combination of the pre-

vious controls and the value from the characterizations. This is commonly referred as the For-
ward–Backward Sweep Method (FBSM) which is shown to be convergent [53]. Further details

on the optimal control under study can be found in the S1 Appendix.

Results and discussion

Sensitivity analysis on bistability of the miR-451-AMPK-mTOR system

In Kim et al. [40] (see Fig S5 in Supplementary Appendix File in [40]), sensitivity analysis of

the core control miR-451-AMPK-mTOR model (equations for M, A, R in Eq (2)) was per-

formed in order to determine which parameters have the most/least influence on the reference

output (main variables). All the core control parameters were considered to assess their corre-

sponding influence on the miR-451, AMPK, and mTOR activity. It was inferred that miR-451

Table 1. Parameters in the core control (miR-451–AMPK–mTOR) model.

Par Description Value Ref

μG glucose consumption rate 0.5 [17, 47]

ℓ1 miR-451 autocatalytic production rate 4.0 [14, 17]

ℓ2 Hill-type coefficient 1.0 [14, 17]

α inhibition strength of miR-451 by AMPK complex 1.6 [14, 17]

thM threshold of miR-451 for invasion/growth switch 1.84 computed�

ℓ3 AMPK autocatalytic production rate 4.0 [14, 17]

ℓ4 Hill-type coefficient 1.0 [14, 17]

β inhibition strength of AMPK complex by miR-451 1.0 [14, 17]

thA threshold of AMPK for invasion/growth switch 1.25 computed�

S1 signaling source of AMPK 0.2 [14, 17]

�1 scaling factor (slow dynamics) of AMPK complex 0.02 [11, 14, 17, 48, 49]

ℓ5 AMPK autocatalytic production rate 4.0 [14, 17]

ℓ6 Hill-type coefficient 1.0 [14, 17]

γ inhibition strength of AMPK complex by miR-451 1.0 [14, 17]

thR threshold of mTOR for invasion/growth switch 2.76 computed�

S2 signaling source of mTOR 1.2 [14, 17]

�2 scaling factor (slow dynamics) of mTOR 0.02 [11, 14, 17, 48, 49]

μD drug decay rate 1.316 [41, 50]

�The values are obtained using Matlab numerical bifurcation toolbox Matcont [46].

https://doi.org/10.1371/journal.pone.0215547.t001
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activity will be enhanced by increasing glucose signal (G) and autocatalytic production rates

(ℓ1, ℓ2) of miR-451. These parameters were negatively correlated with AMPK activity due

to the mutual antagonistic mechanism between miR-451 and AMPK complex. In addition,

AMPK activity will be up-regulated by an increase in signaling source S1 and autocatalytic

rates (ℓ3, ℓ4) of the AMPK complex in the model. It has been also noted that increasing S1 and

the inhibition strength of mTOR by AMPK (γ) down-regulates mTOR level. In a similar fash-

ion, S2 is strongly positively correlated with mTOR levels but little correlated with G, ℓ1, ℓ2, ℓ3,

ℓ4, α, β, �1, �2 at time 100.

In this work sensitivity analysis is carried out to determine which model parameters

have consequential effect in achieving or inhibiting bistability in the (G, R)−curve. As

in [40], a method from [54] is adapted where a range for each parameter is selected and

divided into N intervals of uniform length. For each parameter of interest, a partial rank

Table 2. Parameters in the cell cycle dynamics model.

Par Description Value Ref

k1 production rate of [CycB] 0.12(h−1) [23, 24]

k0
2

degradation rate of [CycB] 0.12(h−1) [23, 24]

k00
2

degradation rate of [CycB] by [Cdh1] 4.5(h−1) [23, 24]

[p27/p21] inhibitory effect of p21 or p27 genes 1.05 [41]

K oxygen concentration threshold 0.01 [41]

[CycB]th threshold for cell division 0.1 [23, 24]

k0
3

activation rate of [Cdh1] 3.0(h−1) [23, 24]

k00
3

activation rate of [Cdh1] by [p55cdcA] 30(h−1) [23, 24]

k4 inactivation rate of [Cdh1] by [CycB] 105(h−1) [23, 24]

J3 Michaelis-Menten activation constant 0.04 [23, 24]

J4 Michaelis-Menten inactivation constant 0.04 [23, 24]

k0
5

production rate of [p55cdcT] 0.015(h−1) [23, 24]

k00
5

transcription rate of [p55cdcT] by [CycB] 0.6(h−1) [23, 24]

k6 degradation rate of [p55cdcT] 0.3(h−1) [23, 24]

J5 dissociation constant of [p55cdcT] 0.3 [23, 24]

n Hill coefficient 4.0 [23, 24]

k7 activation rate of [p55cdcA] by [Plk1] 3.0(h−1) [23, 24]

k8 inactivation rate of [p55cdcA] by [Mad] 1.5(h−1) [23, 24]

J7 Michaelis-Menten activation constant 0.001 [23, 24]

J8 Michaelis-Menten inactivation constant 0.001 [23, 24]

[Mad] spindle checkpoint genes concentration 1.0 [23, 24]

k9 activation rate of [Plk1] by [CycB] 0.3(h−1) [23, 24]

k10 degradation rate of [Plk1] 0.06(h−1) [23, 24]

μ+ specific growth rate 0.03 [23, 24]

m� maximum size to which a cell may grow 10 [23, 24]

ε cell cycle heterogeneity growth rate parameter 0.006 [41]

z1 Hill-type parameter in [masss] 2.5 [17]

n1 Hill-type parameter in [masss] 10 [17]

Km Hill-type parameter in [masss] 0.5 [17]

z2 Hill-type parameter in [HIF] 1.0 [41]

n2 Hill-type parameter in [HIF] 10.0 [41]

KH Hill-type parameter in [HIF] 10.0 [41]

μD Decay rate of drug 1.316 [41, 50]

https://doi.org/10.1371/journal.pone.0215547.t002
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correlation coefficient (PRCC) value is computed. In order to obtain the PRCC values, Latin
Hypercube Sampling (LHS), a stratified sampling without replacement technique, is chosen.

The PRCC values range between –1 and 1 with the sign determining whether a change in

the parameter value will promote (+) or suppress (−) bistability. The following algorithm is

performed:

1. Assign a probability distribution D½mj;min; mj;max� to each parameter μj and let N be the num-

ber of samples to be selected. Divide the interval [μj,min, μj,max] into N equiprobable subin-

tervals, and draw an independent sample from each subinterval.

2. Assemble the LHS matrix L, wherein each row of L represents a unique combination of

parameters sampled without replacement.

3. For each row of the LHS matrix L, solve for mTOR R in terms of glucose G and check for

bistability window Wb. If bistability exists assign 1 to output variable Wb in matrix Y, else

assign −1.

4. Rank-transform the matrices L and Y to obtain LR and YR. By rank-transform, we mean to

replace the value by its rank when the data are sorted from lowest to highest, e.g. the small-

est value is assigned a rank 1. Tied values are assigned an average rank.

Fig 7. Typical cell cycle dynamics. Dynamics of intracellular proteins, mass, and masss of the cell cycle model in response to constant (intermediate) high glucose

level.

https://doi.org/10.1371/journal.pone.0215547.g007
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Fig 8. Intracellular dynamics under regular glucose and drug infusions. (A) Concentration profiles of miR-451 (M) and mTOR (R) fluctuating around the

threshold values under regular infusions. Peaks in pseudo-mass are generated when M and R crosses thM and thR, respectively. (B) Trajectory of mTOR–miR-451–

AMPK concentration profiles switching between proliferation and migration mode. (C) Dynamics of intracellular proteins, mass, and masss of the cell cycle model

in response to regular glucose and drug infusions.

https://doi.org/10.1371/journal.pone.0215547.g008
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5. Fix a parameter μj, which is encoded in the jth column in the matrix LR. Form the following

linear regression models using the data matrices LR and YR for μj and y, respectively:

m̂ j ¼ c0 þ
XnP

p¼1;p6¼j

cpmp; ð10Þ

ŷ ¼ b0 þ
XnP

p¼1;p6¼j

bpmp: ð11Þ

Compute ðmj � m̂ jÞ and ðy � ŷÞ, the residuals in the input parameter and the output after

removing the linear effects of the other input parameters.

6. Obtain the PRCC of μj using

PRCCmj;y
¼

Covðmj � m̂ j; y � ŷÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðmj � m̂ jÞVarðy � ŷÞ

q : ð12Þ

7. Repeat Steps 5 and 6 for the remaining parameters.

Fig 4 shows the sensitivity (PRCC value) of the model parameters in promoting (+) or

destroying (−) bistability. It illustrates that a change in the miR-451 autocatalytic production

rate (ℓ1) or inhibition strength of AMPK complex by miR-451 (β) enhances bistability. On the

contrary, the Hill-type coefficient ℓ4 in the regulation of AMPK is responsible for losing bist-

ability. It should be noted that due to the model’s structure, ℓ1 up-regulates miR-451 which in

turn increases mTOR and suppress AMPK activity. The parameter ℓ4 promotes AMPK com-

plex and down-regulates miR-451 and mTOR. However, other parameters ℓ2, α, ℓ3, S1, ℓ5, ℓ6, γ,

S2 are little sensitive in emergence or destruction of the bistability.

The bistability of miR-451–AMPK–mTOR core control system depends on the geometric

structure of its nullclines. In particular, bistability arises when M- and A-nullclines (i.e., dM
dt ¼ 0

and dA
dt ¼ 0) intersect at three distinct points, producing one unstable and two stable steady

states. The nullclines intersect three times due to their sigmoidicity influenced by catalytic

rates ℓ1 and ℓ4. These rates must be proportionate for a given glucose G level. Otherwise, the

nullclines will intersect only once. This bistability condition has been shown for a genetic tog-

gle switch in E. coli [42]. Fig 5A–5C depict the M- and A-nullclines under different G levels

with various ℓ1 and ℓ4 values. The bifurcation curves for ℓ1, ℓ4 and region of bistability for spe-

cific G levels are depicted in Fig 5D. Under given circumstances, ℓ1 and ℓ4 showed significant

sensitivities in the bistability of the system. On the contrary, both ℓ5 and ℓ6 affect the R-null-

cline only. It is illustrated in Fig 5E that for several ℓ5 and ℓ6 values, R- and A-nullclines inter-

sect at only one point, leading to a single steady state. In effect, M- and A-nullclines will also

intersect once, producing monostability. Hence, ℓ5 and ℓ6 show insignificant consequence in

achieving bistability (see Fig 4).

In the following numerical experiments, it is assumed that initially glioma cells are in

growth phase (a probable occurrence of post primary tumour surgery) with M> thM, A< thA,

and R> thR. It is also considered that glucose and drug can be administered exogenously as

intravenous infusions. Further, the weight parameters B1 = 1 and B2 = 1 are used as default val-

ues unless specified.

Concomitant infusion control

In this strategy, glucose and drug infusions are administered simultaneously, in particular,

both controls uG(t) and uD(t) are infused at the same. Thus, this is referred to as concomitant
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control. Here, it is assumed that the drug in consideration which blocks the inhibitory pathway

of mTOR by AMPK complex had negligible side effects and had inconsequential chemical

reactions with glucose. In order to determine an efficient strategy of concomitant infusion pro-

tocol, glucose and drug are administered concurrently at initial time t = 0 for 3 hours using the

numerical scheme FBSM. Infusion spontaneously increases glucose and drug concentrations

as depicted in Fig 9(A) and 9(B). Consequently, miR-451 and mTOR levels are up-regulated

while AMPK complex is down-regulated as shown in Fig 9C. A closer look at the control

curves shows that both uG(t) and uD(t) decrease from 0< ti< 3 suggesting that both glucose

and drug dose rates should be decreased from time ti. This leads to the decrease of glucose and

drug concentrations due to consumption and decay. Accordingly, miR-451 and mTOR levels

decrease while AMPK complex increases. Before miR-451 crosses the threshold value thM,

FBSM is again applied for the next 3 hours. This suggests a time for the next concomitant

administrations in which miR-451 profiles are monitored subsequently. The procedures in

tracking miR-451 profiles and applying FBSM for 3 hours are repeated over a specified time

duration. Thus, the number of concomitant administrations are determined. It is important to

note that keeping miR-451 level above its threshold value consequently confine AMPK and

mTOR levels, below and above its corresponding threshold values, respectively (see Fig 9C).

Fig 10 depicts the intracellular dynamics under concomitant glucose and drug control. In Fig

10A, it can be observed that both miR-451 and mTOR levels are above their threshold values,

and [masss]� [mass]. Under concomitant control, the trajectory of mTOR–miR-451–AMPK

concentration profiles are restricted only in the proliferation region as shown in Fig 10B. The

time courses of cell cycle variables under concomitant control is illustrated in Fig 10C. It can

be seen that concomitant control induces fewer (only 3) mass divisions over 120h period as

compared to regular infusions with 5 mass divisions, see Fig 8C. It should be noted as well that

in concomitant control, mass concentration is increased before division.

Alternating infusion control

Suppose that concurrent glucose and drug administrations is not plausible due to unwanted

chemical reactions. We propose another control strategy that administers glucose uG(t) and

drug uD(t) infusions alternately. At initial time t = 0, glucose infusion is obtained by solving

the optimal control problem using the numerical scheme FBSM for 3 hours. Next, drug infu-

sion is attained for the next 3 hours in a similar manner. Hence, the controls uG(t) and uD(t)
are applied one after the other. Subsequently, miR-451 levels are then tracked and before it

crosses the threshold value, glucose infusion uG(t) and drug infusion uD(t) are again adminis-

tered alternately in a similar fashion above, over the specified duration of administration.

Thus, the time for the next alternating infusion is determined by tracking miR-451 levels. This

strategy is referred simply as alternating control. This infusion protocol is shown in Fig 11(A)

and 11(B). Note that glucose infusion increases miR-451 levels and drug infusion activates

mTOR activities keeping AMPK down-regulated as depicted in Fig 11C. The intracellular

dynamics under alternating control is illustrated in Fig 12. As shown in Fig 12A, miR-451 and

mTOR levels stay above the threshold values, and [masss]� [mass]. Fig 12B depicts that

mTOR–miR-451–AMPK trajectory are confined in proliferation region. Fig 12C exhibits the

time courses of cell cycle variables under alternating control.

Comparison between control strategies

Both concomitant and alternating control strategies are able to sustain elevated miR-451 and

mTOR levels above their threshold values and AMPK levels below its threshold value. It was

also shown that mTOR–miR-451–AMPK trajectory is restrained in the proliferation region
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Fig 9. Concomitant glucose and drug control. (A) Glucose control and concentration levels, (B) drug control and concentration levels,

and (C) concentration profiles of miR-451, AMPK complex, and mTOR under concomitant control.

https://doi.org/10.1371/journal.pone.0215547.g009
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prohibiting cell migration. Further, number of cell divisions is reduced with slightly higher

mass concentration before division compared to regular infusions but lower compared to con-

stant (intermediate) high glucose concentrations. In this section, we compare the cost effi-

ciency of the proposed strategies in terms of frequency of administration, dose per infusion,

total glucose and drug amount, relative cost per infusion, and total cost incurred in the

Fig 10. Intracellular dynamics under concomitant glucose and drug control. (A) Concentration profiles of miR-451 (M) and mTOR (R) above the threshold

values under concomitant infusions. (B) Trajectory of mTOR–miR-451–AMPK concentration profiles restrained in the proliferation region. (C) Dynamics of

intracellular proteins, mass, and masss of the cell cycle model in response to concomitant glucose and drug infusions.

https://doi.org/10.1371/journal.pone.0215547.g010
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Fig 11. Alternating glucose and drug control. (A) Glucose control and concentration levels, (B) drug control and concentration levels, and

(C) concentration profiles of miR-451, AMPK complex, and mTOR under alternating control.

https://doi.org/10.1371/journal.pone.0215547.g011
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administrations. For the following results, the time for simulation duration is considered to be

168 hours (7days).

Recall that parameters B1 and B2 are the weight factors associated in our objective func-

tional which represent the measure of costs involved in the administration of glucose uG(t)

Fig 12. Intracellular dynamics under alternating glucose and drug control. (A) Concentration profiles of miR-451 (M) and mTOR (R) above the threshold

values under concomitant infusions. (B) Trajectory of mTOR–miR-451–AMPK concentration profiles restrained in the proliferation region. (C) Dynamics of

intracellular proteins, mass, and masss of the cell cycle model in response to alternating glucose and drug infusions.

https://doi.org/10.1371/journal.pone.0215547.g012
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and drug uD(t) infusions, respectively, which also includes dosage, type, brand, medical fee for

administration, etc. Fig 13A shows that as the cost of glucose administration becomes expen-

sive (increasing B1 values) with fixed drug administration cost (B2 = 1.0), frequency of con-

comitant and alternating infusion increases. However, it should be observed that as frequency

of administration increases, the optimal glucose dose per infusion decreases with drug dose

per infusion increases, see Fig 13B. Increasing drug dosage compensates the decreasing glucose

dosage in order to keep mTOR activities up-regulated leading to cell proliferation. On the con-

trary, if drug administration cost increases (increasing B2 values) with fixed glucose adminis-

tration cost (B1 = 1.0), frequency of administration remains almost constant. This is depicted

in Fig 13C. The glucose dose per infusion is almost the same but the drug dose per infusion

decreases with increasing B2 as illustrated in Fig 13D. Further, note that frequency of concomi-

tant infusion control is always lower than that of alternating infusion control. In addition,

drug (glucose) dose per infusion of concomitant control is always more (slightly less) than that

of alternating control.

For increasing glucose administration cost (increasing B1) with fixed drug administration

cost (B2 = 1.0), total amount of glucose used for both control strategies generally decrease

(except for high B1 > 3.0 values), as depicted in Fig 14A, while total amount of drug increases,

see Fig 14B. On the other hand, when drug administration becomes expensive (increasing B2

Fig 13. Frequency and dosage of optimal infusions. (A) Frequency and (B) dose per optimal infusion of concomitant (circle) and alternating (triangle) controls

with fixed drug administration cost B2 = 1.0 and varying glucose administration cost B1. (C) Frequency and (D) dose per optimal infusion of concomitant (circle)

and alternating (triangle) controls with fixed glucose administration cost B1 = 1.0 and varying drug administration cost B2.

https://doi.org/10.1371/journal.pone.0215547.g013
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values) with fixed glucose administration cost (B1 = 1.0), the total amount of glucose dosage is

almost constant (just slightly increasing for concomitant control) as shown in Fig 14C, but the

total drug amount is decreasing as can be seen in Fig 14D. As illustrated in Fig 14, concomitant

control use less total amount of glucose than that of alternating control. Contrarily, concomi-

tant administration consumes more total drug amount as compared to that of alternating con-

trol (except possibly for high glucose administration cost, B1 > 3.0, see Fig 14B).

Figs 15 and 16 reflect the relative cost per infusion and total administration cost of glucose

and drug infusions incurred under concomitant and alternating controls. With fixed drug

administration cost (B2 = 1.0), relative glucose cost per infusion and total administration cost

increases as B1 increases. Note that alternating control cost for glucose is always higher than

concomitant infusions, see Fig 15(A) and 15(B). The relative and total administration cost

for concomitant infusion slightly increase as compared to alternating control as B1 increases.

Again, alternating control incur more cost for higher glucose administration cost as illustrated

in Fig 15(C) and 15(D). On the other hand, when B1 = 1.0 and drug administration cost (B2)

increases, the relative glucose cost per infusion and total administration cost is almost con-

stant. This can be seen in Fig 16(A) and 16(B). Again, relative total cost for alternating control

is higher than that of concomitant control. Further, as B2 increases, relative drug cost per infu-

sion and total administration cost decreases (Fig 16(C) and 16(D)), since total drug dosage

Fig 14. Total glucose and drug amount used in concomitant and alternating control infusions. (A) Total glucose and (B) drug amount used in concomitant

(circle) and alternating (triangle) controls with fixed drug administration cost B2 = 1.0 and varying glucose administration cost B1. (C) Total glucose and (D) drug

amount used in concomitant (circle) and alternating (triangle) controls with fixed glucose administration cost B1 = 1.0 and varying drug administration cost B2.

https://doi.org/10.1371/journal.pone.0215547.g014
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also decreases as shown in Fig 14D. In this case, it can be seen that drug administration cost

for alternating control is generally lower than that of concomitant control.

Observe that in Fig 17, both concomitant (blue) and alternating (orange) control trajecto-

ries in glucose–mTOR–drug space are restricted in a smaller region avoiding aggressive inva-

sion, rapid proliferation, and unwanted drug complications. Both strategies achieved the

goal of keeping mTOR (miR-451) up-regulated inducing cell proliferation and thus avoiding

aggressive cell migration. It is important to note that under these proposed optimal control

infusions, glucose and drug levels are regulated to prevent excessive cell division and tumor

growth. As a consequence, these strategies suggest safer infusion administration preventing

hyperglycemia for diabetic patients and risk of drug complications.

Table 3 provides the average frequency, dosage and relative cost of concomitant and alter-

nating control strategies where B1 = B2 = 1.0 and simulation time is 168h (7d).

Conclusion

The periodic switching behavior of glioblastoma cells between proliferation and invasion

phases is highly influenced by fluctuating glucose levels [14, 17]. In response to high glucose

supply, miR-451 and mTOR are up-regulated and AMPK complex is down-regulated inducing

cell growth. On the contrary, low glucose level up-regulates AMPK complex, down-regulating

miR-451 and mTOR, promoting cell migration [15]. The mutual antagonistic mechanism

Fig 15. Relative administration cost for varying B1. Relative glucose administration (A) cost per infusion and (B) total cost, and relative drug administration (C)

cost per infusion and (D) total cost incurred for a period of 168h (7d) for concomitant and alternating controls with increasing B1.

https://doi.org/10.1371/journal.pone.0215547.g015
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between miR-451 (mTOR) and AMPK complex and the cell’s strategic metabolic adaptation

support the survival of cancer cells even in a nutrient-deprived microenvironment [14, 55].

In addition to rapid proliferation of glioblastoma cells, aggressive invasion to the surround-

ing tissue is a major cause of treatment failure. Despite advances in medical imaging technol-

ogy such as MRI and PET, glioblastoma cells can spread beyond detection leading to tumor

recurrence within 2 to 3 cm of the resection cavity even after surgical removal of a malignant

glioblastoma [29]. These glioma cells are capable to deform cell membrane and nucleus for cell

infiltration through a narrow gap between normal glial cells in brain tissue by upregulation of

myosin II along with actin bundles [26, 56]. While exact migratory patterns are still poorly

understood, these invasive glioma cells prefer white matter and blood vessels [26, 57] with a

wide range of speeds in the range of 5-80 μm/h [58–61] showing sometimes saltatory patterns

in the migration direction in brain [58]. Prediction of tumour invasion directions in nearby

tissue may help define exact boundaries of focal treatments (surgery or radiosurgery), prevent-

ing future growth and recurrence [57]. For example, medical doctors could determine specific

locations for radiation target volumes, not just using a rough estimate of 2-3 cm in all direc-

tions as a guidance as commonly done today [57].

Assuming that migratory cells are localized near the surgery site [16], one possible approach

is to keep the cells in its proliferative phase preventing them from invading brain tissue in a

combination with transport of therapeutic drugs near blood vessels [18]. As a result, the tumor

Fig 16. Relative administration cost for varying B2. Relative glucose administration (A) cost per infusion and (B) total cost, and relative drug administration (C)

cost per infusion and (D) total cost incurred for a period of 168h (7d) for concomitant and alternating controls with increasing B2.

https://doi.org/10.1371/journal.pone.0215547.g016
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mass will be visible for a succeeding surgery while killing proliferative tumor cells at the blood

sites.

In this study, we considered the intracellular dynamics of the miR-451–AMPK-mTOR-cell

cycle signaling pathway model developed recently by Kim et al. [40]. Incorporated in the

model is a drug component which blocks the inhibitory pathway of mTOR by AMPK complex.

This drug targets up-regulation of mTOR activities enhancing cell proliferation. The focus of

the current work is to regulate up-stream signaling pathway via glucose infusion activating

Fig 17. Glucose–mTOR–drug dynamics for concomitant and alternating controls. Concomitant (blue) and alternating (orange) control trajectories are confined

in a smaller region avoiding aggressive invasion, rapid proliferation, and unwanted drug complications.

https://doi.org/10.1371/journal.pone.0215547.g017

Table 3. Summary for concomitant and alternating controls.

Concomitant Alternating

frequency glucose infusion 0.080297 0.092806

drug infusion 0.080297 0.092806

glucose dose per infusion 2.114161 2.135903

total 29.598253 34.174444

drug dose per infusion 1.365346 1.044772

total 19.114839 16.716352

glucose relative cost per infusion 0.964683 0.978384

total 13.505558 15.65414

drug relative cost per infusion 0.372771 0.201441

total 19.114839 16.716352

https://doi.org/10.1371/journal.pone.0215547.t003

Strategies in regulating glioblastoma signaling pathways and anti-invasion therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0215547 April 22, 2019 26 / 34

https://doi.org/10.1371/journal.pone.0215547.g017
https://doi.org/10.1371/journal.pone.0215547.t003
https://doi.org/10.1371/journal.pone.0215547


miR-451, and control the down-stream pathway to cell cycle via drug infusion enhancing

mTOR activities. Optimal control problem is formulated with the goal of keeping high levels

of miR-451 and mTOR to induce cell growth and reduce invasion to the surrounding tissues.

In the framework of optimal control theory, two administration strategies are explored to

achieve the goal with minimal cost incurred in glucose and drug administrations. The control

strategies investigated in this study are (1) concomitant infusion control and, and (2) alternat-

ing glucose and drug infusion control. Both strategies are able to switch on the proliferative

mode of glioblastoma cells and turn off its migratory mode. Cell cycle is regulated with fewer

mass divisions restricting rapid growth. Numerical results show that concomitant control had

fewer infusions, lesser glucose dosage and cheaper administration cost. However, when glu-

cose and drug poses unwanted chemical reactions during concurrent administration, alternat-

ing control would be beneficial with lower drug amount usage.

The mathematical models of the miR-451-AMPK-mTOR core control [14, 16–18, 40] are

based on a ‘go-or-grow’ hypothesis and supporting experiments in GBM cells [8, 15, 19].

However, the range of bistable behavior indicates a ‘go-and-grow’ program which has been

proposed for other cancers too [62]. In the glioma cases, ‘go-or-grow’ hypothesis has been

long suggested [29, 55, 63–66] in addition to miR-451-induced ‘go-or-grow’ mechanism [8,

15, 19]. Glioma consists of a bulky, proliferative core in the center and highly invasive indi-

vidual cells in the outer rim [55, 63, 64, 67] and sequential transition between proliferative

and invasive phenotypes characterizes tumor progression and may lead to faster growth [14].

At least at the microscopic level, these migration/proliferation phenotypes appear to be

mutually exclusive characteristics at different time frames [64], as suggested by in vivo imag-

ing data of glioma cells migrating in a saltatory fashion [58]. Glioma cells was shown to

pause for a short period of time (�an hour) for cell division before the daughter cells begin

to move again [58]. Gal et al. [68] further experimentally observed that this phenotypic

switch can happen under different extracellular environment: (i) proliferative type in soft

agar via activation of Myc signaling pathways in response to hepatocyte growth factor

(HGF); and (ii) infiltrative type in Matrigel through Ras signaling pathways in response to

the same HGF. Recently, Dhruv et al. [69] also affirmed the role of activation of key mole-

cules in dichotomy between proliferation and invasion: c-Myc and NFκB in the proliferative

core and radially dispersed, invasive region of GBM tumors, respectively. Glial cells can also

interact with GBM tumor cells for phenotypic switch of GBM cells between cell migration

and active proliferation [66]. Although these experiment and mathematical modeling sup-

port the ‘go-or-grow’ hypothesis, it is not certain if alternative mechanism such as ‘go-and-

grow’ occurs in such a heterogenous TME in real patients [64]. Mansury et al. [70] for

instance illustrated that individual glioma cell in a mixed group of proliferative and invasive

phenotypes can depend on genotype of counter part and tumor microenvironment. In a sim-

ilar conceptual studies on epithelial-to-mesenchymal transition (EMT) and mesenchymal-

to-epithelial transition (MET) [45] can give a hint on the complexities of this complex regu-

lation of those two phenotypes and glioma in TME might not posses the simple ‘go-or-grow’

dogma. Increasing number of evidences now suggest that the ‘go-or-grow’ model has similar

molecular basis with EMT [64]. For instance, HGF and TGFβ are major regulators of EMT,

and these also provide strong stimuli of GBM invasion [71, 72] and, upregulation of MET

and CD44 activities, as well as an activated NFκB signaling pathway, was reported in both

mesenchymal GBM and metastatic cancer [73–76]. All these experimental observations sug-

gest that metastatic epithelial cancers and mesenchymal GBM drive common mechanisms

that regulate the phenotypic transition between invasion and proliferation, suggesting the

possibility of the ‘go-and-grow’ mechanism. The EMT paradigm in GBM has not been exten-

sively studied as relevant to the progression of the disease due to different origin and rare
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metastasis of glioma [77, 78]. Further studies and experimentation need to be done for better

understanding of the fundamental principles.

In this paper, we did not take into account key microenvironmental factors such as endoge-

nous immune dynamics including NK cells [79] and M1/M2 macrophages [72], other major

signaling networks [80, 81] such as E2F and Myc [11, 82], angiogenesis [80, 83], biophysical

interaction between tumor cells and blood vessels [80], ECM remodeling for therapy [81, 84–

86], or growth factors [87, 88] such as epidermal growth factors [72, 89, 90], fibroblast growth

factors [91], transforming growth factor-β [72, 92], and CSF-1 [72, 93, 94], that may play criti-

cal roles in proliferation, progress, aggressive invasion of gliomas and development of anti-

cancer strategies [95]. For example, endogenous NK cells may interfere oncolytic virus combi-

nation therapy in GBM while exogenous NK cells increase anti-tumor efficacy [79], illustrating

the complex nature of tumor microenvironment. Recently, mTOR was considered to be a mas-

ter regulator of cell growth and recognized as a good therapeutic target for therapies in glio-

blastoma [96]. A recent study found that withaferin A and temozolomide can induce apoptosis

and reduce drug resistance by G2/M cell cycle arrest through intrinsic and extrinsic apoptotic

signaling pathways [97]. More detailed analysis and experiments on Akt/mTOR/PI3K are nec-

essary. Interestingly, radiation was shown to indirectly promote the export of lactate into the

extracellular space and inhibition of AMPK/NFκB signaling pathways were involved in radia-

tion-induced invasion of cancer cells [98]. On the other hand, M2 microglia/macrophages

induce matrix remodeling and glioma cell invasion [72, 99–101]. Since PI3K signaling was

shown to contribute to M2-polarization of these tumor associated macrophages (TAMs) [102]

and PI3K binding to CSF1R was shown to enhance spreading of macrophages, thus promoting

glioma cell invasion [103]. Therefore, better understanding of these PI3K-mTOR-CSF1R sig-

naling networks in macrophages would lead to development of blocking aggressive infiltration

of cancer cells. Signaling pathways of apoptosis and necroptosis are important parts of oncoly-

tic virus (OVs) therapy [104, 105]. Tumor extracellular matrix (ECM) plays a significant role

in regulation of glioma invasion in brain tissue as well as OV spread [106]. For example,

CSPGs, one of major tumor ECM in brain can characterize the invasive and non-invasive glio-

mas in a complex TME where microglia and astrocytes mechanically interact with CSPGs and

tumor cells [40, 107–109]. Hybrid models [56, 110–112] and its associated optimal control

strategies can be adapted to take into account this important intracellular signaling as well as

cell population dynamics and tissue dynamics. Better understanding of various roles of these

components in tumor microenvironment may provide better anti-invasion strategies of gli-

oma cells.

However, our mathematical model in this work is a first step toward further experimental/

clinical investigation and more optimal anti-invasion strategies of GBM by incorporating

these microenvironmental components. We will address these issues in future work.

Supporting information
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